1
|
Li W, Ma T, Tang P, Luo Y, Zhang H, Zhao J, Ameloot R, Tu M. Nanoscale Resist-Free Patterning of Halogenated Zeolitic Imidazolate Frameworks by Extreme UV Lithography. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415804. [PMID: 40040608 PMCID: PMC12021036 DOI: 10.1002/advs.202415804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/17/2025] [Indexed: 03/06/2025]
Abstract
Advancements in patterning techniques for metal-organic frameworks (MOFs) are crucial for their integration into microelectronics. However, achieving precise nanoscale control of MOF structures remains challenging. In this work, a resist-free method for patterning MOFs is demonstrated using extreme ultraviolet (EUV) lithography with a resolution of 40 nm. The role of halogen atoms in the linker and the effect of humidity are analyzed through in situ and near-ambient pressure synchrotron X-ray photoelectron spectroscopy. In addition to facilitating the integration of MOFs, the results offer valuable insights for developing the highly sought-after positive-tone EUV photoresists.
Collapse
Affiliation(s)
- Weina Li
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- 2020 X‐LabShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Graduate StudyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Tianlei Ma
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- 2020 X‐LabShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Pengyi Tang
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- 2020 X‐LabShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Graduate StudyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yunhong Luo
- ShanghaiTech UniversitySchool of physical science and technologyShanghai201210China
| | - Hui Zhang
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
- National Key Laboratory of Materials for Integrated CircuitsShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Jun Zhao
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Rob Ameloot
- Centre for Membrane SeparationsAdsorptionCatalysis and SpectroscopyKU LeuvenLeuven3001Belgium
| | - Min Tu
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- 2020 X‐LabShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Graduate StudyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
2
|
Qin M, Zhou M, Li D, Lou X, Zhu J, Tian X, Zhang N, Ma W, Lu M. Boronic acid functionalized of covalent organic framework for high performance capture of trace phthalates. J Chromatogr A 2024; 1738:465481. [PMID: 39488121 DOI: 10.1016/j.chroma.2024.465481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
In order to improve the enrichment performance of parent covalent organic frameworks (COFs), boronic acid functionalized of COF (COF-B(OH)2) was obtained by a simple standing method for the first time. The obtained COF-B(OH)2 exhibited the new characteristics that were not possessed by pure COF and was employed as the solid phase microextraction (SPME) coating material for highly efficient enrichment of trace endocrine disruptors phthalates (PAEs). Compared to pure COF, the synergistic effect of the newly emerged unique pore structure and boric acid interaction sites, and the large specific surface area and the abundant benzene ring structure inherited by original COF framework endowed COF-B(OH)2 with enhanced enrichment performance for PAEs. Combined with gas chromatography-mass spectrometry (GC-MS), COF-B(OH)2 exhibited the good linearity over a wide concentration of 0.1-3000 ng l-1 with good coefficients (R2, 0.9916-0.9998) for PAEs. The developed method was successfully employed for detection of trace PAEs in milk and water samples, demonstrating high recoveries (90.6-111.3 %). This work provides a sustainable approach to developing high-performance materials for enriching environmental pollutants.
Collapse
Affiliation(s)
- Mengjie Qin
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Mengmeng Zhou
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Dongxue Li
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Xuejing Lou
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Jiawen Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Xiao Tian
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Ning Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Wende Ma
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China.
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
3
|
Tseng LT, Karadan P, Kazazis D, Constantinou PC, Stock TJ, Curson NJ, Schofield SR, Muntwiler M, Aeppli G, Ekinci Y. Resistless EUV lithography: Photon-induced oxide patterning on silicon. SCIENCE ADVANCES 2023; 9:eadf5997. [PMID: 37075116 PMCID: PMC10115406 DOI: 10.1126/sciadv.adf5997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this work, we show the feasibility of extreme ultraviolet (EUV) patterning on an HF-treated silicon (100) surface in the absence of a photoresist. EUV lithography is the leading lithography technique in semiconductor manufacturing due to its high resolution and throughput, but future progress in resolution can be hampered because of the inherent limitations of the resists. We show that EUV photons can induce surface reactions on a partially hydrogen-terminated silicon surface and assist the growth of an oxide layer, which serves as an etch mask. This mechanism is different from the hydrogen desorption in scanning tunneling microscopy-based lithography. We achieve silicon dioxide/silicon gratings with 75-nanometer half-pitch and 31-nanometer height, demonstrating the efficacy of the method and the feasibility of patterning with EUV lithography without the use of a photoresist. Further development of the resistless EUV lithography method can be a viable approach to nanometer-scale lithography by overcoming the inherent resolution and roughness limitations of photoresist materials.
Collapse
Affiliation(s)
- Li-Ting Tseng
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | - Dimitrios Kazazis
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- Corresponding author.
| | | | - Taylor J. Z. Stock
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, UK
| | - Neil J. Curson
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, UK
| | - Steven R. Schofield
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | | | - Gabriel Aeppli
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- Laboratory for Solid State Physics and Quantum Center, ETH-Zürich, 8093 Zürich, Switzerland
- Institut de Physique, EPFL, 1015 Lausanne, Switzerland
| | - Yasin Ekinci
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
4
|
Ashraf G, Ahmad T, Ahmed MZ, Murtaza, Rasmi Y. Advances in Metal-organic Frameworks (MOFs) based Biosensors for Diagnosis: An Update. Curr Top Med Chem 2022; 22:2222-2240. [PMID: 36043769 DOI: 10.2174/1568026622666220829125548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/09/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022]
Abstract
Metal-organic frameworks (MOFs) have significant advantages over other candidate classes of chemo-sensory materials owing to their extraordinary structural tunability and characteristics. MOF-based biosensing is a simple and convenient method for identifying various species. Biomarkers are molecular or cellular processes that link environmental exposure to a health outcome. Biomarkers are important in understanding the links between environmental chemical exposure and the development of chronic diseases, as well as in identifying disease-prone subgroups. Until now, several species, including nanoparticles (NPs) and their nanocomposites, small molecules, and unique complex systems, have been used for the chemical sensing of biomarkers. Following the overview of the field, we discussed the various fabrication methods for MOFs development in this review. We provide a thorough overview of the previous five years of progress to broaden the scope of analytes for future research. Several enzymatic and non-enzymatic sensors are offered, together with a mandatory measuring method that includes detection range and dynamic range. In addition, we reviewed the comparison of enzymatic and non-enzymatic biosensors, inventive edges, and the difficulties that need to be solved. This work might open up new possibilities for material production, sensor development, medical diagnostics, and other sensing fields.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Department of Biomedical Engineering, Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P.R. China
| | - Tauqir Ahmad
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | | | - Murtaza
- Department of Chemical Sciences, University of Lakki Marwat, 28420, Khyber Pakhtunkhwa, Pakistan
| | - Yousef Rasmi
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|