1
|
Naz I, Alanazi SJF, Hayat A, Jubeen F. Covalent organic framework-based aptananozyme (COF@NH 2 apt-AFM 1): A novel platform for colorimetric and fluorescent aptasensing of AFM 1 in milk. Food Chem 2025; 484:144478. [PMID: 40279903 DOI: 10.1016/j.foodchem.2025.144478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/07/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Nanozymes are valued for their cost-effectiveness and robustness but are often limited their lack of specificity. This study introduces a Covalent Organic Framework-based aptananozyme (COF@NH2 apt- AFM1) for label-free, dual-mode detection of Aflatoxin M1 (AFM1) in milk. The aptananozyme enables colorimetric detection by catalyzing the oxidation of 3, 3', 5, 5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2) and provides fluorescent signals for sensitive AFM1 identification. The dual-mode aptasensor achieves remarkable limits of detection (LOD) 7 pg/mL (colorimetric) and 5 pg/mL (fluorescent). Validation with High Performance Liquid Chromatography (HPLC) on milk samples showed recovery 97-99 % (colorimetric) and 96-101 % (fluorescent), confirming its stability and repeatability. Characterization of the COF and aptananozyme involved Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), UV-visible absorption spectroscopy, Fluorescence emission spectroscopy, Field emission scanning electron microscopy (FE-SEM), optical microscope images and Dynamic light scattering (DLS). This sensor demonstrates high sensitivity, accuracy and broader application potential.
Collapse
Affiliation(s)
- Iram Naz
- Department of Chemistry, Govt. College Women University, Arfa Kareem Road, Faisalabad 38000, Pakistan; Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, 1.5 Km Defense Road, off Raiwind Road, Lahore, Punjab 54000, Pakistan
| | - Seham J F Alanazi
- Department of Chemistry, College of Science (CS), King Saud University, Riyadh 11451, Saudi Arabia
| | - Akhtar Hayat
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, 1.5 Km Defense Road, off Raiwind Road, Lahore, Punjab 54000, Pakistan.
| | - Farhat Jubeen
- Department of Chemistry, Govt. College Women University, Arfa Kareem Road, Faisalabad 38000, Pakistan
| |
Collapse
|
2
|
Wang L, Lian X, Sun J, Fu Y, Gan Y, Duan Z, Li C. Structural and functional optimization of COF-coated stirring bars for environmental monitoring and biological sample analysis. Anal Bioanal Chem 2025:10.1007/s00216-025-05875-3. [PMID: 40310492 DOI: 10.1007/s00216-025-05875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025]
Abstract
In this study, a series of covalent organic framework (COF)-coated stirring bars-COF-a, COF-b, and COF-c-were innovatively designed and evaluated for the efficient extraction of estrogens from complex environmental and biological samples. The most notable advancement lies in the successful application of COF-c, which exhibited exceptional adsorption capacity, thermal stability, and reusability. Unlike conventional PDMS coatings, COF-c demonstrated enhanced performance in capturing estrogens from actual meat samples, achieving high recovery rates (78.6-119.3%) and maintaining consistent extraction efficiency over multiple cycles. These findings highlight the structural advantages of COF-c, such as its larger pore volume and strong π-π and hydrogen bonding interactions with target molecules. This work underscores the potential of COF-c as a next-generation SBSE coating material, offering a highly selective, thermally stable, and reusable platform for trace hormone analysis in complex matrices.
Collapse
Affiliation(s)
- Lianzhi Wang
- School of Chemistry and Environmental Engineering, Hubei Minzu University, No. 39 Xueyuan Road, Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, 445000, China.
| | - Xixi Lian
- School of Chemistry and Environmental Engineering, Hubei Minzu University, No. 39 Xueyuan Road, Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, 445000, China
| | - Jianing Sun
- School of Chemistry and Environmental Engineering, Hubei Minzu University, No. 39 Xueyuan Road, Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, 445000, China
| | - Yingying Fu
- School of Chemistry and Environmental Engineering, Hubei Minzu University, No. 39 Xueyuan Road, Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, 445000, China
| | - Yu Gan
- School of Chemistry and Environmental Engineering, Hubei Minzu University, No. 39 Xueyuan Road, Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, 445000, China
| | - Zhengchao Duan
- School of Chemistry and Environmental Engineering, Hubei Minzu University, No. 39 Xueyuan Road, Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei Province, 445000, China
| | - Chaoyang Li
- Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, China
| |
Collapse
|
3
|
Yao W, Yao L, Wang ZE, Song X, Liang Z. Efficient photoresponsive one-dimensional covalent organic framework as oxidase-like enzyme for ultrasensitive detection of antioxidants. Talanta 2025; 286:127519. [PMID: 39765092 DOI: 10.1016/j.talanta.2025.127519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/24/2024] [Accepted: 01/01/2025] [Indexed: 03/03/2025]
Abstract
Natural polyphenolic antioxidants are widely present in foods such as fruits and vegetables, meanwhile applied in food processing and storage to prevent the formation of harmful compounds. While excessive antioxidants lead to negative impacts on human health. Hence, it is crucial to accurately detect antioxidant levels in order to enhance the overall nutritional content and food safety. Herein, a novel one-dimensional covalent organic framework (COF-Por-DPP) was constructed using 5,10,15,20-tetrakis(4-aminophenyl)-21H,23H-porphyrin and 4,4'-(2,6-pyrazinediyl)bisbenzaldehyde. The unique photoresensitive properties and topological structures endowed COF-Por-DPP excellent oxidase-like activity. The COF-Por-DPP based colorimetric assay was established for three antioxidants (gallic acid, tannic acid and caffeic acid). Moreover, this method was used to analyze real samples and a hydrogel sensor was constructed, which demonstrated good accuracy and practicability.
Collapse
Affiliation(s)
- Wenping Yao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Liyi Yao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Ze-En Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Xiaowei Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China.
| | - Zhiqiang Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China.
| |
Collapse
|
4
|
Xue K, Li S, Ji Y, Liu Q. Tetrapyrrole organics-modified cerium nanozyme with enhanced oxidase-like activity for integration of detection and degradation of antibiotic. Talanta 2025; 286:127472. [PMID: 39733521 DOI: 10.1016/j.talanta.2024.127472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/10/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
The massive accumulation of antibiotics accelerates the emergence of antibiotic resistance causing inevitable risks to human and ecosystem. To realize the integration of detection and degradation of antibiotics, it is urgent for exploring novel nanozyme materials with the excellent catalytic activity. Integrating nanozyme with tetrapyrrole-based organics is an effective strategy to enhance the catalytic activity. Herein, a series of tetrapyrrole organics with different energy levels are severally modified on cerium oxysulfate clusters (Ce-clusters) surface to fabricate nanozyme. The mechanism of nanozyme with enhanced catalytic activity was importantly explored by the energy band matching principle. At present, there are no studies that systematically research the enhancement mechanism of tetrapyrrole-based organics with different energy levels on the catalytic activity of nanozyme. Especially, Ce-clusters modified with meso-tetra (4-carboxyphenyl) porphyrin (TCPP) has the best energy band matching, resulting in the highest catalytic activity. Remarkably, the resultant nanozyme exhibits rapid and sensitive colorimetric response to tetracycline within the range of 0-0.3 mg mL-1, and the limit of detection was determined to 0.027 mg mL-1. It also possesses favorable degradation performance to tetracycline under natural light with pH adaptability, strong inorganic ions and organic matter interference tolerance, high reusability, and strong stability. Its degradation efficiency is up to 97.6 % in 60 min, much higher than other types degradation strategies. This study provides a useful principle for designing highly activity nanozyme and a powerful tool to simultaneous detection and degradation of antibiotic, holding great promise for practical application.
Collapse
Affiliation(s)
- Ke Xue
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Sha Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Yuhan Ji
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| |
Collapse
|
5
|
Li X, Wang G, Zhou D, Lan Z, Jiang F, Ng DHL, Li J. Zirconium Metal-Organic Frameworks as Micromotors with Enzyme-like Activity for Glutathione Detection. Inorg Chem 2025; 64:7096-7109. [PMID: 40155357 DOI: 10.1021/acs.inorgchem.5c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Herein, we report a novel UiO-67-Co(bpy)0.35 micromotor synthesized by a facile postsynthesis metalation via introducing cobalt salts ligated with 2,2'-bipyridine-5,5'dicarboxylic acid into UiO-67-bpy0.35 framework. The Co2+ active sites can decompose H2O2 to generate bubbles to power UiO-67-Co(bpy)0.35. Meanwhile, the UiO-67-Co(bpy)0.35 micromotor exhibits robust peroxidase-like activity through catalyzing H2O2 to generate •OH under neutral conditions. Based on this, a sensing platform was constructed for the colorimetric detection of GSH. Due to the synergy of self-driven motion and excellent peroxide-like activity, UiO-67-Co(bpy)0.35 micromotor can sensitively detect GSH with a low analytic limitation as 0.13 μM for GSH detection. This study provides a new sight of using the postsynthesis metalation method to prepare Zr(Co)-MOF micromotor for highly selective, sensitive, and facile detection of GSH.
Collapse
Affiliation(s)
- Xiaoqing Li
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China
| | - Gui Wang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China
| | - Dongyang Zhou
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China
| | - Ziwei Lan
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China
| | - Fengling Jiang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China
| | - Dickon H L Ng
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518000, China
| | - Jia Li
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
6
|
Lu FL, Wu YY, Feng SJ, Yang XS, Tian X, Ma HY, Wang W, Zhang WS, Han DX, Qin DD, Han DF, Niu L. Signal "Off-On Model'' for Colorimetric Sensing Proanthocyanidin B 2 Achieved by the Organic Solvent-Processed Amorphous BiVO 4 Nanozyme. Anal Chem 2025; 97:7165-7176. [PMID: 40131118 DOI: 10.1021/acs.analchem.4c06509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Here, we report a "off-on model"-based colorimetric sensor without the assistance of H2O2, achieved by organic solvent-processed amorphous BiVO4 nanoparticles favorable for large-scale manufacturing. The amorphous material beyond traditional crystalline nanozymes has both vanadium vacancy (Vv) and oxygen vacancy (Ov), as well as single oxidase-like activity with both hydroxyl radical (•OH) and superoxide anion (O2•-) as electron acceptors. Despite the high enzymatic performance, the dual-defect-rich amorphous BiVO4 preserves good long-term activity in either buffer solution or the solid state. The specially designed BiVO4 is capable of accelerating TMB oxidation in the presence of polyphenols, thus leading to an interesting signal-intensified colorimetric response. This is probably due to the coordination of the ortho dihydroxyl group in polyphenols with the catalyst by replacing the surface-adsorbed NO3-, which results in faster charge transfer between BiVO4 and substrate and, thus, more rapid depletion of radicals for TMB oxidation. Based on these findings, a sensor platform for proanthocyanidin (PAC) B2 is established with a limit of detection (LOD) as low as 65 nM and good specificity. The sensor shows higher sensitivity than the standard Porter method (LOD: 0.29 μM) and comparable accuracy when analyzing PAC B2 in commercially available grape seed capsules, with quantitative recoveries varying from 104.0 to 108.3% and relative standard deviations ranging from 1.7 to 5.7%. To date, this is the only nanozyme-based chemical sensor that is active for the signal "off-on model" for the detection of reducing polyphenols. Also, this method seems quite general, and it can be used for sensing of a series of specific polyphenols in addition to PAC B2.
Collapse
Affiliation(s)
- Fu-Long Lu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Optoelectronic Materials and Sensor Components, Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yun-Yun Wu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Optoelectronic Materials and Sensor Components, Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shu-Jie Feng
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Optoelectronic Materials and Sensor Components, Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xiu-Shuang Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Optoelectronic Materials and Sensor Components, Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xin Tian
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Optoelectronic Materials and Sensor Components, Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, P. R. China
| | - Hao-Yu Ma
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Optoelectronic Materials and Sensor Components, Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Optoelectronic Materials and Sensor Components, Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wen-Sheng Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Optoelectronic Materials and Sensor Components, Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dong-Xue Han
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Optoelectronic Materials and Sensor Components, Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dong-Dong Qin
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Optoelectronic Materials and Sensor Components, Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dong-Fang Han
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Li Niu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Optoelectronic Materials and Sensor Components, Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, Guangzhou University, Guangzhou 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| |
Collapse
|
7
|
Iranpour S, Abrishami A, Saljooghi AS. Covalent organic frameworks in cancer theranostics: advancing biomarker detection and tumor-targeted therapy. Arch Pharm Res 2025; 48:183-211. [PMID: 40119211 DOI: 10.1007/s12272-025-01536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 02/12/2025] [Indexed: 03/24/2025]
Abstract
In recent years, covalent organic frameworks (COFs) have garnered considerable attention in the field of onco-nanotechnology as a new type of nanoporous construct due to their promising physicochemical properties, ease of modification, and ability to be coupled with several moieties and therapeutic molecules. They can not only be used as biocompatible nanocarriers to deliver therapeutic payloads to the tumor zone selectively but can also be combined with a variety of therapeutic modalities to achieve the desired treatments. This review comprehensively presented recent achievements and progress in COF-based cancer diagnosis, detection, and cancer therapy to provide a better prospect for further research. Herein our primary emphasis lies on exploring the application of COFs as potential sensors for cancer-derived biomarkers that have received comparatively less attention in previous discussions. While the utilization of COFs in solid tumor therapy has faced significant challenges in scientific research and clinical applications, we reviewed the most promising features that underscore their potential in cancer theranostics.
Collapse
Affiliation(s)
- Sonia Iranpour
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Abrishami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
8
|
Yin Y, Yuan C, Wang X, Shen D, Rong Y, Liu J, Long Y, Zheng H. Enhancing the photo-induced oxidase-like activity of fluorescein with methyl viologen for colorimetric detection of organophosphorus pesticide. Food Chem 2025; 465:142164. [PMID: 39602944 DOI: 10.1016/j.foodchem.2024.142164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/30/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Overcoming the intrinsic low activity of most photoinduced oxidase mimics has been extremely challenging. In this work, we developed a methyl viologen (MV2+) mediated strategy to enhance the oxidase-like activity of fluorescein. The presence of MV2+ gives it a high affinity for TMB with a low Michaelis-Menten constant (Km) of 0.053 mM, which is about 2.8 times lower than that of fluorescein and with a remarkable catalytic constant (Kcat) as 0.2490 s-1, which is 3 times as high as that of fluorescein. Fluorescein diacetate (FDA) without oxidase-like activity can be hydrolyzed in situ to produce fluorescein in the presence of carboxylesterases (CaE). Based on the inhibition of CaE activity by organophosphorus pesticides (OP), a novel colorimetric signal biosensor was established with a wide linear range from 1.0 to 200 ng/mL. This work not only provides a convenient and feasible strategy for enhancing the activity of photoinduced oxidase mimics but also blazes a new pathway for the sensitive detection of OP.
Collapse
Affiliation(s)
- Yang Yin
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Caiyun Yuan
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xinyu Wang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; Ecological and Environment Monitoring Centre of Chongqing, Key Laboratory of Organic Pollutants in Environmental Chemical Behavior and Ecological Toxicology of Chongqing, Chongqing 401147, China
| | - Dongjun Shen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yu Rong
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jijun Liu
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yijuan Long
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Huzhi Zheng
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Kumar N, Singh H, Deep A, Khatri M, Bhardwaj N. Smartphone-assisted colorimetric detection of glutathione in food and pharmaceutical samples using MIL-88A(Fe). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125297. [PMID: 39461029 DOI: 10.1016/j.saa.2024.125297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/05/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Metal-organic frameworks (MOFs) have risen to prominence due to their unique structural features, including high porosity and tunable surface chemistry. As nanozymes, the MOFs replicate the catalytic activity of natural enzymes, thereby offering stability under diverse conditions and heightened efficiency. Glutathione (GSH) is a vital intracellular antioxidant and disease biomarker for cancer and neurodegenerative disorders. In this study, the intrinsic-oxidase activity of MIL-88A(Fe) was explored to develop a naked-eye-based colorimetric sensor for the detection of GSH. The 3,3',5,5',-tetramethyl benzidine (TMB) substrate was oxidized by MIL-88A(Fe), leading to the formation ofblue-colored oxidized TMB. The addition of GSH resultsin the reduction of oxidized TMB, causing the blue color to fade and a decrease in absorbance at 652 nm. Under optimal conditions, the developed sensor has a good linear relationship with GSH concentrations ranging from 0-40 μM with a detection limit of 150 nM. The developed methodwas successfully used to determine GSH accurately in real food and pharmaceutical samples. Further, the sensor demonstrated satisfactory performance for smartphone-based GSH detection on a paper-based assay. This work demonstrates the rapid, inexpensive, and ultrasensitive detection of GSH, opening new avenues for additional food quality and pharmaceuticalmonitoring.
Collapse
Affiliation(s)
- Nilmani Kumar
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Harpreet Singh
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Akash Deep
- Energy and Environment Unit, Institute of Nano Science and Technology, Sector 81, Mohali, Punjab, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Neha Bhardwaj
- Energy and Environment Unit, Institute of Nano Science and Technology, Sector 81, Mohali, Punjab, India.
| |
Collapse
|
10
|
Yang Y, Peng S, Chen S, Kang F, Fan J, Zhang H, Yu X, Li J, Zhang Q. Pyrene-based covalent organic frameworks (PyCOFs): a review. NANOSCALE HORIZONS 2024; 9:2198-2233. [PMID: 39355898 DOI: 10.1039/d4nh00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Recently, pyrene-based covalent organic frameworks (PyCOFs) have aroused great interest because the large planar structure of the pyrene unit could effectively enhance the interlayer π-π interaction and promote the separation and migration of carriers, significantly improving the crystallinity and photoelectrical properties of PyCOFs. Since the first PyCOF-containing boroxate linkage was reported in 2008 by the Yaghi group, many PyCOFs with different kinds of linkages have been reported, exhibiting great potential applications in different fields such as adsorption/separation, chemical sensing, catalysis, energy storage, etc. However, as far as we know, the reviews related to PyCOFs are rare, although PyCOFs have been widely reported to show promising applications. Thus, it is right time and important for us to systematically summarize the research advance in PyCOFs, including the synthesis with different linkages and applications. Moreover, the prospects and obstacles facing the development of PyCOFs are discussed. We hope that this review will provide new insights into PyCOFs that can be explored for more attractive functions or applications.
Collapse
Affiliation(s)
- Yao Yang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China.
| | - Shiqiong Peng
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430074, China
| | - Songhua Chen
- College of Chemistry and Material, Longyan University, Longyan 364000, China.
| | - Fangyuan Kang
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy, City University of Hong Kong, 999077 Hong Kong, China.
| | - Jun Fan
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China.
| | - Huan Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China.
| | - Xianglin Yu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430074, China
| | - Junbo Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China.
| | - Qichun Zhang
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy, City University of Hong Kong, 999077 Hong Kong, China.
| |
Collapse
|
11
|
Liang L, Yang R, Wu J, Qin Y, Jiang Y, Zhao S, Ye F. Analyte-Induced Specific Regulation of Light-Responsive COF-Cu Nanozyme Activity for Ultrafast Thiram Colorimetric Sensing. Anal Chem 2024; 96:18545-18554. [PMID: 39496189 DOI: 10.1021/acs.analchem.4c04534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
A light-responsive covalent-organic framework (COF) nanozyme, which integrates the advantages of the COF structure and light-stimulated nanozyme catalysis, is a class of sensing star materials with wide application prospects. However, the sensing methods based on light-responsive COF nanozymes are relatively single at present. Therefore, it is necessary to develop new sensing strategies to broaden its application in chemical sensing and achieve highly efficient detection. Here, a Cu2+-modified COF composite material (TpDA-Cu) was rationally designed. The addition of Cu significantly inhibits the excellent light-responsive nanozyme activity of TpDA itself. However, because of the restoration of the enzyme activity by thiram (Tr) and the oxidase mimic activity of the newly formed Cu/Tr complex, TpDA-Cu/Tr exhibits stronger light-responsive nanozyme activity. Enzyme kinetic data show that compared with TpDA, TpDA-Cu/Tr has a larger Vmax value, which can achieve efficient catalytic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). In addition, the strong coordination effect of Tr and TpDA-Cu also plays a key role in achieving ultrafast, sensitive, and selective colorimetric detection of Tr. This work develops a dual activity regulation strategy of light-responsive COF nanozymes based on analyte induction and provides a new perspective for the application of light-responsive COF nanozymes in the field of sensing.
Collapse
Affiliation(s)
- Ling Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Guangxi Colleges and Universities Key Laboratory of Efficient Utilization of Special Resources in Southeast Guangxi, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Ruitao Yang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Guangxi Colleges and Universities Key Laboratory of Efficient Utilization of Special Resources in Southeast Guangxi, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Jia Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuan Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuting Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Fanggui Ye
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
12
|
Cheng X, Liu S, Hu Y. Recent Advances in Nanozyme Sensors Based on Metal-Organic Frameworks and Covalent-Organic Frameworks. BIOSENSORS 2024; 14:520. [PMID: 39589979 PMCID: PMC11592407 DOI: 10.3390/bios14110520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
Nanozymes are nanomaterials that exhibit enzyme-like catalytic activity, which have drawn increasing attention on account of their unique superiorities including very high robustness, low cost, and ease of modification. Metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) have emerged as promising candidates for nanozymes due to their abundant catalytic activity centers, inherent porosity, and tunable chemical functionalities. In this review, we first compare the enzyme-mimicking activity centers and catalytic mechanisms between MOF and COF nanozymes, and then summarize the recent research on designing and modifying MOF and COF nanozymes with inherent catalytic activity. Moreover, typical examples of sensing applications based on these nanozymes are presented, as well as the translation of enzyme catalytic activity into a visible signal response. At last, a discussion of current challenges is presented, followed by some future prospects to provide guidance for designing nanozyme sensors based on MOFs and COFs for practical applications.
Collapse
Affiliation(s)
| | | | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510060, China; (X.C.); (S.L.)
| |
Collapse
|
13
|
Xu X, Zhang Y, Meng C, Zheng W, Wang L, Zhao C, Luo F. Nanozymes in cancer immunotherapy: metabolic disruption and therapeutic synergy. J Mater Chem B 2024; 12:9111-9143. [PMID: 39177061 DOI: 10.1039/d4tb00769g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Over the past decade, there has been a growing emphasis on investigating the role of immunotherapy in cancer treatment. However, it faces challenges such as limited efficacy, a diminished response rate, and serious adverse effects. Nanozymes, a subset of nanomaterials, demonstrate boundless potential in cancer catalytic therapy for their tunable activity, enhanced stability, and cost-effectiveness. By selectively targeting the metabolic vulnerabilities of tumors, they can effectively intensify the destruction of tumor cells and promote the release of antigenic substances, thereby eliciting immune clearance responses and impeding tumor progression. Combined with other therapies, they synergistically enhance the efficacy of immunotherapy. Hence, a large number of metabolism-regulating nanozymes with synergistic immunotherapeutic effects have been developed. This review summarizes recent advancements in cancer immunotherapy facilitated by nanozymes, focusing on engineering nanozymes to potentiate antitumor immune responses by disturbing tumor metabolism and performing synergistic treatment. The challenges and prospects in this field are outlined. We aim to provide guidance for nanozyme-mediated immunotherapy and pave the way for achieving durable tumor eradication.
Collapse
Affiliation(s)
- Xiangrui Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chijun Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lingfeng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chenyi Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Feng Luo
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China.
| |
Collapse
|
14
|
Cui Q, Zhou M, Wen Q, Li L, Xiong C, Adeli M, Cheng L, Xu X, Ren X, Cheng C. Pyridine-Bridged Covalent Organic Frameworks with Adjustable Band Gaps as Intelligent Artificial Enzymes for Light-Augmented Biocatalytic Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401673. [PMID: 38721983 DOI: 10.1002/smll.202401673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/12/2024] [Indexed: 10/01/2024]
Abstract
One of the biggest challenges in biotechnology and medical diagnostics is finding extremely sensitive and adaptable biosensors. Since metal-based enzyme-mimetic biocatalysts may lead to biosafety concerns on accumulative toxicity, it is essential to synthesize metal-free enzyme-mimics with optimal biocatalytic activity and superior selectivity. Here, the pyridine-bridged covalent organic frameworks (COFs) with specific oxidase-like (OXD-like) activities as intelligent artificial enzymes for light-augmented biocatalytic sensing of biomarkers are disclosed. Because of the adjustable bandgaps of pyridine structures on the photocatalytic properties of the pristine COF structures, the pyridine-bridged COF exhibit efficient, selective, and light-responsive OXD-like biocatalytic activity. Moreover, the pyridine-bridged COF structures show tunable and light-augmented biocatalytic detection capabilities, which outperform the recently reported state-of-the-art OXD-mimics regarding biosensing efficiency. Notably, the pyridine-bridged COF exhibits efficient and multifaceted diagnostic activity, including the extremely low limit of detection (LOD), which enables visual assays for abundant reducibility biomarkers. It is believed that this design will offer unique metal-free biocatalysts for high-sensitive and low-cost colorimetric detection and also provide new insights to create highly efficient enzyme-like COF materials via linkage-modulation strategies for future biocatalytic applications.
Collapse
Affiliation(s)
- Qiqi Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qinlong Wen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Lin Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao Xiong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mohsen Adeli
- Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Takustr. 3, 14195, Berlin, Germany
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, 68137-17133, Iran
| | - Liang Cheng
- Department of Materials Science and Engineering, The Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Xiaohui Xu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
15
|
Bagherpour S, Pérez-García L. Recent advances on nanomaterial-based glutathione sensors. J Mater Chem B 2024; 12:8285-8309. [PMID: 39081041 DOI: 10.1039/d4tb01114g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Glutathione (GSH) is one of the most common thiol-containing molecules discovered in biological systems, and it plays an important role in many cellular functions, where changes in physiological glutathione levels contribute to the progress of a variety of diseases. Molecular imaging employing fluorescent probes is thought to be a sensitive technique for online fluorescence detection of GSH. Although various molecular probes for (intracellular) GSH sensing have been reported, some aspects remain unanswered, such as quantitative intracellular analysis, dynamic monitoring, and compatibility with biological environment. Some of these drawbacks can be overcome by sensors based on nanostructured materials, that have attracted considerable attention owing to their exceptional properties, including a large surface area, heightened electro-catalytic activity, and robust mechanical resilience, for which they have become integral components in the development of highly sensitive chemo- and biosensors. Additionally, engineered nanomaterials have demonstrated significant promise in enhancing the precision of disease diagnosis and refining treatment specificity. The aim of this review is to investigate recent advancements in fabricated nanomaterials tailored for detecting GSH. Specifically, it examines various material categories, encompassing carbon, polymeric, quantum dots (QDs), covalent organic frameworks (COFs), metal-organic frameworks (MOFs), metal-based, and silicon-based nanomaterials, applied in the fabrication of chemo- and biosensors. The fabrication of nano-biosensors, mechanisms, and methodologies employed for GSH detection utilizing these fabricated nanomaterials will also be elucidated. Remarkably, there is a noticeable absence of existing reviews specifically dedicated to the nanomaterials for GSH detection since they are not comprehensive in the case of nano-fabrication, mechanisms and methodologies of detection, as well as applications in various biological environments. This research gap presents an opportune moment to thoroughly assess the potential of nanomaterial-based approaches in advancing GSH detection methodologies.
Collapse
Affiliation(s)
- Saman Bagherpour
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Lluïsa Pérez-García
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
16
|
Liao Y, He Y, Zhang B, Ma Y, Zhao M, Xu R, Cui H. Preparation of hollow double-layer Pt@CeO 2 nanospheres as oxidase mimetics for the colorimetric-fluorescent-SERS triple-mode detection of glutathione in serum. Talanta 2024; 276:126234. [PMID: 38749161 DOI: 10.1016/j.talanta.2024.126234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/06/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Glutathione (GSH) is an essential antioxidant in the human body, but its detection is difficult due to the interference of complex components in serum. Herein, hollow double-layer Pt@CeO2 nanospheres were developed as oxidase mimetics, and the light-assisted oxidase mimetics effects were found. The oxidase activity was enhanced significantly by utilizing the synergistic effect of Schottky junction and the localized surface plasmon resonance (LSPR) of Pt under UV light. A novel GSH colorimetric-fluorescent-SERS sensing platform was established, with the sensing performance notably boosted by using the light-assisted oxidase mimetics effects. This platform boasts an exceptionally low detection limit (LOD) of 0.084 μM, while the detection time was shortened from 10 min to just 2 min. The anti-interference detection with high recovery rate (96.84%-107.4 %) in real serum made it be promising for practical application.
Collapse
Affiliation(s)
- Yiquan Liao
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, PR China
| | - Yichang He
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, PR China
| | - Bin Zhang
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, PR China
| | - Ye Ma
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, PR China
| | - Minggang Zhao
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, PR China.
| | - Ruiqi Xu
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, PR China
| | - Hongzhi Cui
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, PR China
| |
Collapse
|
17
|
Cui Q, Gao Y, Wen Q, Wang T, Ren X, Cheng L, Bai M, Cheng C. Tunable Structured 2D Nanobiocatalysts: Synthesis, Catalytic Properties and New Horizons in Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311584. [PMID: 38566551 DOI: 10.1002/smll.202311584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Indexed: 04/04/2024]
Abstract
2D materials have offered essential contributions to boosting biocatalytic efficiency in diverse biomedical applications due to the intrinsic enzyme-mimetic activity and massive specific surface area for loading metal catalytic centers. Since the difficulty of high-quality synthesis, the varied structure, and the tough choice of efficient surface loading sites with catalytic properties, the artificial building of 2D nanobiocatalysts still faces great challenges. Here, in this review, a timely and comprehensive summarization of the latest progress and future trends in the design and biotherapeutic applications of 2D nanobiocatalysts is provided, which is essential for their development. First, an overview of the synthesis-structure-fundamentals and structure-property relationships of 2D nanobiocatalysts, both metal-free and metal-based is provided. After that, the effective design of the active sites of nanobiocatalysts is discussed. Then, the progress of their applied research in recent years, including biomedical analysis, biomedical therapeutics, pharmacokinetics, and toxicology is systematically highlighted. Finally, future research directions of 2D nanobiocatalysts are prospected. Overall, this review to provide cutting-edge and multidisciplinary guidance for accelerating future developments and biomedical applications of 2D nanobiocatalysts is expected.
Collapse
Affiliation(s)
- Qiqi Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qinlong Wen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Liang Cheng
- Department of Materials Science and Engineering, Center for Oral Diseases, The Macau University of Science and Technology, Taipa, Macau, China
| | - Mingru Bai
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
18
|
Huang XL. Unveiling the role of inorganic nanoparticles in Earth's biochemical evolution through electron transfer dynamics. iScience 2024; 27:109555. [PMID: 38638571 PMCID: PMC11024932 DOI: 10.1016/j.isci.2024.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
This article explores the intricate interplay between inorganic nanoparticles and Earth's biochemical history, with a focus on their electron transfer properties. It reveals how iron oxide and sulfide nanoparticles, as examples of inorganic nanoparticles, exhibit oxidoreductase activity similar to proteins. Termed "life fossil oxidoreductases," these inorganic enzymes influence redox reactions, detoxification processes, and nutrient cycling in early Earth environments. By emphasizing the structural configuration of nanoparticles and their electron conformation, including oxygen defects and metal vacancies, especially electron hopping, the article provides a foundation for understanding inorganic enzyme mechanisms. This approach, rooted in physics, underscores that life's origin and evolution are governed by electron transfer principles within the framework of chemical equilibrium. Today, these nanoparticles serve as vital biocatalysts in natural ecosystems, participating in critical reactions for ecosystem health. The research highlights their enduring impact on Earth's history, shaping ecosystems and interacting with protein metal centers through shared electron transfer dynamics, offering insights into early life processes and adaptations.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-6044, USA
| |
Collapse
|
19
|
Li G, Yang Y, Chen W, Song Z, Shi J, Wang B, Pan X, Lin Z. Phenanthroline-functionalized donor-acceptor covalent organic frameworks as photo-responsive nanozymes for visual colorimetric detection of isoniazid. J Mater Chem B 2024; 12:4502-4508. [PMID: 38646996 DOI: 10.1039/d3tb02939e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Development of metal-free nanozymes has raised concern for their extensive applications in photocatalysis and sensing fields. As novel metal-free nanomaterials, covalent organic frameworks (COFs) have engendered intense interest in the construction of nanozymes due to their structural controllability and molecular functionality. The formation of the molecular arrangement by embedding orderly donor-acceptors (D-A) linked in the framework topology to modulate material properties for highly efficient enzyme mimicking activity is of importance but challenging. Here, a strong D-A type of COF was designed and synthesized by integrating electron donor units (pyrene) and electron acceptor units (phenanthroline), named Py-PD COF. Using experiments and theoretical calculations, the introduction of a phenanthroline ring endowed the Py-PD COF with a narrowed band gap, and efficient charge transfer and separation. Further, the Py-PD COF exhibited a superior light-responsive oxidase-mimicking characteristic under visible light irradiation, which could catalyze the oxidation of 3,3',5,5-tetramethylbenzidine (TMB) and give the corresponding evolution of color. The nanoenzymatic activity of the Py-PD COF was light-regulated, which offers a fascinating advantage because of its high efficiency and spatial controllability. Based on previously mentioned characteristics, an "on-off" sensing platform for the colorimetric analysis of isoniazid (INH) could be constructed with a good linear relationship (2-100 μM) and a low limit of detection (1.26 μM). This research shows that not only is Py-PD COF an environmentally friendly compound for the colorimetric detection of INH, but it is also capable of providing the interesting D-A type COF-based material for designing an excellent nanozyme.
Collapse
Affiliation(s)
- Guorong Li
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, Fujian, 362000, China.
| | - Yixin Yang
- Hebi Polytechnic, Hebi, Henan 458000, China
| | - Wenjie Chen
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, Fujian, 362000, China.
| | - Zhiping Song
- Fujian Provincial Key Laboratory of Pollution Monitoring and Control, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Jiale Shi
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, Fujian, 362000, China.
| | - Bingqing Wang
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, Fujian, 362000, China.
| | - Xiaoyang Pan
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, Fujian, 362000, China.
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
20
|
Xiao SJ, Huang J, Qiu AT, Liu GZ, Zhang L, Wu T, Shi YD, Qiu JD. Advanced "turn-on" colorimetric uranium platform based on the enhanced nanozyme activity of a donor-acceptor structured covalent organic framework. Anal Chim Acta 2024; 1302:342503. [PMID: 38580412 DOI: 10.1016/j.aca.2024.342503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND The increasing uranium containing wastes generated during uranium mining and finishing pose a huge threat to the environment and human health, and thus robust strategies for on-site monitoring of uranium pollutant are of great significance for environmental protection around uranium tailings. RESULTS Herein, a facile "turn-on" colorimetric platform that can achieve uranium detection by spectrometry and naked eyes was developed based on the uranium-enhanced nanozyme activity of covalent organic framework (JUC-505). Thanks to the extended π-conjugated skeleton and donor-acceptor (D-A) structure, JUC-505 exhibited superior photo-activated nanozyme activity, which would be prohibited when the cyano group in JUC-505 skeleton was transformed to the amidoxime group. Further results elucidated that the coordination of uranium with amidoxime groups led to the electron transfer between uranium and the JUC-505-AO skeleton, and thus significantly restored the nanozymatic activity of JUC-505-AO with the subsequent remarkable color changes. Moreover, the uranium concentrations in uranium tailing wastewater detected by the present "turn-on" colorimetric method were well agreed with those by ICP-MS, demonstrating a high accuracy of the present method in real samples. SIGNIFICANCE The D-A structured JUC-505 with superior photocatalytic property and nanozymatic activity was applied to facilitate colorimetric detection of uranium, which displays the advantages of low detection limit, excellent selectivity, fast response and simple operation for uranium detection in real samples, and shows a great potential in on-site monitoring of uranium pollutant around uranium tailings as well as nuclear power plant.
Collapse
Affiliation(s)
- Sai Jin Xiao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Jing Huang
- School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - An Ting Qiu
- School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Guang Zhou Liu
- School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, 330031, Jiangxi, China.
| | - Ting Wu
- School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Ya Di Shi
- School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Jian-Ding Qiu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
21
|
Wang JL, Chen GY, Chai TQ, Chen LX, Chen H, Yang FQ. Construction of Mn-decorated zeolitic imidazolate framework-90 nanostructure as superior oxidase-like mimic for colorimetric detection of glucose and choline. Talanta 2024; 271:125708. [PMID: 38295443 DOI: 10.1016/j.talanta.2024.125708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 12/26/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
A Mn decorated zeolitic imidazolate framework-90 (ZIF-90) nanozyme (Mn/ZIF-90) was constructed through an effective and rapid post-synthetic strategy for the first time. The Mn in Mn/ZIF-90 exists in mixed valence states, which is doped to the ZIF-90 through the formation of Mn-O bond. The Zn-N coordination structure of ZIF-90 may change the electronic arrangement of oxygen atoms in the free carbonyl groups (-CHO), allowing the coordination of Mn with O. The prepared Mn/ZIF-90 possesses outstanding oxidase-like activity and remarkable stability. Besides, the catalytic activity of Mn/ZIF-90 can be inhibited in the presence of H2O2. Therefore, using the Mn/ZIF-90-triggered chromogenic reaction of 3,3',5,5'-tetramethylbenzidine (TMB) as an amplifier, a versatile enzyme cascade-based colorimetric method for the detection of glucose and choline with good sensitivity and selectivity was developed. The linear ranges for glucose and choline are 6.25-500 μM and 5-1000 μM, respectively. Furthermore, the developed method was applied in the detection of glucose and choline in rabbit plasma samples, and the recoveries are 89.5-107.3 % and 96.0-109.3 %, respectively. In short, the simple and efficient post-synthetic doping method may provide a new thought for the rational designs of enzyme mimics with improved catalytic performance. Moreover, the colorimetric method based on the excellent catalytic activity of Mn/ZIF-90 may be extended to detect other H2O2-generating or consuming molecules and evaluate the activity of bio-enzymes that can catalyze the generation of glucose or choline.
Collapse
Affiliation(s)
- Jia-Li Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Guo-Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Tong-Qing Chai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Ling-Xiao Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Hua Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
22
|
Yao D, Xia L, Li G. Research Progress on the Application of Covalent Organic Framework Nanozymes in Analytical Chemistry. BIOSENSORS 2024; 14:163. [PMID: 38667156 PMCID: PMC11048148 DOI: 10.3390/bios14040163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
Covalent organic frameworks (COFs) are porous crystals that have high designability and great potential in designing, encapsulating, and immobilizing nanozymes. COF nanozymes have also attracted extensive attention in analyte sensing and detection because of their abundant active sites, high enzyme-carrying capacity, and significantly improved stability. In this paper, we classify COF nanozymes into three types and review their characteristics and advantages. Then, the synthesis methods of these COF nanozymes are introduced, and their performances are compared in a list. Finally, the applications of COF nanozymes in environmental analysis, food analysis, medicine analysis, disease diagnosis, and treatment are reviewed. Furthermore, we also discuss the application prospects of COF nanozymes and the challenges they face.
Collapse
Affiliation(s)
- Dongmei Yao
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China; (D.Y.); (L.X.)
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China
| | - Ling Xia
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China; (D.Y.); (L.X.)
| | - Gongke Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China; (D.Y.); (L.X.)
| |
Collapse
|
23
|
Liu Y, Cheng C, Zhao Z, Liu W, Qi L. MOF-polymer composites with well-distributed gold nanoparticles for visual monitoring of homocysteine. Analyst 2024; 149:1658-1664. [PMID: 38323490 DOI: 10.1039/d3an01934a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The distribution of gold nanoparticles (AuNPs) on the surface of a metal-organic framework (MOF) plays a crucial role in the catalytic performance of MOF-AuNP composites. This study describes how the physical adsorption (PH@AuNPs-on-U) and chemical modification of AuNPs on the surface of UiO-66-NH2 (U) affect the composites' catalytic efficiency. After 2-vinyl-4,4-dimethyl-2-oxazolin-5-one (VD) linked to poly(N-2-hydroxypropyl methacrylamide) (PH) with U (UVD-PH), UVD-PH@AuNPs composites were constructed with PH as the capping and reducing reagent. The composites exhibited higher peroxidase (POD)-like activity than PH@AuNPs-on-U for oxidising 3,3'5,5'-tetramethylbenzidine (TMB) with H2O2. The approach demonstrated that the proposed composite-based nanozymes could significantly enhance their catalytic activity and had a highly uniform distribution of PH@AuNPs on the surface of UVD. An assay with the nanozymes for visual detection of homocysteine (Hcy) was developed, displaying a good linear relationship (R2 = 0.998) ranging from 3.34 μM to 30.0 μM and a detection of limit of 0.3 μM. Additionally, the UVD-PH@AuNPs-TMB-H2O2 system successfully monitored serum Hcy after intraperitoneal injection in rats. This study paves a new way for developing MOF-AuNPs with highly uniform surface distribution of polymer@AuNPs to boost its catalytic activity and to detect drugs in real bio-samples.
Collapse
Affiliation(s)
- Yutong Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Cheng Cheng
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wei Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Li Qi
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
24
|
Gao Z, Zhu A, Wu M, Du Y, Zhang Y, Zhang H, Ren C, Chen H. Colorimetric detection of alkaline phosphatase based on the off-on effect of light-responsive oxidase mimicking activity of covalent organic framework (Cu-TpBpy-COF) under near-neutral condition. Mikrochim Acta 2024; 191:93. [PMID: 38217686 DOI: 10.1007/s00604-023-06128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/28/2023] [Indexed: 01/15/2024]
Abstract
A colorimetric strategy has been developed for the detection of alkaline phosphatase (ALP) activity based on the off-on effect of the catalytic activity of light-responsive oxidase mimics covalent organic framework (Cu-TpBpy-COF) in near-neutral condition. Cu-TpBpy-COF can effectively catalyze the oxidation of the colorless substrate 3,3',5,5'-tetramethylbenzidine (TMB) by oxygen to form a blue oxidized product (oxTMB) with an absorption peak at 652 nm. Cu2+ is the active center of Cu-TpBpy-COF and pyrophosphate (PPi) can form a complex with Cu2+ to weaken the catalytic activity of Cu-TpBpy-COF. In the presence of ALP, PPi is hydrolyzed into orthophosphates (Pi) with low affinity to Cu2+, thus resulting in absorbance restoration. The absorbance at 652 nm is related to ALP activity in the linear range 10-150 U·L-1 with a detection limit of 7.17 U·L-1. The recoveries of ALP in serum samples are in the range 94.7~107.0% with relative standard deviations (RSD) lower than 5%. The decisive role of Cu2+ on the enhancing catalytic activities of Cu-TpBpy-COF in neutral condition was verified by TpBpy-COF and TpBD-COF as controls, in which the main difference between them is that TpBpy-COF contains pyridine nitrogen. Upon Cu2+ modification, Cu-TpBpy-COF has better catalytic activity than TpBpy-COF in a broader pH range because of the in situ generation of Cu+ under irradiation.
Collapse
Affiliation(s)
- Zixi Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Ailing Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Mingfang Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yongling Du
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yang Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Huige Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Cuiling Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
25
|
Han M, Huang J, Niu Z, Guo Y, Wei Z, Ding Y, Li C, Wang P, Wen G, Li X. Amorphous hollow manganese silicate nanosphere oxidase mimic for ultrasensitive and high-reliable colorimetric detection of biothiols. Mikrochim Acta 2023; 190:450. [PMID: 37875688 DOI: 10.1007/s00604-023-06034-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
Metal-based nanozymes with exceptional physicochemical property and intrinsic enzymatic properties have been widely used in industrial, medical, and diagnostic fields. However, low substrate affinity results in unsatisfying catalytic kinetic and instability in complicated conditions, which significantly decreases their sensitivity and reliability. Herein, an amorphous hollow manganese silicate nanosphere (defined as AHMS) has been successfully synthesized via a facile one-step hydrothermal method and utilized in the archetype for colorimetric detection of biothiols with high sensitivity and high reliability. The experimental data demonstrates that ultrafast affinity of the substrate contributes to enhanced sensitivity with outstanding catalytic kinetic features (Km = 27.1 μM) and low limit of detection (LODGSH = 20 nM). The designed sensor demonstrates a reliable applicability for analysis of biological liquids (fetal calf serum and Staphylococcus aureus) and design of visual logic gates. Therefore, AHMS provides a promising strategy for ultrasensitive and high-reliable biosensing.
Collapse
Affiliation(s)
- Mengxuan Han
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Jianyu Huang
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Zhihui Niu
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, China.
| | - Yang Guo
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Zicheng Wei
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Yingying Ding
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Chengfeng Li
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Peng Wang
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Guangwu Wen
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Xiaowei Li
- Institute of Engineering Ceramics, School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
26
|
Hu P, Tang Y, Zhu H, Xia C, Liu J, Liu B, Niu X. Multifunctional light-controllable nanozyme enabled bimodal fluorometric/colorimetric sensing of mercury ions at ambient pH. Biosens Bioelectron 2023; 238:115602. [PMID: 37595475 DOI: 10.1016/j.bios.2023.115602] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/20/2023]
Abstract
Nanomaterials with enzyme-like catalytic features (nanozymes) find wide use in analytical sensing. Apart from catalytic characteristics, some other interesting functions coexist in the materials. How to combine these properties to design multifunctional nanozymes for new sensing strategy development is challenging. Besides, in nanozymes it is still a challenge to conveniently control the catalytic process, which also hinders their further applications in advanced biochemical analysis. To remove the above barriers, here we design a light-controllable multifunctional nanozyme, namely manganese-inserted cadmium telluride (Mn-CdTe) particles, that integrates oxidase-like activity with luminescence together, to achieve the fluorometric/colorimetric dual-mode detection of toxic mercury ions (Hg2+) at ambient pH. The Mn-CdTe exhibits a light-triggered oxidase-mimicking catalytic behavior to induce chromogenic reactions, thus enabling one to start or stop the catalytic progress easily via applying or withdrawing light irradiation. Meanwhile, the quantum dot material can exhibit bright photoluminescence, which provides the fluorometric channel to sense targets. When Hg2+ is introduced, it rapidly leans toward Mn-CdTe through electrostatic interaction and Te-Hg bonding and induces the aggregation of the latter. As a result, the luminescence of Mn-CdTe is dynamically quenched, and the masking of active sites in aggregated Mn-CdTe leads to the decrease of light-initiated oxidase-mimetic activity. According to this principle, a new fluorometric/colorimetric bimodal method was established for Hg2+ determination with excellent performance. A 3D-printed portable platform combining paper-based test strips and an App-equipped smartphone was further fabricated, making it possible to achieve in-field sensing of the analyte in various matrices.
Collapse
Affiliation(s)
- Panwang Hu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yuhan Tang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Hengjia Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Changkun Xia
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Jinjin Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Bangxiang Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xiangheng Niu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, PR China.
| |
Collapse
|
27
|
Abstract
With the rapid development of nanotechnology, nanozymes are regarded as excellent substitutes for natural enzymes due to their high activity, convenient preparation, low cost, robust stability and other unique properties of nanomaterials. In biomedical applications, the always-on activity of nanozymes is undesirable as it poses a potential threat to normal tissues. Stimuli-responsive nanozymes were designed to manipulate the activities of nanozymes. This review introduces two types of stimuli-responsive nanozymes. One is smart responsive nanozymes with stimuli-switchable activities, further divided into those with on/off switchable activity and one/another switchable activity. Another is nanozymes exhibiting responsive release from specific carriers. Additionally, the biomedical applications of stimuli-responsive nanozymes in cancer therapy, antibacterial therapy, biosensing and anti-inflammatory therapy are briefly reviewed. Finally, we address the challenges and prospects in this field.
Collapse
Affiliation(s)
- Mengli Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
28
|
Talebi M, Dashtian K, Zare-Dorabei R, Ghafuri H, Mahdavi M, Amourizi F. Photo-responsive oxidase-like nanozyme based on a vanadium-docked porphyrinic covalent organic framework for colorimetric L-Arginine sensing. Anal Chim Acta 2023; 1247:340924. [PMID: 36781249 DOI: 10.1016/j.aca.2023.340924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
This study reports the development of a vanadium-docked porphyrinic covalent organic framework as a novel class of highly polar photoactive materials. Thanks to its extended π-electron conjugation and high chemical stabilities, this framework can serve as an oxidase-Like photo-nanozyme for photocatalytic oxidation of o-phenylenediamine (o-PDA) and a colorimetric substrate for the production of the yellow-colored oxidized o-PDA (o-PDAox). The physicochemical properties of the as-prepared photo-nanozyme were characterized by several analytical techniques. Its enhanced light harvesting and charge separation and transfer were also verified by electrochemical and spectroscopic analysis. This photo-nonenzymatic colorimetric assay was applied for the sensitive L-Arginine (L-Arg) detection as a typical amino acid in the linear range of 8.1 nM-330 μM with a limit of detection (LOD) of 3.5 nM. The findings of this research confirmed the safety and feasibility of the proposed photo-nonenzymatic colorimetric sensing strategy for the detection of L-Arg and other similar biomolecules in food samples. Kinetic investigation revealed that the photo-responsive oxidase mimic exhibits satisfactory Km (0.47 mM) and Vmax (42.0 μM/s) values. This work broadened our insight into the development of modified porphyrinic-COF-based visible light-responsive oxidase-like photo-nanozyme for environmentally friendly colorimetric biosensing.
Collapse
Affiliation(s)
- Maryam Talebi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Hossein Ghafuri
- Biocatalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Amourizi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| |
Collapse
|
29
|
Tong L, Lin Y, Kou X, Shen Y, Shen Y, Huang S, Zhu F, Chen G, Ouyang G. Pore-Environment-Dependent Photoresponsive Oxidase-Like Activity in Hydrogen-Bonded Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202218661. [PMID: 36719177 DOI: 10.1002/anie.202218661] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/01/2023]
Abstract
Mimicking the bioactivity of native enzymes through synthetic chemistry is an efficient means to advance the biocatalysts in a cell-free environment, however, remains long-standing challenges. Herein, we utilize structurally explicit hydrogen-bonded organic frameworks (HOFs) to mimic photo-responsive oxidase, and uncover the important role of pore environments on mediating oxidase-like activity by means of constructing isostructural HOFs. We discover that the HOF pore with suitable geometry can stabilize and spatially organize the catalytic substrate into a favorable catalytic route, as with the function of the native enzyme pocket. Based on the desirable photo-responsive oxidase-like activity, a visual and sensitive HOFs biosensor is established for the detection of phosphatase, an important biomarker of skeletal and hepatobiliary diseases. This work demonstrates that the pore environments significantly influence the nanozymes' activity in addition to the active center.
Collapse
Affiliation(s)
- Linjing Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuhong Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yujian Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yong Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
30
|
Zhang L, Tan QG, Xiao SJ, Yang GP, Liu X, Zheng QQ, Fan JQ, Liang RP, Qiu JD. DNAzyme-Derived Aptamer Reversely Regulates the Two Types of Enzymatic Activities of Covalent-Organic Frameworks for the Colorimetric Analysis of Uranium. Anal Chem 2023; 95:4703-4711. [PMID: 36856710 DOI: 10.1021/acs.analchem.2c05329] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Nanozymes are nanomaterials with enzyme-mimetic activity. It is known that DNA can interact with various nanozymes in different ways, enhancing or inhibiting the activity of nanozymes, which can be used to develop various biosensors. In this work, we synthesized a photosensitive covalent-organic framework (Tph-BT) as a nanozyme, and its oxidase and peroxidase activities could be reversely regulated by surface modification of single-stranded DNA (ssDNA) for the colorimetric detection of UO22+. Tph-BT exhibits excellent oxidase activity and weak peroxidase activity, and it is surprising to find that the UO22+-specific DNA aptamer can significantly inhibit the oxidase activity while greatly enhancing the peroxidase activity. The present UO22+ interacts with the DNA aptamer to form secondary structures and detaches from the surface of Tph-BT, thereby restoring the enzymatic activity of Tph-BT. Based on the reversed regulation effects of the DNA aptamer on the two types of enzymatic activities of Tph-BT, a novel "off-on" and "on-off" sensing platform can be constructed for the colorimetric analysis of UO22+. This research demonstrates that ssDNA can effectively regulate the different types of enzymatic activities of single COFs and achieve the sensitive and selective colorimetric analysis of radionuclides by the naked eye.
Collapse
Affiliation(s)
- Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Quan-Gen Tan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Sai-Jin Xiao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang 330013, China
| | - Gui-Ping Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qiong-Qing Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jia-Qi Fan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.,State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang 330013, China
| |
Collapse
|
31
|
Liu J, Wang J, Wang Y, Wang Y. Covalent organic frameworks as advanced materials in the application of chemical detection. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Junyan Liu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Junfeng Wang
- Department of Otolaryngology & Head and Neck Surgery Affiliated Hospital of Yangzhou University Yangzhou China
| | - Ying Wang
- Department of Oncology Affiliated Hospital of Yangzhou University Yangzhou China
| | - Yang Wang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| |
Collapse
|
32
|
Zhang H, Wu S, Sun M, Wang J, Gao M, Wang HB, Fang L. In-situ formation of MnO 2 nanoparticles on Ru@SiO 2 nanospheres as a fluorescent probe for sensitive and rapid detection of glutathione. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121724. [PMID: 35952589 DOI: 10.1016/j.saa.2022.121724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/14/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Glutathione (GSH)-switched fluorescent assays have appealed much attention due to rapid signal changes of fluorescent probes. However, exposure to exterior environment of fluorescent probe causes photobleaching and premature leakage, leading to low sensitivity and poor photostability. Herein, luminescent SiO2 nanoparticles encapsulated with Ru(bpy)32+ (Ru@SiO2) were designed and synthesized as fluorescent probe to construct a GSH-switched fluorescent assay. The encapsulation of Ru(bpy)32+ in the SiO2 nanoparticles could effectively prevent the leakage of Ru(bpy)32+ molecules, improving the photostability of probe. The fluorescence of Ru@SiO2 nanoparticles was quenched by coating MnO2 nanoparticles on Ru@SiO2 surface (Ru@SiO2@MnO2 nanocomposites) through an in situ growth approach, which reduced background of the assay. The MnO2 nanoparticles not only further inhibited the leakage of Ru(bpy)32+ molecules, but also could serve as a recognition unit of GSH. In the presence of GSH, the MnO2 nanoparticles on the surface of Ru@SiO2 nanoparticles were reduced to Mn2+, resulting the fluorescence recovery of Ru@SiO2 nanoparticles. Thus, a signal-on fluorescent strategy was constructed for GSH detection. The assay displayed good analytical performance for GSH detection with a low detection limit of 16.2 nM due to excellent fluorescence quenching ability of MnO2 nanoparticles and special role of Ru@SiO2 nanoparticles to block probe leakage. The proposed assay was also applied to measure GSH levels in human serum samples. This work paves a new way to detect GSH with high sensitivity.
Collapse
Affiliation(s)
- Hongding Zhang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, PR China.
| | - Sifei Wu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, PR China
| | - Mengwei Sun
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, PR China
| | - Jiaoyu Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, PR China
| | - Man Gao
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, PR China
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, PR China
| | - Linxia Fang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, PR China.
| |
Collapse
|
33
|
Zheng L, Wang F, Jiang C, Ye S, Tong J, Dramou P, He H. Recent progress in the construction and applications of metal-organic frameworks and covalent-organic frameworks-based nanozymes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
34
|
Weak light photodetector based on upconversion luminescence for glutathione detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Cheng D, Li P, Xu Z, Liu X, Zhang Y, Liu M, Yao S. Signal On-Off Electrochemical Sensor for Glutathione Based on a AuCu-Decorated Zr-Containing Metal-Organic Framework via Solid-State Electrochemistry of Cuprous Chloride. ACS Sens 2022; 7:2465-2474. [PMID: 35973222 DOI: 10.1021/acssensors.2c01221] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel signal on-off glutathione (GSH) electrochemical sensor was developed based on a AuCu bimetal-decorated Zr-containing metal-organic framework (Zr-MOF), in which a signal amplification strategy promoted by solid-state electrochemistry of cuprous chloride (CuCl) was used. The Zr-MOF with a large surface area can be effectively used as the substrate for the in situ growth of AuCu bimetals to obtain the Zr-MOF@AuCu nanocomposite. The interaction between Cu in Zr-MOF@AuCu and Cl- in the solution accompanied with the formation of CuCl displays an enlarged stable oxidation current, which greatly declines with the addition of GSH owing to the specific Cu-GSH interaction. The conversion of CuCl into Cu-GSH triggered the "crowding-out effect" and resulted in a sharp drop in the peak current of CuCl, which can realize the ultrasensitive and selective detection of GSH. The detection mechanism was investigated, and the detection range was 10 pM-1 mM with the detection limit as low as 2.67 pM. The special response mechanism for the detection of GSH allows the highly selective detection of GSH in various real samples with reliable results, endowing the proposed electroanalysis sensor with broad application prospects in biological and food analysis.
Collapse
Affiliation(s)
- Dan Cheng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Peipei Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhenjuan Xu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Xiang Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Meiling Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
36
|
Hu S, Yan G, Zhang L, Yi S, Zhang Z, Wang Y, Chen D. Highly Selective Colorimetric Detection of Cu 2+ Using EDTA-Complexed Chlorophyll-Copper/ZnO Nanorods with Cavities Specific to Cu 2+ as a Light-Activated Nanozyme. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37716-37726. [PMID: 35971946 DOI: 10.1021/acsami.2c08946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, chlorophyll-copper (ChlCu)-modified ZnO nanorods (ChlCu/ZnO) were prepared, and then sodium ethylenediamine tetraacetate (EDTA) was used to remove part of Cu2+ in ChlCu, leaving cavities with specific adsorption activity for Cu2+ in E-ChlCu/ZnO. Appropriate EDTA treatment improved the photoactivity of ChlCu/ZnO and the adsorption selectivity to Cu2+. However, excessive EDTA treatment might lead to the collapse of the ChlCu structure, resulting in a decrease in photoactivity. The E-ChlCu/ZnO sample with 8 h of ChlCu treatment and 2 h of EDTA treatment showed optimal photoactivity. The as-prepared E-ChlCu/ZnO exhibited activity as a light-activated nanozyme, which could oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to blue under illumination, but when Cu2+ was present in the solution, this colorimetric reaction was inhibited; therefore, E-ChlCu/ZnO could be used for colorimetric detection of Cu2+. Because of the existence of specific cavities, E-ChlCu/ZnO showed excellent detection selectivity, a wide linear detection range (0-1 and 1-15 μM), and a low detection limit (0.024 μM) in the colorimetric detection of Cu2+.
Collapse
Affiliation(s)
- Shiyu Hu
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Guohao Yan
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Liying Zhang
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Shasha Yi
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Zongtao Zhang
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Yu Wang
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Deliang Chen
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
37
|
Liu Q, Cao S, Sun Q, Xing C, Gao W, Lu X, Li X, Yang G, Yu S, Chen Y. A perylenediimide modified SiO 2@TiO 2 yolk-shell light-responsive nanozyme: Improved peroxidase-like activity for H 2O 2 and sarcosine sensing. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129321. [PMID: 35739809 DOI: 10.1016/j.jhazmat.2022.129321] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Although light-responsive nanozyme have been widely used in colorimetric sensing, some limitations such as poor catalytic activity, low detection efficiency, and unclear structure-activity relationships remain unresolved. Herein, we prepared an excellent light-responsive peroxidase (POD) mimic, perylenediimide (PDI-OH) modified SiO2 @TiO2 yolk-shell spheres (SiO2 @TiO2/PDI-OH), based on DFT-assisted design. The experiment and DFT calculation revealed that the enhanced POD-like activity was mainly attributed to a suitable built-in electric field among adjacent PDI-OH molecules on the surface of the SiO2 @TiO2 and the unique yolk-shell structure with more reaction sites of SiO2 @TiO2. Consequently, the highly selective and ultrasensitive detection of H2O2 is achieved with a detection limit (LOD) of 7.6 × 10-8M. Further, the selective detection of sarcosine with LOD of 1.2 × 10-7 M was also achieved by introducing sarcosine oxidase (SOx). This colorimetric assay is successfully applied to selectively detect H2O2 and sarcosine levels in real samples. Controlled response time, anti-interference, and the robustness of the developed colorimetric sensor are the key advantages. And the present work firstly clarifies the effect of PDIs substituents on the POD-like activity of light-responsive nanozymes and provided new guidelines to develop high-performance nanozymes for hazardous substances detection.
Collapse
Affiliation(s)
- Qi Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Qiqi Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Chuanwang Xing
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Wen Gao
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, 266580, Shandong, China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Xiyou Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Guangwu Yang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| | - Sirong Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| |
Collapse
|
38
|
Song N, Zhang Y, Ren S, Wang C, Lu X. Rational Design of Conducting Polymer-Derived Tubular Carbon Nanoreactors for Enhanced Enzyme-like Catalysis and Total Antioxidant Capacity Bioassay Application. Anal Chem 2022; 94:11695-11702. [PMID: 35950310 DOI: 10.1021/acs.analchem.2c02511] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The design of void-confined tubular nanostructures has aroused significant interest for catalytic applications because of their distinct microenvironment to modulate the reaction kinetics. Herein, we propose a facile wrapping-pyrolysis strategy to confine Fe0 nanoparticles (Fe NPs) inside N-doped carbon nanotubes (Fe@NC NTs) derived from Fe2O3@polypyrrole (PPy) core-sheath nanofibers (NFs). The resultant Fe@NC NTs can act as efficient enzyme mimics and exhibit a significantly higher peroxidase (POD)-like catalytic activity than unconfined Fe NPs and bare NC NTs. Kinetic experiments demonstrate that the optimized void structure benefits the affinity with the POD substrates and achieves excellent catalytic efficiency. The mechanism study reveals that the generation of •OH from H2O2 endows Fe@NC NTs with excellent POD-like performance. Furthermore, we develop a total antioxidant capacity (TAC) sensing platform on account of this efficient POD-like system, expanding their applications in the field of food safety and human healthcare.
Collapse
Affiliation(s)
- Na Song
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yue Zhang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Siyu Ren
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
39
|
Wang L, Xie H, Lin Y, Wang M, Sha L, Yu X, Yang J, Zhao J, Li G. Covalent organic frameworks (COFs)-based biosensors for the assay of disease biomarkers with clinical applications. Biosens Bioelectron 2022; 217:114668. [DOI: 10.1016/j.bios.2022.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/15/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022]
|
40
|
Guo X, Yang F, Jing L, Li J, Li Y, Ding R, Duan B, Zhang X. In-situ generation of highly active and four-in-one CoFe 2O 4/H 2PPOP nanozyme: Mechanism and its application for fast colorimetric detection of Cr (VI). JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128621. [PMID: 35359113 DOI: 10.1016/j.jhazmat.2022.128621] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 05/28/2023]
Abstract
Nanozymes have been widely utilized in colorimetric sensors and developing nanomaterials with multienzyme functions have more application prospects due to their cascaded catalytic efficiency. Here, a unique organic-inorganic nanocomposite CoFe2O4/H2PPOP was synthesized by depositing CoFe2O4 nanocubes on a fully conjugated porphyrin-based porous organic polymer (H2PPOP) in situ. CoFe2O4/H2PPOP revealed outstanding tetra-enzyme-like activities, namely oxidase-like, peroxidase-like, catalase-like and superoxide dismutase-like activities. Compared with pure CoFe2O4 nanocubes, the catalytic activities of CoFe2O4/H2PPOP were significantly boosted because of the large surface area and extended conjugated structure of H2PPOP, abundant active substances (CoFe2O4) on the surface and the effective electronic transfer between CoFe2O4 and H2PPOP. Based on the oxidase-like activity of CoFe2O4/H2PPOP, a colorimetric platform was constructed for Cr (VI) with a wide linear range (0.6-100 μM) and a low detection limit (26 nΜ). Further utilizing the double oxidase-like and peroxidase-like activities, a more sensitive colorimetric platform with a faster detection speed for Cr (VI) was realized with the LOD as low as 2 nΜ. This work opens up a new way to prepare multi-enzyme active nanozyme and excavates its potential for detecting environmental pollutants.
Collapse
Affiliation(s)
- Xiaojun Guo
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong Province 250100, China
| | - Fei Yang
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, China.
| | - Lu Jing
- Geological and Mineral Exploration Institute of Shandong Province, Jinan, Shandong Province 250100, China
| | - Jie Li
- Geological and Mineral Exploration Institute of Shandong Province, Jinan, Shandong Province 250100, China
| | - Yanhong Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong Province 250100, China
| | - Rui Ding
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong Province 250100, China
| | - Binqiu Duan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong Province 250100, China
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong Province 250100, China.
| |
Collapse
|
41
|
Zhang S, Liu D, Wang G. Covalent Organic Frameworks for Chemical and Biological Sensing. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082586. [PMID: 35458784 PMCID: PMC9029239 DOI: 10.3390/molecules27082586] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of crystalline porous organic polymers with polygonal porosity and highly ordered structures. The most prominent feature of the COFs is their excellent crystallinity and highly ordered modifiable one-dimensional pores. Since the first report of them in 2005, COFs with various structures were successfully synthesized and their applications in a wide range of fields including gas storage, pollution removal, catalysis, and optoelectronics explored. In the meantime, COFs also exhibited good performance in chemical and biological sensing, because their highly ordered modifiable pores allowed the selective adsorption of the analytes, and the interaction between the analytes and the COFs’ skeletons may lead to a detectable change in the optical or electrical properties of the COFs. In this review, we firstly demonstrate the basic principles of COFs-based chemical and biological sensing, then briefly summarize the applications of COFs in sensing some substances of practical value, including some gases, ions, organic compounds, and biomolecules. Finally, we discuss the trends and the challenges of COFs-based chemical and biological sensing.
Collapse
Affiliation(s)
- Shiji Zhang
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China;
| | - Danqing Liu
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China;
- Correspondence: (D.L.); (G.W.)
| | - Guangtong Wang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin 150080, China
- Correspondence: (D.L.); (G.W.)
| |
Collapse
|
42
|
Zhang S, Wang R, Wu Y, Chen Z, Tong P, He Y, Lin Z, Cai Z. One-Pot Synthesis of Magnetic Covalent Organic Frameworks for Highly Efficient Enrichment of Phthalate Esters from Fine Particulate Matter. J Chromatogr A 2022; 1667:462906. [DOI: 10.1016/j.chroma.2022.462906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
|
43
|
Liu G, Pan G, Dang Q, Li R, Li L, Yang C, Yu Y. Hollow Covalent Organic Framework Cages with Zn Ion‐Implantation Promoting Photocatalytic H2 Evolution. ChemCatChem 2022. [DOI: 10.1002/cctc.202101800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guoyu Liu
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Guodong Pan
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Qiang Dang
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Rui Li
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Liuyi Li
- Fuzhou University College of Materials Science and Engineering 2 Xue Yuan Road, University Town, Fuzhou Fuzhou CHINA
| | - Chengkai Yang
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Yan Yu
- Fuzhou University College of Materials Science and Engineering CHINA
| |
Collapse
|
44
|
Haotian R, Zhu Z, Cai Y, Wang W, Wang Z, Liang A, Luo A. Application of Covalent Organic Framework-Based Electrochemical Biosensors in Biological Sample Detection. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22070339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
You P, Wei R, Ning G, Li D. An Eosin Y Encapsulated Cu(I) Covalent Metal Organic Framework for Efficient Photocatalytic Sonogashira Cross-coupling Reaction. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|