1
|
Jo S, Kim H, Kim S, Nam C, Lim J, Lim J. Nanoscale Projection Hard X-ray Microscope for Operando Statistical Analysis of Chemical Heterogeneity in Lithium-Ion Battery Cathodes. SMALL METHODS 2025; 9:e2401087. [PMID: 39659129 DOI: 10.1002/smtd.202401087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/18/2024] [Indexed: 12/12/2024]
Abstract
The spatiotemporal heterogeneity of the state of charge (SOC) within battery electrodes significantly impairs the rate capability and cycle life of lithium-ion batteries. However, mapping this heterogeneity is challenging owing to the lack of experimental methods that quantify the SOC at the electrode scale, while also offering nanoscale resolution for in-depth analyses of individual particles. Herein, this work reports an advanced projection X-ray microscopy that combines nanometric resolution, a large field of view, and high chemical sensitivity using spectroscopic imaging. This method enables the operando imaging of SOC heterogeneity across electrodes containing numerous Ni-rich layered oxide (NRLO) particles, while significantly lessening the radiation dose and maintaining rapid imaging speeds. This work characterizes the SOC heterogeneity in the degraded electrode with a cross-section, thereby revealing the considerable heterogeneity in the battery degradation progresses at the individual-particle-level. Further, this work observes inter- and intra-particle heterogeneity during NRLO particle calcination, thereby identifying rapidly oxidized particles that likely facilitate the calcination process.
Collapse
Affiliation(s)
- Sugeun Jo
- Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), 80, Jigok-ro 127 beon-gil, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37637, Republic of Korea
| | - Hwiho Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sangwoo Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), 80, Jigok-ro 127 beon-gil, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37637, Republic of Korea
| | - Chihun Nam
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jongwoo Lim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jun Lim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), 80, Jigok-ro 127 beon-gil, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37637, Republic of Korea
| |
Collapse
|
2
|
Song R, Di J, Lv D, Yang L, Luan J, Yuan H, Liu J, Hu W, Zhong C. Improving the Electrochemical Properties of SiO x Anode for High-Performance Lithium-Ion Batteries by Magnesiothermic Reduction and Prelithiation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7849-7859. [PMID: 39869538 DOI: 10.1021/acsami.4c20201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
For lithium-ion batteries, silicon monoxide is a potential anode material, but its application is limited by its relatively large irreversible capacity loss, which leads to its low initial Coulombic efficiency (ICE). In this study, we conduct a two-step reaction for the formation of silicon oxide-based materials, including a magnesiothermic reduction of SiOx with Mg, followed by the solid-state lithiation of silicon oxide with Li2CO3. Our results demonstrate that Mg can reduce SiO2 to Si and form MgSiO3, while Li2CO3 reacts with SiOx to form Li2Si2O5. MgSiO3 and Li2Si2O5 on the surface of SiOx can effectively mitigate the irreversible loss of lithium ions, thus enhancing the ICE of SiOx. The resulting SiOx-Mg-Li2CO3-C nanostructure has an ICE of up to 91.1% and a relatively stable cycle performance. After 100 cycles at 0.5 C, the capacity is still 894.5 mAh g-1, and the capacity retention rate is 87.9%. A lithium-ion full battery with the commercial LiNi0.8Mn0.1Co0.1O2 (NCM811) as the cathode was assembled to test its practical applicability. The full cell exhibits a stable discharge capacity of 91.4 mAh g-1 after 100 cycles at 1 C, with a capacity retention of 79.9%.
Collapse
Affiliation(s)
- Runfeng Song
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jie Di
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Dan Lv
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lili Yang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jingyi Luan
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hongyan Yuan
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jie Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Huang LB, Zhao L, Ma ZF, Zhang X, Zhang XS, Lu ZY, Li G, Luo XX, Wen R, Xin S, Meng Q, Guo YG. Vertically Fluorinated Graphene Encapsulated SiO x Anode for Enhanced Li + Transport and Interfacial Stability in High-Energy-Density Lithium Batteries. Angew Chem Int Ed Engl 2024; 63:e202413600. [PMID: 39136072 DOI: 10.1002/anie.202413600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Indexed: 10/15/2024]
Abstract
Achieving high energy density has always been the goal of lithium-ion batteries (LIBs). SiOx has emerged as a compelling candidate for use as a negative electrode material due to its remarkable capacity. However, the huge volume expansion and the unstable electrode interface during (de)lithiation, hinder its further development. Herein, we report a facile strategy for the synthesis of surface fluorinated SiOx (SiOx@vG-F), and investigate their influences on battery performance. Systematic experiments investigations indicate that the reaction between Li+ and fluorine groups promotes the in situ formation of stable LiF-rich solid electrolyte interface (SEI) on the surface of SiOx@vG-F anode, which effectively suppresses the pulverization of microsized SiOx particles during the charge and discharge cycle. As a result, the SiOx@vG-F enabled a higher capacity retention of 86.4 % over 200 cycles at 1.0 C in the SiOx@vG-F||LiNi0.8Co0.1Mn0.1O2 full cell. This approach will provide insights for the advancement of alternative electrode materials in diverse energy conversion and storage systems.
Collapse
Affiliation(s)
- Lin-Bo Huang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Lu Zhao
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Zhi-Feng Ma
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Xing Zhang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Xu-Sheng Zhang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuo-Ya Lu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ge Li
- Beijing IAmetal New Energy Technology Company LTD., Beijing, 100190, P. R. China
| | - Xiao-Xi Luo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Rui Wen
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sen Xin
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinghai Meng
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Yu-Guo Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Yang L, Lv D, Song R, Luan J, Yuan H, Liu J, Hu W, Zhong C. Pre-lithiation synergized with magnesiothermic reduction to enhance the performance of SiO anode for advanced lithium-ion batteries. J Colloid Interface Sci 2024; 680:928-936. [PMID: 39549352 DOI: 10.1016/j.jcis.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Due to its high theoretical specific capacity, micron-sized silicon monoxide (SiO) is regarded as one of the most competitive anode materials for lithium-ion batteries with high specific energy density. However, originating from the low initial Coulombic efficiency (ICE) and large volume expansion, its large-scale application is seriously hindered. Herein, an easy-to-implement solid-state pre-lithiation method synergized with the magnesiothermic reduction process was performed to enhance the ICE of SiO and a common bimetallic hydride was used as a prelithiation reagent. Moreover, the effects of different pre-lithiation reagent amounts on the physical and electrochemical properties of SiOx are investigated. Notably, the SiOx-LA@C composite anchored by in-situ generated LiAl(SiO3)2 shows a more stable microstructure and excellent electrochemical properties, which delivers an ultrahigh ICE of 89.4 % and an excellent initial capacity of 1864.4 mAh g-1. Furthermore, the full cells were successfully assembled by using the prepared anodes, which exhibit relatively stable cycle performance over 150 cycles. This work suggests a safe and feasible route to enhance the ICE of SiOx for the applicable SiO-based anode materials.
Collapse
Affiliation(s)
- Lili Yang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; School of Physics, NingXia University, Yinchuan 750021, China
| | - Dan Lv
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Runfeng Song
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jingyi Luan
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hongyan Yuan
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jie Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
5
|
Luan J, Yuan H, Liu J, Zhao N, Hu W, Zhong C. Amorphous AlPO 4 Layer Coating Vacuum Thermal Reduced SiO x with Fine Silicon Grains to Enhance the Anode Stability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405116. [PMID: 39076124 PMCID: PMC11423219 DOI: 10.1002/advs.202405116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Micrometer-sized silicon monoxide (SiO) is regarded as a high-capacity anode material with great potential for lithium ion batteries (LIBs). However, the problems of low initial Coulombic efficiency (ICE), poor electrical conductivity, and large volume change of SiO inevitably impede further application. Herein, the vacuum thermal reduced SiOx with amorphous AlPO4 and carbon double-coating layers is used as the ideal anode material in LIBs. The vacuum thermal reduction at low temperature forms fine silicon grains in the internal particles and maintains the external integrity of SiOx particles, contributing to mitigation of the stress intensification and the subsequent design of multifunctional coating. Meanwhile, the innovative introduction of the multifunctional amorphous AlPO4 layer not only improves the ion/electron conduction properties to ensure the fast reversible reaction but also provides a robust protective layer with stable physicochemical characteristics and inhibits the volume expansion effect. The sample of SiOx anode shows an ICE up to 87.6% and a stable cycling of 200 cycles at 1 A g-1 with an initial specific capacity of 1775.8 mAh g-1. In addition, the assembled pouch battery of 1.8 Ah can also ensure a cycling life of over 150 cycles, demonstrating a promising prospect of this optimized micrometer-sized SiOx anode material for industrial applications.
Collapse
Affiliation(s)
- Jingyi Luan
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Hongyan Yuan
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jie Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Naiqin Zhao
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
6
|
Xu DX, Zhao YM, Chen HX, Lu ZY, Tian YF, Xin S, Li G, Guo YG. Reduced Volume Expansion of Micron-Sized SiO x via Closed-Nanopore Structure Constructed by Mg-Induced Elemental Segregation. Angew Chem Int Ed Engl 2024; 63:e202401973. [PMID: 38520059 DOI: 10.1002/anie.202401973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/04/2024] [Accepted: 03/22/2024] [Indexed: 03/25/2024]
Abstract
The inherently huge volume expansion during Li uptake has hindered the use of Si-based anodes in high-energy lithium-ion batteries. While some pore-forming and nano-architecting strategies show promises to effectively buffer the volume change, other parameters essential for practical electrode fabrication, such as compaction density, are often compromised. Here we propose a new in situ Mg doping strategy to form closed-nanopore structure into a micron-sized SiOx particle at a high bulk density. The doped Mg atoms promote the segregation of O, so that high-density magnesium silicates form to generate closed nanopores. By altering the mass content of Mg dopant, the average radii (ranged from 5.4 to 9.7 nm) and porosities (ranged from 1.4 % to 15.9 %) of the closed pores are precisely adjustable, which accounts for volume expansion of SiOx from 77.8 % to 22.2 % at the minimum. Benefited from the small volume variation, the Mg-doped micron-SiOx anode demonstrates improved Li storage performance towards realization of a 700-(dis)charge-cycle, 11-Ah-pouch-type cell at a capacity retention of >80 %. This work offers insights into reasonable design of the internal structure of micron-sized SiOx and other materials that undergo conversion or alloying reactions with drastic volume change, to enable high-energy batteries with stable electrochemistry.
Collapse
Affiliation(s)
- Di-Xin Xu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Yu-Ming Zhao
- Beijing iAmetal New Energy Technology Co., Ltd, Beijing, 100081, P. R. China
| | - Han-Xian Chen
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Zhuo-Ya Lu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Yi-Fan Tian
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Sen Xin
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Ge Li
- Beijing iAmetal New Energy Technology Co., Ltd, Beijing, 100081, P. R. China
| | - Yu-Guo Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Rah K, Choi B, Kim C. Effective Measures of Thickness Evolution of the Solid Electrolyte Interphase of Graphite Anodes for Li-Ion Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7550-7559. [PMID: 38545765 PMCID: PMC11008243 DOI: 10.1021/acs.langmuir.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
Upon forming, the intensity or thickness of the solid electrolyte interphase (SEI) in a Li-ion battery (LIB) evolves to various states depending on the cell materials and operation conditions. Despite a crucial role in comprehending the behaviors of an LIB, its quantitative measure is far from satisfactory mainly because of the undue complexity of the concentration profiles of the comprising chemical species. Here, we calculate the depth profiles of atomic mole fractions of C and F and their ratio as RC/F = C/F of graphite anodes for LIBs in comparison to an X-ray photoelectron spectroscopy (XPS) experiment. To this end, we take a differential equation approach to dC/dt*, where t* is the reduced XPS etching time for depth. As a result, the respective analytical expression derived for C, F, and RC/F(t*) is verified to accurately account for the experiment. Moreover, we show that RC/F(t*) in the j state can be practically expressed in R j ( t * ) ≃ α j ( t * ) 1 / γ + β j , where γ is a constant for a given anode. Based on this, we suggest ξj* = (αi + βi - βj)/αj as a measure of the SEI thickness evolution from the i to j state in terms of the cycle number. As an intriguing finding, the SEI thickness evolves up to about 3 times that of its initial state, beyond which it does not appear to grow any more.
Collapse
Affiliation(s)
- Kyunil Rah
- Institute of Battery R&D, LG Energy Solution, 188 Moonji-ro Yuseong-gu, Daejeon 34122, South Korea
| | - Byunghee Choi
- Institute of Battery R&D, LG Energy Solution, 188 Moonji-ro Yuseong-gu, Daejeon 34122, South Korea
| | - Changoh Kim
- Institute of Battery R&D, LG Energy Solution, 188 Moonji-ro Yuseong-gu, Daejeon 34122, South Korea
| |
Collapse
|
8
|
Deng R, Wang Z, Tan S, Lu G, Huang X, Qu B, Huang G, Xu C, Zhou X, Wang J, Pan F. Organic Molecular Intercalation Enabled Anionic Redox Chemistry with Fast Kinetics for High Performance Magnesium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308329. [PMID: 37949813 DOI: 10.1002/smll.202308329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/15/2023] [Indexed: 11/12/2023]
Abstract
Rechargeable magnesium-ion batteries possess desirable characteristics in large-scale energy storage applications. However, severe polarization, sluggish kinetics and structural instability caused by high charge density Mg2+ hinder the development of high-performance cathode materials. Herein, the anionic redox chemistry in VS4 is successfully activated by inducing cations reduction and introducing anionic vacancies via polyacrylonitrile (PAN) intercalation. Increased interlayer spacing and structural vacancies can promote the electrolyte ions migration and accelerate the reaction kinetics. Thanks to this "three birds with one stone" strategy, PAN intercalated VS4 exhibits an outstanding electrochemical performance: high discharge specific capacity of 187.2 mAh g-1 at 200 mA g-1 after stabilization and a long lifespan of 5000 cycles at 2 A g-1 are achieved, outperforming other reported VS4-based materials to date for magnesium storage under the APC electrolyte. Theoretical calculations confirm that the intercalated PAN can indeed induce cations reduction and generate anionic vacancies by promoting electron transfer, which can accelerate the electrochemical reaction kinetics and activate the anionic redox chemistry, thus improving the magnesium storage performance. This approach of organic molecular intercalation represents a promising guideline for electrode material design on the development of advanced multivalent-ion batteries.
Collapse
Affiliation(s)
- Rongrui Deng
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Zhongting Wang
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Shuangshuang Tan
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Guanjie Lu
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Xueting Huang
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Baihua Qu
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 400044, P. R. China
| | - Guangsheng Huang
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 400044, P. R. China
| | - Chaohe Xu
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044, P. R. China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 400044, P. R. China
| | - Xiaoyuan Zhou
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 400044, P. R. China
- College of Physics, Chongqing University, Chongqing, 400044, P. R. China
| | - Jingfeng Wang
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 400044, P. R. China
| | - Fusheng Pan
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China
- Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 400044, P. R. China
| |
Collapse
|
9
|
Youn D, Kim NG, Jeong WJ, Chung DJ, Kim JY, Kim H. Endothermic Dehydrogenation-Driven Preventive Magnesiation of SiO for High-Performance Lithium Storage Materials. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45333-45341. [PMID: 36173933 DOI: 10.1021/acsami.2c11902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Silicon monoxide (SiO)-based materials have gained much attention as high-capacity lithium storage materials based on their high capacity and stable capacity retention. However, low initial Coulombic efficiency associated with the irreversible electrochemical reaction of the amorphous SiO2 phase in SiO inhibits the wide usage of SiO-based anode materials for lithium-ion batteries. Magnesiation of SiO is one of the most promising solutions to improve the initial efficiency of SiO-based anode materials. Herein, we demonstrate that endothermic dehydrogenation-driven magnesiation of SiO employing MgH2 enhanced the initial Coulombic efficiency of 89.5% with much improved long-term cycle performance over 300 cycles compared to the homologue prepared by magnesiation of SiO with Mg and pristine SiO. High-resolution transmission electron microscopy with thermogravimetry-differential scanning calorimetry revealed that the endothermic dehydrogenation of MgH2 suppressed the sudden temperature rise during magnesiation of SiO, thereby inhibiting the coarsening of the active Si phase in the resulting Si/Mg2SiO4 nanocomposite.
Collapse
Affiliation(s)
- Donghan Youn
- Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Nam Gyu Kim
- Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Won Joon Jeong
- Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Dong Jae Chung
- Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Ji Young Kim
- Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Hansu Kim
- Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| |
Collapse
|
10
|
Li XD, Zhao YM, Tian YF, Lu ZY, Fan M, Zhang XS, Tian H, Xu Q, Li HL, Guo YG. Lithium/Boron Co-doped Micrometer SiO x as Promising Anode Materials for High-Energy-Density Li-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27854-27860. [PMID: 35678306 DOI: 10.1021/acsami.2c04983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The carbon-coated silicon monoxide (SiOx@C) has been considered as one of the most promising high-capacity anodes for the next-generation high-energy-density lithium-ion batteries (LIBs). However, the relatively low initial Coulombic efficiency (ICE) and the still existing huge volume expansion during repeated lithiation/delithiation cycling remain the greatest challenges to its practical application. Here, we developed a lithium and boron (Li/B) co-doping strategy to efficiently enhance the ICE and alleviate the volume expansion or pulverization of SiOx@C anodes. The in situ generated Li silicates (LixSiOy) by Li doping will reduce the active Li loss during the initial cycling and enhance the ICE of SiOx@C anodes. Meanwhile, B doping works to promote the Li+ diffusion and strengthen the internal bonding networks within SiOx@C, enhancing its resistance to cracking and pulverization during cycling. As a result, the enhanced ICE (83.28%), suppressed volume expansion, and greatly improved cycling (85.4% capacity retention after 200 cycles) and rate performance could be achieved for the Li/B co-doped SiOx@C (Li/B-SiOx@C) anodes. Especially, the Li/B-SiOx@C and graphite composite anodes with a capacity of 531.5 mA h g-1 were demonstrated to show an ICE of 90.1% and superior cycling stability (90.1% capacity retention after 250 cycles), which is significant for the practical application of high-energy-density LIBs.
Collapse
Affiliation(s)
- Xiao-Dong Li
- College of Materials Science and Engineering, State Key Laboratory of Biopolysaccharide Fiber Forming and Eco-Textile, Qingdao University, Qingdao 266071, P. R. China
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Yu-Ming Zhao
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Yi-Fan Tian
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhuo-Ya Lu
- Beijing IAmetal New Energy Technology Co., Ltd., Beijing 100190, P. R. China
| | - Min Fan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xu-Sheng Zhang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - He Tian
- College of Materials Science and Engineering, State Key Laboratory of Biopolysaccharide Fiber Forming and Eco-Textile, Qingdao University, Qingdao 266071, P. R. China
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Quan Xu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Hong-Liang Li
- College of Materials Science and Engineering, State Key Laboratory of Biopolysaccharide Fiber Forming and Eco-Textile, Qingdao University, Qingdao 266071, P. R. China
| | - Yu-Guo Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|