1
|
Tieman G, Shatila F, Ceschia S, Wulff JE, Buckley HL. Photobleaching of Light-Activated Porphyrin-Functionalized Plastic Coupons for Potential Antimicrobial Applications. ACS MATERIALS AU 2025; 5:537-546. [PMID: 40385947 PMCID: PMC12082355 DOI: 10.1021/acsmaterialsau.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 05/20/2025]
Abstract
Developing greener alternatives for harmful conventional cleaning agents is an important focus for preventing negative impacts on both the environment and human health. One potential alternative of interest is photodynamic inactivation (PDI), where a photosensitizing molecule is used to generate singlet oxygen (1O2) and other reactive oxygen species (ROS). ROS, 1O2 in particular, are known to react with cellular membranes of bacteria, resulting in cellular death. Porphyrinoids are one of these known light sensitizing species. In this work, zinc(II) 5,10,15,20-tetrakis((N-4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzyl)-4-pyridyl)-21H,23H-porphine tetrabromide is covalently attached to polyethylene terephthalate (PET) via thermal activation of a diazirine to initiate a C-H insertion. With the porphyrin now covalently bonded to the PET, the functionalized PET was assessed at a range of light intensities on its ability to generate 1O2 and for antimicrobial activity against Escherichia coli; the results were found to be correlated. Because photobleaching and resultant loss of activity are one of the weaknesses of PDI, the material was further assessed for its ability to withstand various photobleaching conditions. The photobleaching conditions assessed were high intensity light in dry and underwater conditions and ambient light, along with a set of dark controls. Results indicate that after 2 weeks of high intensity irradiation, the material still mediates singlet oxygen generation, albeit less efficiently. This shows promise for the use of this approach as an alternative to conventional cleaning agents.
Collapse
Affiliation(s)
- Grace
M.O. Tieman
- Department
of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Institute
for Integrated Energy Systems (IESVic), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Fatima Shatila
- Department
of Civil Engineering, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Institute
for Integrated Energy Systems (IESVic), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Stefania Ceschia
- Department
of Civil Engineering, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Jeremy E. Wulff
- Department
of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Heather L. Buckley
- Department
of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Department
of Civil Engineering, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Institute
for Integrated Energy Systems (IESVic), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
2
|
Socha K, Gusev I, Mroczko P, Blacha-Grzechnik A. Light-activated antimicrobial coatings: the great potential of organic photosensitizers. RSC Adv 2025; 15:7905-7925. [PMID: 40084300 PMCID: PMC11904473 DOI: 10.1039/d5ra00272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
Contamination of inanimate surfaces with microorganisms is considered one of the routes for transmission of pathogens, which is a matter of concern not only in healthcare-related facilities, but also in public areas. Durable antimicrobial coatings have emerged as the one of most promising strategies for reducing the accumulation of microorganisms on high-touch surfaces. Light-activated antimicrobial layers are of particular interest for such a purpose, as they generate singlet oxygen and other reactive oxygen species that are effective against a broad spectrum of bacteria, viruses, and fungi. In this review, the antimicrobial coatings containing organic photosensitizers are discussed, focusing on the recent advances in the strategies for PSs' immobilization on solid surfaces. The review attempts to assess the advantages and limitations of those systems, and the challenges that still need to be overcome.
Collapse
Affiliation(s)
- Karolina Socha
- Silesian University of Technology, Faculty of Chemistry Strzody 9 Gliwice 44-100 Poland
| | - Ivan Gusev
- Silesian University of Technology, Faculty of Chemistry Strzody 9 Gliwice 44-100 Poland
| | - Patryk Mroczko
- Silesian University of Technology, Faculty of Chemistry Strzody 9 Gliwice 44-100 Poland
| | - Agata Blacha-Grzechnik
- Silesian University of Technology, Faculty of Chemistry Strzody 9 Gliwice 44-100 Poland
- Silesian University of Technology, Centre for Organic and Nanohybrid Electronics Konarskiego 22B Gliwice 44-100 Poland
| |
Collapse
|
3
|
Scott SS, Zeng Y, Wright T, Wolf MO, Schafer LL. Catalytic Installation of Primary Amines Onto Polyolefins for Oligomer Valorization. Macromol Rapid Commun 2024; 45:e2400444. [PMID: 39352305 PMCID: PMC11628359 DOI: 10.1002/marc.202400444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/05/2024] [Indexed: 12/11/2024]
Abstract
Polymerization of primary amine-containing monomers is challenging because the amine inhibits polymerization catalyst activity. An alternative approach to access primary amine functionalized polymers is postpolymerization modification. To this end, the hydroaminoalkylation of vinyl-terminated polyolefins with N-(trimethylsilyl)benzylamine is used to prepare primary amine-terminated polyolefins, with the free primary amine substituent being revealed upon hydrolytic work up. These materials are spectroscopically characterized, and an investigation of thermal properties by differential scanning calorimetry and thermogravimetric analysis is completed. These results show that the primary amine substituent increases the glass transition temperature and improves thermal stability. The reactive primary amine functionality is used in the photo-oxidative dimerization of polyolefins to demonstrate how this elusive functionality can be applied in oligomer valorization.
Collapse
Affiliation(s)
- Sabrina S. Scott
- Department of ChemistryUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Yimin Zeng
- Department of ChemistryUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Taylor Wright
- Department of ChemistryUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Michael O. Wolf
- Department of ChemistryUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Laurel L. Schafer
- Department of ChemistryUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| |
Collapse
|
4
|
Efimov A, Mordon S. Photoantimicrobial and Photoantiviral Textiles: Underestimated Potential. Pharmaceuticals (Basel) 2024; 17:1164. [PMID: 39338328 PMCID: PMC11434808 DOI: 10.3390/ph17091164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
In this review, we summarize the present state of a rapidly developing field of light-activated antimicrobial textiles and their underestimated potential and opportunities.
Collapse
Affiliation(s)
- Alexander Efimov
- Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland
| | - Serge Mordon
- Hemerion Therapeutics, 59650 Villeneuve d'Ascq, France
| |
Collapse
|
5
|
Li TT, Shou BB, Yang L, Ren HT, Hu XJ, Lin JH, Cai T, Lou CW. Modification of traditional composite nonwovens with stable storage of light absorption transients and photodynamic antibacterial effect. Photochem Photobiol 2024; 100:1328-1338. [PMID: 38528682 DOI: 10.1111/php.13924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/27/2024]
Abstract
Combining photodynamic antimicrobials with nonwovens is prospective. However, common photosensitizers still have drawbacks such as poor photoactivity and the inability to charge. In this study, a photodynamic and high-efficiency antimicrobial protective material was prepared by grafting bis benzophenone-structured 4,4-terephthaloyl diphthalic anhydride (TDPA) photosensitizer, and antimicrobial agent chlorogenic acid (CA) onto spunbond-meltblown-spunbond (SMS) membranes. The charging rates for ·OH and H2O2 were 6377.89 and 913.52 μg/g/h. The light absorption transients structural storage remained above 69% for 1 month. High electrical capacity remained after seven cycles indicating its rechargeability and recyclability. The SMS/TDPA/CA membrane has excellent bactericidal performance when under illumination or lightless conditions, and the bactericidal efficiency of Escherichia coli and Staphylococcus aureus reached over 99%. The construction of self-disinfection textiles based on the photodynamic strategies proposed in this paper is constructive for expanding and promoting the application of textile materials in the medical field.
Collapse
Affiliation(s)
- Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials, Tiangong University, Tianjin, China
| | - Bing-Bing Shou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Lu Yang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Hai-Tao Ren
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials, Tiangong University, Tianjin, China
| | - Xian-Jin Hu
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Ocean College, Minjiang University, Fuzhou, China
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tao Cai
- CTES (Shishi) Research Institute for Apparel and Accessories Industry, Shishi, China
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Liška V, Willimetz R, Kubát P, Křtěnová P, Gyepes R, Mosinger J. Synergistic photogeneration of nitric oxide and singlet oxygen by nanofiber membranes via blue and/or red-light irradiation: Strong antibacterial action. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112906. [PMID: 38688040 DOI: 10.1016/j.jphotobiol.2024.112906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
New functionalities were added to biocompatible polycaprolactone nanofiber materials through the co-encapsulation of chlorin e6 trimethyl ester (Ce6) photogenerating singlet oxygen and absorbing light both in the blue and red regions, and using 4-(N-(aminopropyl)-3-(trifluoromethyl)-4-nitrobenzenamine)-7-nitrobenzofurazan, NO-photodonor (NOP), absorbing light in the blue region of visible light. Time-resolved and steady-state luminescence, as well as absorption spectroscopy, were used to monitor both photoactive compounds. The nanofiber material exhibited photogeneration of antibacterial species, specifically nitric oxide and singlet oxygen, upon visible light excitation. This process resulted in the efficient photodynamic inactivation of E. coli not only close to nanofiber material surfaces due to short-lived singlet oxygen, but even at longer distances due to diffusion of longer-lived nitric oxide. Interestingly, nitric oxide was also formed by processes involving photosensitization of Ce6 during irradiation by red light. This is promising for numerous applications, especially in the biomedical field, where strictly local photogeneration of NO and its therapeutic benefits can be applied using excitation in the "human body phototherapeutic window" (600-850 nm). Generally, due to the high permeability of red light, the photogeneration of NO can be achieved in any aqueous environment where direct excitation of NOP to its absorbance in the blue region is limited.
Collapse
Affiliation(s)
- Vojtěch Liška
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Robert Willimetz
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Petra Křtěnová
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Robert Gyepes
- Department of Chemistry, Faculty of Education of J. Selye University, Bratislavská 3322, 945 01 Komárno, Slovak Republic
| | - Jiří Mosinger
- Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic.
| |
Collapse
|
7
|
Zhang N, Xu Y, Shi R, Zhou M, Yu Y, Wang P, Wang Q. Protein-based coating strategy for preparing durable sunlight-driven rechargeable antibacterial, super hydrophilic, and UV-resistant textiles. Int J Biol Macromol 2024; 258:128761. [PMID: 38101656 DOI: 10.1016/j.ijbiomac.2023.128761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
With the improvement of the hygiene awareness and pathogen prevention awareness of patients and medical staff, textiles with efficient and long-lasting pathogen inactivation effects are urgently needed. Photodynamic therapy (PDT) has rapidly developed into a new type of antibacterial technology due to its high antibacterial activity and has received widespread attention. However, the commonly used photosensitizers are mostly inorganic nanomaterials, which have poor adhesion to textiles and are not environmentally or human friendly. Here, we report a strategy of preparation of a sunlight-driven rechargeable antibacterial textiles based on natural antibacterial agents, which can work in light and dark conditions. The prepared BD-PTL@wool has long-lasting antibacterial properties, can rapidly produce ROS, and can store sterilization activity under light irradiation, ensuring all-day bacterial killing (>99.95 % under light irradiation and >99.80 % under dark conditions after light irradiation). BD-PTL@wool has excellent reusability, and the antibacterial rate can still above 95 % after repeated use for 5 times. In addition, BD-PTL@wool has excellent hydrophilic, UV resistance, biocompatibility and can withstand 50 washing cycles. The successful application of this strategy in textile preparation broadens the research idea for exploring the application of green photosensitive antibacterial materials in textile field.
Collapse
Affiliation(s)
- Ning Zhang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Yujie Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Rongjin Shi
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
8
|
Wang Y, Lin Y, He S, Wu S, Yang C. Singlet oxygen: Properties, generation, detection, and environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132538. [PMID: 37734310 DOI: 10.1016/j.jhazmat.2023.132538] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Singlet oxygen (1O2) is molecular oxygen in the excited state with high energy and electrophilic properties. It is widely found in nature, and its important role is gradually extending from chemical syntheses and medical techniques to environmental remediation. However, there exist ambiguities and controversies regarding detection methods, generation pathways, and reaction mechanisms which have hindered the understanding and applications of 1O2. For example, the inaccurate detection of 1O2 has led to an overestimation of its role in pollutant degradation. The difficulty in detecting multiple intermediate species obscures the mechanism of 1O2 production. The applications of 1O2 in environmental remediation have also not been comprehensively commented on. To fill these knowledge gaps, this paper systematically discussed the properties and generation of 1O2, reviewed the state-of-the-art detection methods for 1O2 and long-standing controversies in the catalytic systems. Future opportunities and challenges were also discussed regarding the applications of 1O2 in the degradation of pollutants dissolved in water and volatilized in the atmosphere, the disinfection of drinking water, the gas/solid sterilization, and the self-cleaning of filter membranes. This review is expected to provide a better understanding of 1O2-based advanced oxidation processes and practical applications in the environmental protection of 1O2.
Collapse
Affiliation(s)
- Yue Wang
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China.
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
9
|
Gorman S. The inhibitory and inactivating effects of visible light on SARS-CoV-2: A narrative update. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023; 15:100187. [PMID: 37288364 PMCID: PMC10207839 DOI: 10.1016/j.jpap.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Prior to the coronavirus disease-19 (COVID-19) pandemic, the germicidal effects of visible light (λ = 400 - 700 nm) were well known. This review provides an overview of new findings that suggest there are direct inactivating effects of visible light - particularly blue wavelengths (λ = 400 - 500 nm) - on exposed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virions, and inhibitory effects on viral replication in infected cells. These findings complement emerging evidence that there may be clinical benefits of orally administered blue light for limiting the severity of COVID-19. Possible mechanisms of action of blue light (e.g., regulation of reactive oxygen species) and important mediators (e.g., melatonin) are discussed.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Kids Institute, University of Western Australia, PO Box 855, Perth, Western Australia 6872, Australia
| |
Collapse
|
10
|
Hawsawi NM, Hamad AM, Rashid SN, Alshehri F, Sharaf M, Zakai SA, Al Yousef SA, Ali AM, Abou-Elnour A, Alkhudhayri A, Elrefaei NG, Elkelish A. Biogenic silver nanoparticles eradicate of Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA) isolated from the sputum of COVID-19 patients. Front Microbiol 2023; 14:1142646. [PMID: 37143540 PMCID: PMC10153441 DOI: 10.3389/fmicb.2023.1142646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
In recent investigations, secondary bacterial infections were found to be strongly related to mortality in COVID-19 patients. In addition, Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA) bacteria played an important role in the series of bacterial infections that accompany infection in COVID-19. The objective of the present study was to investigate the ability of biosynthesized silver nanoparticles from strawberries (Fragaria ananassa L.) leaf extract without a chemical catalyst to inhibit Gram-negative P. aeruginosa and Gram-positive Staph aureus isolated from COVID-19 patient’s sputum. A wide range of measurements was performed on the synthesized AgNPs, including UV–vis, SEM, TEM, EDX, DLS, ζ -potential, XRD, and FTIR. UV-Visible spectral showed the absorbance at the wavelength 398 nm with an increase in the color intensity of the mixture after 8 h passed at the time of preparation confirming the high stability of the FA-AgNPs in the dark at room temperature. SEM and TEM measurements confirmed AgNPs with size ranges of ∼40-∼50 nm, whereas the DLS study confirmed their average hydrodynamic size as ∼53 nm. Furthermore, Ag NPs. EDX analysis showed the presence of the following elements: oxygen (40.46%), and silver (59.54%). Biosynthesized FA-AgNPs (ζ = −17.5 ± 3.1 mV) showed concentration-dependent antimicrobial activity for 48 h in both pathogenic strains. MTT tests showed concentration-dependent and line-specific effects of FA-AgNPs on cancer MCF-7 and normal liver WRL-68 cell cultures. According to the results, synthetic FA-AgNPs obtained through an environmentally friendly biological process are inexpensive and may inhibit the growth of bacteria isolated from COVID-19 patients.
Collapse
|
11
|
Fu J, Liu T, Binte Touhid SS, Fu F, Liu X. Functional Textile Materials for Blocking COVID-19 Transmission. ACS NANO 2023; 17:1739-1763. [PMID: 36683285 PMCID: PMC9885531 DOI: 10.1021/acsnano.2c08894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The outbreak of COVID-19 provided a warning sign for society worldwide: that is, we urgently need to explore effective strategies for combating unpredictable viral pandemics. Protective textiles such as surgery masks have played an important role in the mitigation of the COVID-19 pandemic, while revealing serious challenges in terms of supply, cross-infection risk, and environmental pollution. In this context, textiles with an antivirus functionality have attracted increasing attention, and many innovative proposals with exciting commercial possibilities have been reported over the past three years. In this review, we illustrate the progress of textile filtration for pandemics and summarize the recent development of antiviral textiles for personal protective purposes by cataloging them into three classes: metal-based, carbon-based, and polymer-based materials. We focused on the preparation routes of emerging antiviral textiles, providing a forward-looking perspective on their opportunities and challenges, to evaluate their efficacy, scale up their manufacturing processes, and expand their high-volume applications. Based on this review, we conclude that ideal antiviral textiles are characterized by a high filtration efficiency, reliable antiviral effect, long storage life, and recyclability. The expected manufacturing processes should be economically feasible, scalable, and quickly responsive.
Collapse
Affiliation(s)
- Jiajia Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Tianxing Liu
- Department of Cell and Systems Biology,
University of Toronto, Toronto, OntarioM5S1A1,
Canada
| | - S Salvia Binte Touhid
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Feiya Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Xiangdong Liu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| |
Collapse
|
12
|
Liška V, Kubát P, Křtěnová P, Mosinger J. Magnetically Separable Photoactive Nanofiber Membranes for Photocatalytic and Antibacterial Applications. ACS OMEGA 2022; 7:47986-47995. [PMID: 36591212 PMCID: PMC9798731 DOI: 10.1021/acsomega.2c05935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
We have prepared photoactive multifunctional nanofiber membranes via the simple electrospinning method. The antibacterial and photocatalytic properties of these materials are based on the generation of singlet oxygen formed by processes photosensitized by the tetraphenylporphyrin encapsulated in the nanofibers. The addition of magnetic features in the form of magnetic maghemite (γ-Fe2O3) nanoparticles stabilized by polyethylenimine enables additional functionalities, namely, the postirradiation formation of hydrogen peroxide and improved photothermal properties. This hybrid material allows for remote manipulation by a magnetic field, even in hazardous and/or highly microbial contaminant environments.
Collapse
Affiliation(s)
- Vojtěch Liška
- Faculty
of Science, Charles University, 2030 Hlavova, 128 43 Prague 2, Czech Republic
| | - Pavel Kubát
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Petra Křtěnová
- Faculty
of Science, Charles University, 2030 Hlavova, 128 43 Prague 2, Czech Republic
| | - Jiří Mosinger
- Faculty
of Science, Charles University, 2030 Hlavova, 128 43 Prague 2, Czech Republic
| |
Collapse
|
13
|
Musolino S, Shatila F, Tieman GM, Masarsky AC, Thibodeau MC, Wulff JE, Buckley HL. Light-Induced Anti-Bacterial Effect Against Staphylococcus aureus of Porphyrin Covalently Bonded to a Polyethylene Terephthalate Surface. ACS OMEGA 2022; 7:29517-29525. [PMID: 36033695 PMCID: PMC9404523 DOI: 10.1021/acsomega.2c04294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial photodynamic inactivation represents a promising and potentially greener alternative to conventional antimicrobials, and a solution for multidrug-resistant strains. The current study reports the development and characterization of tetra-substituted diazirine porphyrin covalently bonded to polyethylene terephthalate (PET) and its use as an antimicrobial surface. The diazirine moiety on the porphyrin was activated using a temperature of 120 °C, which initiated a C-H insertion mechanism that irreversibly functionalized the PET surface. Activation of the surface with white LED light in phosphate-buffered saline (PBS) led to singlet oxygen generation, which was detected via the degradation of 9,10-anthracenediylbis(methylene)dimalonic acid (ADMA) over time. The bactericidal effect of the 1O2-producing surface against Staphylococcus aureus was determined qualitatively and quantitatively. The growth of the pathogen beneath porphyrin-functionalized PET coupons was reduced; moreover, the PET coupons resulted in a 1.76-log reduction in cell counts after exposure to white LED light for 6 h. This is a promising material and platform for the development of safer antimicrobial surfaces, with applications in healthcare, food packaging, marine surfaces, and other surfaces in the environment.
Collapse
Affiliation(s)
- Stefania
F. Musolino
- Department
of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Fatima Shatila
- Department
of Civil Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Grace M.O. Tieman
- Department
of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
- Institute
for Integrated Energy Systems (IESVic), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Anna C. Masarsky
- Department
of Civil Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Matthew C. Thibodeau
- Department
of Civil Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Jeremy E. Wulff
- Department
of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Heather L. Buckley
- Department
of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Department
of Civil Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P
5C2, Canada
- Centre
for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
- Institute
for Integrated Energy Systems (IESVic), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
14
|
Facile Green Synthesis of Silver Nanoparticles Using Aqueous Leaf Extract of Origanum majorana with Potential Bioactivity against Multidrug Resistant Bacterial Strains. CRYSTALS 2022. [DOI: 10.3390/cryst12050603] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The high prevalence of nosocomial bacterial resistance contributes to significant mortality and morbidity around the world; thus, finding novel antibacterial agents is of vital concern. Accordingly, the present study attempted to synthesize silver nanoparticles (AgNPs) using a green approach. Aqueous leaf extract of Origanum majorana was used to synthesize AgNPs and the antibacterial efficiency against multidrug resistant bacterial strains was detected. Characterization of the biogenic AgNPs was performed using ultraviolet-visible spectrophotometry (UV-Vis), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR) analysis, and X-ray diffraction analysis (XRD). The disc diffusion method was used to detect the antibacterial activity of AgNPs against three nosocomial multidrug-resistant strains. Preliminary UV-Vis analysis revealed the biosynthesis of AgNPs due to peak formation at 374 nm, corresponding to the surface plasmon resonance (SPR) of biogenic AgNPs. TEM micrographs detected the synthesis of small AgNPs with an average particle size of 26.63 nm. EDX analysis revealed the presence of the following elements: oxygen (3.69%), carbon (2.93%), aluminum (1.29), silicon (2.83%), chloride (17.89%), and silver (71.37%). Furthermore, XRD analysis revealed the presence of diffraction peaks at 2 theta (θ) degrees of 38.18°, 44.36°, 64.35°, and 77.54°, assigned to the planes of silver crystals (111), (200), (220), and (311), respectively. Collectively, these findings affirm the synthesis of biogenic AgNPs with potential physicochemical characteristics. The antimicrobial efficiency of the biogenic AgNPs indicated that Klebsiella pneumoniae strain was the most susceptible strain at concentrations of 50 and 100 µg/disk, with inhibitory zones of 21.57 and 24.56 mm, respectively. The minimum inhibitory concentration (MIC) of AgNPs against Klebsiella pneumoniae strain was found to be 10 µg/mL, while the minimum bactericidal concentration (MBC) was found to be 20 µg/mL. In conclusion, aqueous leaf extract of O. majorana mediated synthesis of small sized AgNPs, with potential antimicrobial effectiveness against multidrug-resistant bacterial pathogens.
Collapse
|