1
|
Sahiner N, Guven O, Demirci S, Suner SS, Sahiner M, Ari B, Can M. Tannic acid-based bio-MOFs with antibacterial and antioxidant properties acquiring non-hemolytic and non-cytotoxic characteristics. Colloids Surf B Biointerfaces 2025; 252:114669. [PMID: 40174536 DOI: 10.1016/j.colsurfb.2025.114669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Tannic acid (TA) based bio-metal phenolic networks (bio-MPNs) were prepared by using Cu(II), Zn(II), Bi(III), Ce(III), La(III), and Ti(IV) metal ions. TA-based bio-MPNs exhibited wedge-shaped pores between 16.4 and 25.8 nm pore size ranges. The higher gravimetric yield% was achieved for TA-Bi(III), and TA-Ti(IV) bio-MPNs with more than 90 %, and higher surface area was observed for TA-La(IIII) bio-MPNs as 56.2 m2/g with 17.3 nm average pore sizes. All TA-based MPNs are non-hemolytic with less than 5 % hemolysis ratio, whereas TA-based Bio-MPNs do not affect blood clotting with > 90 % blood clotting indexes except for TA-Cu(II) Bio-MPNs at 0.1 mg/mL concentration. Moreover, TA-Bi(III) and TA-Ce(III) Bio-MPNs were found to be safer materials showing no significant toxicity on L929 fibroblast cells at 100 μg/mL concentration, along with TA-based Bio-MPNs prepared with Cu(II), Zn(II), La(III), and Ti(IV) metal ions that could be safely used in in vivo applications at 1 μg/mL concentration. It has been proven by 2 different antioxidant tests that the prepared TA-based Bio-MPNs show antioxidant properties even if their TA-derived antioxidant properties decrease. Furthermore, all types of TA-based Bio-MPNs show great antimicrobial activity depending on the metal ion or microorganism types and the highest antibacterial/antifungal effect was determined for TA-Cu(II), and TA-Zn(II) Bio-MPNs with the lowest MBC/MFC values against Pseudomonas aeruginosa ATCC 10145, Bacillus subtilis ATCC 6633, and Candida albicans ATCC 10231.
Collapse
Affiliation(s)
- Nurettin Sahiner
- Department of Chemistry, Faculty of Sciences, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey; Department of Bioengineering,U. A. Whitaker College of Engineering, Florida Gulf Coast University, Fort Myers, FL 33965, USA.
| | - Olgun Guven
- Department of Chemistry, Faculty of Sciences, Hacettepe University, Beytepe Campus, Ankara 06800, Turkey
| | - Sahin Demirci
- Department of Food Engineering, Faculty of Engineering, Istanbul Aydin University, Florya Halit Aydin Campus, Istanbul 34153, Turkey
| | - Selin S Suner
- Department of Chemistry, Faculty of Sciences, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey
| | - Mehtap Sahiner
- Department of Bioengineering, Faculty of Engineering, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey; Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC21, Tampa, FL 33612, USA
| | - Betul Ari
- Department of Chemistry, Faculty of Sciences, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey
| | - Mehmet Can
- Department of Chemistry, Faculty of Sciences, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey
| |
Collapse
|
2
|
Liu Y, Saleem SU, Li Y, Waterhouse GIN, Liu C, Zhang Z, Yu L. Visible Light-triggered Smart P(NIPAM-NVK)/PANI Antifouling Coating with Flexible Switching Between Photothermal-Photocatalytic Synergistic Antifouling Mechanisms and Fouling Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500595. [PMID: 40270201 DOI: 10.1002/smll.202500595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/04/2025] [Indexed: 04/25/2025]
Abstract
Biofouling on submerged equipment causes significant economic losses and threatens human safety, necessitating the urgent development of innovative and effective antifouling technologies. Herein, a visible light-triggered thermoresponsive organic semiconducting copolymer, poly(N-isopropylacrylamide-N-vinylcarbazole) (P(NIPAM-NVK)) with a low critical solution temperature (LCST), is successfully synthesized via radical copolymerization of N-isopropylacrylamide (NIPAM) and N-vinylcarbazole (NVK). Compositing P(NIPAM-NVK) with photoactive polyaniline (PANI) created P(NIPAM-NVK)/PANI coatings with excellent multi-synergistic antifouling properties under visible light. Under visible light (λ > 400 nm) illumination, the P(NIPAM-NVK)/PANI composite coatings demonstrated strong light absorption and photothermal conversion properties, with elevated surface temperatures providing efficient photothermal antifouling. At the same time, P(NIPAM-NVK)/PANI photogenerated charge carriers, resulting in photocatalytic antifouling properties. By optimizing the composition of the composites, P(NIPAM-NVK)/PANI coatings with excellent antifouling performance are obtained (inactivation rates of 99.57% for E. coli and 99.95% for S. aureus). When the light is turned off, the surface morphology and wettability of the P(NIPAM-NVK)/PANI coatings gradually change, creating an unstable surface for bacterial adhesion (leading to fouling release efficiencies of 99%). The ability to easily switch between photoactive inactivation and dynamic biofouling release by simply applying light/dark conditions provides the basis for a simple solar-driven antifouling system.
Collapse
Affiliation(s)
- Yanhua Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Saleem Ullah Saleem
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Yuanyue Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | | | - Chenchen Liu
- 248 Geological Brigade of Shandong Nuclear Industry, No.1 Xingguo Road, Licang District, Qingdao City, China
| | - Zhiming Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Sanya Oceanographic Institution, Ocean University of China, and Sanya Oceanographic Laboratory, Sanya, 572024, China
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Sanya Oceanographic Institution, Ocean University of China, and Sanya Oceanographic Laboratory, Sanya, 572024, China
| |
Collapse
|
3
|
Xu W, Lin Z, Cortez-Jugo C, Qiao GG, Caruso F. Antimicrobial Phenolic Materials: From Assembly to Function. Angew Chem Int Ed Engl 2025; 64:e202423654. [PMID: 39905990 DOI: 10.1002/anie.202423654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Indexed: 02/06/2025]
Abstract
Infectious diseases pose considerable challenges to public health, particularly with the rise of multidrug-resistant pathogens that globally cause high mortality rates. These pathogens can persist on surfaces and spread in public and healthcare settings. Advances have been made in developing antimicrobial materials to reduce the transmission of pathogens, including materials composed of naturally sourced polyphenols and their derivatives, which exhibit antimicrobial potency, broad-spectrum activity, and a lower likelihood of promoting resistance. This review provides an overview of recent advances in the fabrication of antimicrobial phenolic biomaterials, where natural phenolic compounds act as active antimicrobial agents or encapsulate other antimicrobial agents (e.g., metal ions, antimicrobial peptides, natural biopolymers). Various forms of phenolic biomaterials synthesized through these two strategies, including antimicrobial particles, capsules, hydrogels, and coatings, are summarized, with a focus on their application in wound healing, bone repair and regeneration, oral health, and antimicrobial coatings for medical devices. The potential of these advanced phenolic biomaterials provides a promising therapeutic approach for combating antimicrobial-resistant infections and reducing microbial transmission.
Collapse
Affiliation(s)
- Wanjun Xu
- Department of Chemical Engineering, The University of Melbourne Parkville, Victoria, 3010, Australia
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne Parkville, Victoria, 3010, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne Parkville, Victoria, 3010, Australia
| | - Greg G Qiao
- Department of Chemical Engineering, The University of Melbourne Parkville, Victoria, 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne Parkville, Victoria, 3010, Australia
| |
Collapse
|
4
|
Yang H, Wang Y, Yao L, Wang J, Chen H. Antifouling Polymer Coatings for Bioactive Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6471-6496. [PMID: 40030123 DOI: 10.1021/acs.langmuir.4c04859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Bioactive surfaces play a pivotal role in biomedical applications by enabling precise biological interactions through immobilized functional molecules. However, their performance is often hindered by nonspecific protein adsorption and cell adhesion. Antifouling polymer coatings have emerged as an effective solution, creating hydration barriers to preserve functionality and reduce biofouling. This review provides an overview of the recent advances in the development of antifouling polymer coatings for bioactive surfaces, with particular focus on nonionic polymers, such as polyethylene glycol (PEG), and zwitterionic polymers like poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC). Among them, zwitterionic polymers, with their unique charge-balanced structures, exhibit exceptional hydration, protein resistance, and stability, making them particularly promising for biomedical applications. In addition, key applications of these bioactive surfaces, including their use in anticoagulant materials, antibacterial coatings, and biosensor interfaces, are also discussed. The discussion concludes with an address of the field's challenges and future directions, highlighting the need for innovative materials that balance antifouling properties, biocompatibility, and long-term stability for both clinical and industrial use. This review aims to review the latest advancements in antifouling polymer coatings for bioactive surfaces and provide insights into optimizing multifunctional bioactive surfaces to meet the evolving and dynamic demands of the biomedical field.
Collapse
Affiliation(s)
- He Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yichen Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Lihua Yao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jinghong Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Biosurf Biotech Co., Ltd., Suzhou 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Biosurf Biotech Co., Ltd., Suzhou 215123, P. R. China
| |
Collapse
|
5
|
Wang XT, Liu LY, Liang H, Ge WY, Chen LL, Jin XQ, Tian YL, Wang X, Yang S, Deng X, Yin DC. Super Stable Coating Based on Ovalbumin and Tannic Acid for Hydrophilic and Antibacterial Functionalization of Polymer Materials. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16040-16056. [PMID: 39932031 DOI: 10.1021/acsami.4c21624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Surface modification of polymer materials is crucial in the biomedical field, as it can endow materials with new properties, including high efficacy and durability and a low risk of infection. Here, we propose a simple, green, and reliable surface modification strategy using ovalbumin (OVA) and tannic acid (TA). The hydrogen bonds and hydrophobic interactions revealed between the OVA and TA molecules make the OVA/TA composite tenacious and stable. The subsequent OVA/TA coatings adhered firmly on five hydrophobic polymer materials using a two-step impregnation method and were highly hydrophilic and repellent to bacterial adhesion. Taking advantage of the reducing ability of OVA and TA, silver ions were reduced in situ to form OVA/TA-AgNPs coatings, which could inhibit a broad spectrum of bacteria, especially some drug-resistant strains. In addition, both the OVA/TA and OVA/TA-AgNPs coatings exhibit good biocompatibility. This simple, reliable, stable, and biobased coating strategy holds great promise for enhancing the versatility of biomaterial surface modification.
Collapse
Affiliation(s)
- Xue-Ting Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
- Weifang People's Hospital, Shandong Second Medical University, Weifang, Shandong 261000, China
| | - Li-Yuan Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Huan Liang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Wan-Yi Ge
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Liang-Liang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Xiao-Qian Jin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Yi-Le Tian
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Xia Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xudong Deng
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| |
Collapse
|
6
|
Ullah S, Hussain Z, Mehmood S, Samadikuchaksaraei A, Ullah I, Khattak S, Liu Y, Ullah I, Pei R. Metal-Phenolic Network (MPN) Modified Janus Fibrous Hydrogel Scaffold for Infected Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10470-10484. [PMID: 39913266 DOI: 10.1021/acsami.4c20592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Management of infected diabetic wounds with large amounts of biofluid is challenging to treat due to localized edema-induced ischemia. Traditional hydrophilic dressings retain wound exudate, raise bacterial infection, and hinder wound healing. Herein, a multifunctional double-layer Janus fibrous hydrogel with a hydrophobic and superhydrophilic potential was designed to accelerate the healing of infected diabetic wounds. The outer hydrophobic layer is composed of a poly(vinylidene fluoride)/cellulose acetate-based nanofibrous composite. In contrast, the inner superhydrophilic layer is composed of photo-cross-linked gelatin methacrylate/polycaprolactone based nanofibrous hydrogel coated with a zinc-dopamine-based metal-phenolic network complex. The bilayer Janus fibrous hydrogel was characterized for its structural, physicochemical, mechanical, swelling, antioxidant, antibacterial, and cytocompatibility properties. Results indicated that the outer hydrophobic layer possesses excellent antifouling self-cleaning potential and can prevent the entry of environmental microorganisms and moisture. On the other hand, the supramolecular complex coated inner layer possesses good antibacterial, antioxidant, and cell-supportive properties. Furthermore, the potential of Janus fibrous hydrogel for infected wound healing was evaluated by using infected diabetic BALB/c mice. The in vivo bacterial invasions and histological and immunological results indicated that the Janus fibrous hydrogel possesses good wound reconstruction potential, angiogenesis, and collagen deposition, making it appropriate for diabetic wound treatment.
Collapse
Affiliation(s)
- Salim Ullah
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, P. R. China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, P. R. China
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, P. R. China
| | - Zahid Hussain
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Shah Mehmood
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, P. R. China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Iran University of Medical Sciences, Hemmat Highway, Tehran 144961-4535, Iran
| | - Ismat Ullah
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Saadullah Khattak
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, P. R. China
| | - Yuanshan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, P. R. China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Ihsan Ullah
- Wenzhou Institute, University of Chinese Academy of Sciences (UCAS), Wenzhou 325000, P. R. China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, P. R. China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, P. R. China
| |
Collapse
|
7
|
Park H, Patil TV, Lee J, Kim H, Cho SJ, Lim KT. NIR-activated catechol-functionalized nanodiamond nanofibers for accelerating on-demand MRSA and E. coli biofilm eradication. J Biol Eng 2025; 19:2. [PMID: 39905514 DOI: 10.1186/s13036-024-00469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/12/2024] [Indexed: 02/06/2025] Open
Abstract
The rise of antibiotic resistance has made bacterial infections a persistent global health issue. In particular, extracellular polymeric substances (EPS) secreted by bacteria limit the effectiveness of conventional antibiotics, making biofilm removal challenging. To address this, we created ND@PDA nanoparticles by coating the surface of nanodiamonds (ND) with polydopamine (PDA). These nanoparticles were then integrated into polyvinyl alcohol to fabricate PVA/ND@PDA nanofiber scaffolds, resulting in an innovative platform with enhanced photothermal, antibacterial and antibiofilm properties. Upon exposure to near-infrared (NIR) light, the scaffolds exhibited a significant photothermal activity, oxidative stress and effectively damaging key bacterial components, such as biofilm, bacterial membranes, and proteins. Additionally, the catechol groups in PDA provided strong cell adhesion and high biocompatibility on the nanofiber surface. Our research proposes a platform that not only effectively addresses antibiotic-resistant infections but also contributes to advancements in wound healing therapies by enabling controlled antibacterial action with minimal toxicity.
Collapse
Affiliation(s)
- Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Seong-Jun Cho
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
- Institute of Forest Science, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
8
|
Xu H, Jia D, Guo S, Zheng X, Yang W, Chen H, Zhang Y, Yu Q. Dual-action defense: A photothermal and controlled nitric oxide-releasing coating for preventing biofilm formation. J Colloid Interface Sci 2025; 679:191-200. [PMID: 39447462 DOI: 10.1016/j.jcis.2024.10.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Biofilms formed by pathogenic bacteria on biomedical devices and implants pose a considerable challenge due to their resistance to conventional treatments and their role in severe infections. Preventing biofilm formation is strategically more advantageous than attempting to eliminate the mature biofilms, particularly in addressing the persistence of such formations. In this context, a dual-action antibiofilm coating is developed, utilizing S-nitrosothiols functionalized candle soot (CS), which capitalizes on CS's strong light absorption for photothermal therapy and the controlled release of nitric oxide (NO) from S-nitrosothiols to inhibit biofilm formation. This coating exhibits stable and efficient light-to-heat conversion, along with the ability to release NO gradually at physiological temperatures and to rapidly release NO on demand when triggered by a near-infrared (NIR) laser. Under NIR irradition, the coating generates heat swiftly and releases substantial amounts of NO, which synergistically disrupts bacterial membranes, leading to the leakage of intracellular components and the effective eradication of surface-adhered bacteria. In the absence of NIR irradiation, the coating continuously releases low concentrations of NO, which depletes exopolysaccharides and impedes biofilm formation. The antibiofilm efficacy of this coating is assessed against Staphylococcus aureus and Pseudomonas aeruginosa, demonstrating marked reductions in bacterial viability and biofilm formation in vitro. Additionally, the coating exhibits minimal cytotoxicity and can be easily applied to diverse substrates. This study underscores the potential of this coating as a broad-spectrum, non-toxic approach for preventing biofilm-related complications in biomedical applications.
Collapse
Affiliation(s)
- Hu Xu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Dongxu Jia
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Shuaihang Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xinyan Zheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Wei Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, PR China.
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
9
|
Zhou R, Huang J, Zhang W, Wang W, Peng W, Chen J, Yu C, Bo R, Liu M, Li J. Multifunctional hydrogel based on polyvinyl alcohol/chitosan/metal polyphenols for facilitating acute and infected wound healing. Mater Today Bio 2024; 29:101315. [PMID: 39554841 PMCID: PMC11566719 DOI: 10.1016/j.mtbio.2024.101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024] Open
Abstract
Bacterial-infected wounds could cause delayed wound healing due to increased inflammation, especially wounds infected by drug-resistant bacteria remain a major clinical problem. However, traditional treatment strategies were gradually losing efficacy, such as the abuse of antibiotics leading to enhanced bacterial resistance. Therefore, there was an urgent need to develop an antibiotic-free multifunctional dressing for bacterially infected wound healing. This study demonstrated the preparation of a multifunctional injectable hydrogel and evaluated its efficacy in treating acute and infected wounds. The hydrogel was prepared by a one-step mixing method, and cross-linked by natural deep eutectic solvent (DES), polyvinyl alcohol (PVA), chitosan (CS), tannic acid (TA), and Cu2+ through non-covalent interactions (hydrogen bonds and metal coordination bonds). PVA/CS/DES/CuTA500 hydrogel has multiple functional properties, including injectability, tissue adhesion, biocompatibility, hemostasis, broad-spectrum antibacterial, anti-inflammatory, and angiogenesis. Most importantly, in the MRSA-infected skin wound model, PVA/CS/DES/CuTA500 hydrogel could ultimately accelerate infected wound healing by killing bacteria, activating M2 polarization, inhibiting inflammation, and promoting angiogenesis. In summary, the PVA/CS/DES/CuTA500 hydrogel showed great potential as a wound dressing for bacterial infected wounds treatment in the clinic.
Collapse
Affiliation(s)
- Ruigang Zhou
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Junjie Huang
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Wenhai Zhang
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Weimei Wang
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Weilong Peng
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Jun Chen
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Chenglong Yu
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Ruonan Bo
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Mingjiang Liu
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Jingui Li
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| |
Collapse
|
10
|
Zhang Y, Hao F, Liu Y, Yang M, Zhang B, Bai Z, Zhao B, Li X. Recent advances of copper-based metal phenolic networks in biomedical applications. Colloids Surf B Biointerfaces 2024; 244:114163. [PMID: 39154599 DOI: 10.1016/j.colsurfb.2024.114163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Metal-phenolic Networks (MPNs) are a novel class of nanomaterial developed gradually in recent years which are self-assembled by metal ions and polyphenolic ligands. Due to their environmental protection, good adhesion, and biocompatibility with green phenolic ligands, MPNs can be used as a new type of nanomaterial. They show excellent properties such as anti-inflammatory, antioxidant, antibacterial, and anticancer, and have been widely studied in the biomedical field. As one of the most common subclasses of the MPNs family, copper-based MPNs have been widely studied for drug delivery, Photodynamic Therapy (PDT), Chemo dynamic Therapy (CDT), antibacterial and anti-inflammatory, bone tissue regeneration, skin regeneration wound repair, and metal ion imaging. In this paper, the preparation strategies of different types of copper-based MPNs are reviewed. Then, the application status of copper-based MPNs in the biomedical field under different polyphenol ligands is introduced in detail. Finally, the existing problems and challenges of copper-based MPNs are discussed, as well as their future application prospects in the biomedical field.
Collapse
Affiliation(s)
- Ying Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fengxiang Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Mengqi Yang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Bo Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ziyang Bai
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Bin Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China.
| | - Xia Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
11
|
Cassa MA, Gentile P, Girón-Hernández J, Ciardelli G, Carmagnola I. Smart self-defensive coatings with bacteria-triggered antimicrobial response for medical devices. Biomater Sci 2024; 12:5433-5449. [PMID: 39320148 DOI: 10.1039/d4bm00936c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Bacterial colonization and biofilm formation on medical devices represent one of the most urgent and critical challenges in modern healthcare. These issues not only pose serious threats to patient health by increasing the risk of infections but also exert a considerable economic burden on national healthcare systems due to prolonged hospital stays and additional treatments. To address this challenge, there is a need for smart, customized biomaterials for medical device fabrication, particularly through the development of surface modification strategies that prevent bacterial adhesion and the growth of mature biofilms. This review explores three bioinspired approaches through which antibacterial and antiadhesive coatings can be engineered to exhibit smart, stimuli-responsive features. This responsiveness is greatly valuable as it provides the coatings with a controlled, on-demand antibacterial response that is activated only in the presence of bacteria, functioning as self-defensive coatings. Such coatings can be designed to release antibacterial agents or change their surface properties/conformation in response to specific stimuli, like changes in pH, temperature, or the presence of bacterial enzymes. This targeted approach minimizes the risk of developing antibiotic resistance and reduces the need for continuous, high-dose antibacterial treatments, thereby preserving the natural microbiome and further reducing healthcare costs. The final part of the review reports a critical analysis highlighting the potential improvements and future evolutions regarding antimicrobial self-defensive coatings and their validation.
Collapse
Affiliation(s)
- Maria Antonia Cassa
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Joel Girón-Hernández
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Gianluca Ciardelli
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
- National Research Council, Institute for Chemical and Physical Processes (CNR-IPCF), Pisa 56124, Italy
| | - Irene Carmagnola
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
| |
Collapse
|
12
|
Xiang L, Li W, Liu Y, Sathishkumar G, He X, Wu H, Ran R, Zhang K, Rao X, Kang ET, Xu L. Copper tannate nanosheets-embedded multifunctional coating for antifouling and photothermal bactericidal applications. Colloids Surf B Biointerfaces 2024; 245:114208. [PMID: 39255749 DOI: 10.1016/j.colsurfb.2024.114208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Implant-associated infections (IAIs), triggered by pathogenic bacteria, are a leading cause of implant failure. The design of functionalized coatings on biomedical materials is crucial to address IAIs. Herein, a multifunctional coating with good antifouling effect and antibacterial photothermal therapy (aPTT) performance was developed. The copper tannate nanosheets (CuTA NSs) were formed via coordination bonding of Cu2+ ions and tannic acid (TA). The CuTA NSs were then integrated into the TA and poly(ethylene glycol) (PEG) network to form the TCP coating for deposition on the titanium (Ti) substrates via surface adhesion of TA and gravitational effect. The resulting Ti-TCP substrate exhibited good antifouling property, reactive oxygen species (ROS) scavenging capability and cytocompatibility. The TCP coating exhibited antifouling efficacy in conjunction with aPTT, curtailing the surface adhesion and biofilm formation of pathogens, such as Staphylococcus aureus and Escherichia coli. Notably, the Ti-TCP substrate also exhibited the ability to prevent bacterial infection in vivo in a subcutaneous implantation model. The present work demonstrated a promising approach in designing high-performance antifouling and photothermal bactericidal coatings to combat IAIs.
Collapse
Affiliation(s)
- Li Xiang
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Weizhe Li
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Yanqing Liu
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Gnanasekar Sathishkumar
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Xiaodong He
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Huajun Wu
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Runlong Ran
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China
| | - Kai Zhang
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Xi Rao
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - En-Tang Kang
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China; Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge 117576, Singapore.
| | - Liqun Xu
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
13
|
Suparno S, Ayu Lestari ES, Grace D. Antibacterial activity of Bajakah Kalalawit phenolic against Staphylococcus aureus and possible use of phenolic nanoparticles. Sci Rep 2024; 14:19734. [PMID: 39183360 PMCID: PMC11345416 DOI: 10.1038/s41598-024-70799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Dayak tribes indigenous to the Indonesian island of Borneo has been using Bajakah Kalalawit (Uncaria gambir Roxb.) as traditional medicine for ages. This inspired us to develop phenolic from Bajakah Kalalawit extract as antibacterial agent. The extraction was done through decoction method and the determination of phenolic concentration was done using a visible spectrophotometer and Folin-Ciocalteu reagent (mixture of phosphotungstic and phosphomolybdic acids). We investigated the possibility of developing phenolic nanoparticle for future work. Kirby-Bauer method was used to assess antibacterial activity of phenolic against Staphylococcus aureus and the results were compared to Chloramphenicol in terms of its efficacy and duration of inhibition. This study contributes to the ongoing effort to address antibiotic resistance through the development of innovative antibacterial agents derived from natural sources. The results provide valuable insights into the potential of Bajakah Kalalawit phenolic extracts as a promising avenue for combating bacterial infections in the future.
Collapse
Affiliation(s)
- S Suparno
- FMIPA, Universitas Negeri Yogyakarta, Yogyakarta, Indonesia.
| | - E S Ayu Lestari
- Faculty of Mathematics and Science, Bandung Institute of Technology, Bandung, Indonesia
| | - D Grace
- FMIPA, Universitas Negeri Yogyakarta, Yogyakarta, Indonesia
| |
Collapse
|
14
|
Jang H, Song W, Song H, Kang DK, Park S, Seong M, Jeong HE. Sustainable Biofilm Inhibition Using Chitosan-Mesoporous Nanoparticle-Based Hybrid Slippery Composites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27728-27740. [PMID: 38758746 DOI: 10.1021/acsami.4c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
In recent decades, extensive research has been directed toward mitigating microbial contamination and preventing biofilm formation. However, many conventional antibiofilm methods rely on hazardous and toxic substances, neglecting potential risks to human health and the environment. Moreover, these approaches often rely on single-strategy mechanisms, utilizing either bactericidal or fouling-resistant agents, which have shown limited efficacy in long-term biofilm suppression. In this study, we propose an efficient and sustainable biofilm-resistant slippery hybrid slippery composite. This composite integrates nontoxic and environmentally friendly materials including chitosan, silicone oil-infused polydimethylsiloxane, and mesoporous silica nanoparticles in a synergistic manner. Leveraging the bacteria-killing properties of chitosan and the antifouling capabilities of the silicone oil layer, the hybrid composite exhibits robust antibiofilm performance against both Gram-positive and Gram-negative bacteria. Furthermore, the inclusion of mesoporous silica nanoparticles enhances the oil absorption capacity and self-replenishing properties, ensuring exceptional biofilm inhibition even under harsh conditions such as exposure to high shear flow and prolonged incubation (7 days). This approach offers promising prospects for developing effective biofilm-resistant materials with a reduced environmental impact and improved long-term performance.
Collapse
Affiliation(s)
- Hyejin Jang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Wonwoo Song
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyeonseok Song
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Kwan Kang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seongjin Park
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Minho Seong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
15
|
Cheng J, Zhang H, Lu K, Zou Y, Jia D, Yang H, Chen H, Zhang Y, Yu Q. Bi-functional quercetin/copper nanoparticles integrating bactericidal and anti-quorum sensing properties for preventing the formation of biofilms. Biomater Sci 2024; 12:1788-1800. [PMID: 38390988 DOI: 10.1039/d4bm00034j] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Biofilms formed by pathogenic bacteria present a persistent risk to human health. While the eradication of matured biofilms remains a formidable challenge, delaying or preventing their formation, which is coordinately regulated by quorum sensing (QS), presents a simpler and more advantageous strategy. Quercetin, a naturally occurring compound with anti-QS properties, has the potential to act as an antibiofilm agent. However, it is plagued by certain inherent drawbacks, including poor water solubility and limited bioavailability. Furthermore, solely blocking QS is not enough to prevent biofilm formation because it lacks bactericidal properties. To address these difficulties, we fabricated bi-functional nanoparticles through the co-assembly of quercetin and copper ions in a facile manner. The resulting quercetin/copper nanoparticles (QC NPs) demonstrated minimal cytotoxicity and hemolysis in vitro. In response to the low pH of microenvironments that were populated by bacterial colonies, the QC NPs underwent disassembly to release copper ions and quercetin. The former exterminated bacteria by disrupting the integrity of the cell membrane, while the latter disrupted the processes involved in QS that are responsible for the biofilm by downregulating the expression of specific genes, effectively preventing the formation of biofilms by both Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. In addition, the QC NPs were integrated into a bacterial cellulose membrane. The composite membrane proved to be highly effective at inhibiting biofilm formation in vitro and demonstrated the ability to reduce inflammatory responses and accelerate the healing of bacteria-infected wounds in vivo. Overall, the bi-functional QC NPs hold great potential for use in addressing the challenges associated with the management of bacterial biofilms.
Collapse
Affiliation(s)
- Jingjing Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Haixin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Dongxu Jia
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Hong Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215007, P. R. China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215007, P. R. China.
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| |
Collapse
|
16
|
Qu Y, Zou Y, Wang G, Zhang Y, Yu Q. Disruption of Communication: Recent Advances in Antibiofilm Materials with Anti-Quorum Sensing Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13353-13383. [PMID: 38462699 DOI: 10.1021/acsami.4c01428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Biofilm contamination presents a significant threat to public health, the food industry, and aquatic/marine-related applications. In recent decades, although various methods have emerged to combat biofilm contamination, the intricate and persistent nature of biofilms makes complete eradication challenging. Therefore, innovative alternative solutions are imperative for addressing biofilm formation. Instead of solely focusing on the eradication of mature biofilms, strategically advantageous measures involve the delay or prevention of biofilm formation on surfaces. Quorum sensing, a communication system enabling bacteria to coordinate their behavior based on population density, plays a pivotal role in biofilm formation for numerous microbial species. Materials possessing antibiofilm properties that target quorum sensing have gained considerable attention for their potential to prevent biofilm formation. This Review consolidates recent research progress on the utilization of materials with antiquorum sensing properties for combating biofilm formation. These materials can be categorized into three distinct types: (i) antibiofilm nanomaterials, (ii) antibiofilm surfaces, and (iii) antibiofilm hydrogels with antiquorum sensing capabilities. Finally, the Review concludes with a brief discussion of current challenges and outlines potential avenues for future research.
Collapse
Affiliation(s)
- Yangcui Qu
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, P. R. China
| | - Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Guannan Wang
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, P. R. China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215006, P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
17
|
Chen S, Xie Z, Yang Y, Sun N, Guo Z, Li M, Wang C. A self-activating electron transfer antibacterial strategy: Co 3O 4/TiO 2 P-N heterojunctions combined with photothermal therapy. Biomater Sci 2024; 12:1573-1589. [PMID: 38319143 DOI: 10.1039/d3bm01550e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Implant-associated infections are significant impediments to successful surgical outcomes, often resulting from persistent bacterial contamination. It has been hypothesized that bacteria can transfer electrons to semiconductors with comparable potential to the biological redox potential (BRP). Building on this concept, we developed an antibiotic-free bactericidal system, Co3O4/TiO2-Ti, capable of achieving real-time and sustainable bactericidal effects. Our study demonstrated that Co3O4/TiO2-Ti, possessing an appropriately set valence band, initiated charge transfer, reactive oxygen species (ROS) production, and membrane damage in adherent Staphylococcus aureus (S. aureus). Notably, in vivo experiments illustrated the remarkable antibacterial activity of Co3O4/TiO2-Ti, while promoting soft-tissue reconstruction and demonstrating excellent cytocompatibility. Transcriptomic analysis further revealed a down-regulation of aerobic respiration-associated genes and an up-regulation of ROS-associated genes in S. aureus in the presence of Co3O4/TiO2-Ti compared to Ti. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and gene set enrichment analysis (GSEA) identified alterations in respiratory metabolism, oxidative phosphorylation, and the synthesis of amino acid in S. aureus cultured on Co3O4/TiO2-Ti. Furthermore, when combined with near-infrared (NIR) irradiation and photothermal therapy (PTT), Co3O4/TiO2-Ti eliminated 95.71% of floating and adherent S. aureus in vitro. The findings suggest that this antibiotic-free strategy holds substantial promise in enhancing implant sterilization capabilities, thereby contributing to the prevention and treatment of bacterial infections through bandgap engineering of implants and NIR irradiation.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Zhe Xie
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Yuchen Yang
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Nuo Sun
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Zhengnong Guo
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Miaomiao Li
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Chen Wang
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| |
Collapse
|
18
|
Wu Y, Fu W, Liu L, Jiang Y, Liu N, Fang M, Ye H, Li J, Chu Z, Qian H, Shao M. APTES-mediated Cu 2(OH) 3(NO 3) nanomaterials on the surface of silicone catheters for abscess. Colloids Surf B Biointerfaces 2024; 234:113734. [PMID: 38181690 DOI: 10.1016/j.colsurfb.2023.113734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
Metal-based nanomaterials have remarkable bactericidal effects; however, their toxicity cannot be disregarded. To address this concern, we developed a simple synthesis route for antibacterial catheters using metal-based nanomaterials to reduce toxicity while harnessing their excellent bactericidal properties. The grafting agent (3-aminopropyl)triethoxysilane (APTES) forms -NH2 groups on the catheter surface, onto which copper ions form a nanomaterial complex known as Cu2(OH)3(NO3) (defined as SA-Cu). The synthesized SA-Cu exhibited outstanding contact antibacterial effects, as observed through scanning electron microscopy (SEM), which revealed cell membrane crumbing and bacterial rupture on the catheter surface. Furthermore, SA-Cu exhibited excellent biosafety characteristics, as evidenced by the cell counting kit-8 (CCK-8) assay, which showed no significant cytotoxicity. SA-Cu demonstrated sustained antimicrobial capacity, with in vivo experiments demonstrating over 99% bactericidal efficacy against methicillin-resistant Staphylococcus aureus (MRSA) for two weeks. The transcriptome sequencing results suggested that SA-Cu may exert its bactericidal effects by interfering with histidine and purine metabolism in MRSA. This study presents a straightforward method for synthesizing antimicrobial silicone catheters containing copper nanomaterials using copper ions.
Collapse
Affiliation(s)
- Yayun Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China
| | - Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Lin Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China
| | - Yechun Jiang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Nian Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China
| | - Ming Fang
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China
| | - Haoming Ye
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China
| | - Jun Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China
| | - Zhaoyou Chu
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
19
|
Wang R, Huang Z, Xiao Y, Huang T, Ming J. Photothermal therapy of copper incorporated nanomaterials for biomedicine. Biomater Res 2023; 27:121. [PMID: 38001505 PMCID: PMC10675977 DOI: 10.1186/s40824-023-00461-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Studies have reported on the significance of copper incorporated nanomaterials (CINMs) in cancer theranostics and tissue regeneration. Given their unique physicochemical properties and tunable nanostructures, CINMs are used in photothermal therapy (PTT) and photothermal-derived combination therapies. They have the potential to overcome the challenges of unsatisfactory efficacy of conventional therapies in an efficient and non-invasive manner. This review summarizes the recent advances in CINMs-based PTT in biomedicine. First, the classification and structure of CINMs are introduced. CINMs-based PTT combination therapy in tumors and PTT guided by multiple imaging modalities are then reviewed. Various representative designs of CINMs-based PTT in bone, skin and other organs are presented. Furthermore, the biosafety of CINMs is discussed. Finally, this analysis delves into the current challenges that researchers face and offers an optimistic outlook on the prospects of clinical translational research in this field. This review aims at elucidating on the applications of CINMs-based PTT and derived combination therapies in biomedicine to encourage future design and clinical translation.
Collapse
Affiliation(s)
| | | | | | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
20
|
Du M, Zhang J, Jin J, Jiang W. Constructing a Photothermal and Quaternary Ammonium Cation Bactericidal Platform onto SEBS for Synergistic Therapy. ACS Biomater Sci Eng 2023; 9:6103-6111. [PMID: 37874178 DOI: 10.1021/acsbiomaterials.3c01135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) with eminent elasticity, thermoplastic ability, and biological stability has aroused great interest in the medical area. However, bacteria can easily adhere to the hydrophobic SEBS surface to cause medical device-related infections. In this work, SEBS is modified to prepare the SEBS-polydopamine (PDA)-poly(lysine) quaternary ammonium derivative (PLQ) antibacterial surface by PDA deposition and surface grafting techniques to solve bacterial infections. PDA is used as an intermediate layer and presents an excellent photothermal effect. The grafted polymer PLQ has antimicrobial quaternary ammonium cation groups, which plays synergistic bactericidal therapy with PDA. The SEBS-PDA-PLQ surface almost totally suppresses the growth of bacteria with a surface bacterial survival rate of 0.05% under laser irradiation. The outstanding antibacterial activity of the SEBS-PDA-PLQ surface is attributed to the synergistic effects of the photothermal performance of PDA and quaternary ammonium cationic functional groups of PLQ. In addition, the membrane SEBS-PDA-PLQ shows good hydrophilicity, antiprotein adsorption ability, chemical stability, and biocompatibility. This antibiotic-free antimicrobial approach has great potential for practical application in solving infections associated with medical devices.
Collapse
Affiliation(s)
- Min Du
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jianing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
21
|
Jia D, Lin Y, Zou Y, Zhang Y, Yu Q. Recent Advances in Dual-Function Superhydrophobic Antibacterial Surfaces. Macromol Biosci 2023; 23:e2300191. [PMID: 37265089 DOI: 10.1002/mabi.202300191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Indexed: 06/03/2023]
Abstract
Bacterial adhesion and subsequent biofilm formation on the surfaces of synthetic materials imposes a significant burden in various fields, which can lead to infections in patients or reduce the service life of industrial devices. Therefore, there is increasing interest in imbuing surfaces with antibacterial properties. Bioinspired superhydrophobic surfaces with high water contact angles (>150°) exhibit excellent surface repellency against contaminations, thereby preventing initial bacterial adhesion and inhibiting biofilm formation. However, conventional superhydrophobic surfaces typically lack long-term durability and are incapable of achieving persistent efficacy against bacterial adhesion. To overcome these limitations, in recent decades, dual-function superhydrophobic antibacterial surfaces with both bacteria-repelling and bacteria-killing properties have been developed by introducing bactericidal components. These surfaces have demonstrated improved long-term antibacterial performance in addressing the issues associated with surface-attached bacteria. This review summarizes the recent advancements of these dual-function superhydrophobic antibacterial surfaces. First, a brief overview of the fabrication strategies and bacteria-repelling mechanism of superhydrophobic surfaces is provided and then the dual-function superhydrophobic antibacterial surfaces are classified into three types based on the bacteria-killing mechanism: i) mechanotherapy, ii) chemotherapy, and iii) phototherapy. Finally, the limitations and challenges of current research are discussed and future perspectives in this promising area are proposed.
Collapse
Affiliation(s)
- Dongxu Jia
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215000, P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yuancheng Lin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215000, P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
22
|
Zou Y, Zhang H, Zhang Y, Wu Y, Cheng J, Jia D, Liu C, Chen H, Zhang Y, Yu Q. A near-infrared light-triggered nano-domino system for efficient biofilm eradication: Activation of dispersing and killing functions by generating nitric oxide and peroxynitrite via cascade reactions. Acta Biomater 2023; 170:389-400. [PMID: 37625678 DOI: 10.1016/j.actbio.2023.08.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
One of the serious threats to global public health is the bacterial biofilm, which results in numerous persistent and recurrent infections. Herein, we proposed a near-infrared (NIR) light-triggered "nano-domino" system with "dispersing and killing" functionality for biofilm eradication. The nanoplatform was fabricated by the self-assembly of chitosan conjugated with L-arginine (L-Arg, a natural nitric oxide (NO) donor) and indocyanine green (ICG, a phototherapy agent). Using an NIR irradiation "trigger", a series of reactive oxygen species (ROS) including singlet oxygen (1O2), hydrogen peroxide (H2O2), and superoxide anions (·O2-), as well as heat were generated from ICG aggregates. Subsequently, 1O2 and H2O2 catalyzed L-Arg to produce NO, which dispersed the biofilm and reacted with ·O2- to form peroxynitrite to kill bacteria with ROS collaboratively. Meanwhile, the generated heat increased the permeability of bacterial membranes, aggravating the damage to biofilm bacteria. The experiments on biofilm eradication demonstrated that this "nano-domino" system was capable to eradicate over 99.99% of biofilms formed by Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa under 5-min NIR irradiation. Notably, these integrated benefits allowed the system to promote the healing of MRSA biofilm-infected wounds in vivo with negligible toxicity. Overall, this reported NIR-triggered "nano-domino" system holds great promise for addressing the difficulties associated with bacterial biofilm eradication. STATEMENT OF SIGNIFICANCE: Novel agents for biofilm eradication are urgently needed due to the alarming rise in antimicrobial resistance to conventional antibiotics and the critical shortage of new drugs. In this study, we created a nano-domino system that uses near-infrared (NIR) light as a trigger to eradicate mature biofilms. In response to a short-term NIR irradiation, the proposed nanoplatform could generate nitric oxide and peroxynitrite to disperse the biofilm and kill the bacteria inside, respectively, leading to efficient eradication of Methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa biofilms with minimal cytotoxicity. The findings, therefore, indicate that this nanoplatform with enhanced antibiofilm performance might provide a reliable and promising solution to biofilm-related problems.
Collapse
Affiliation(s)
- Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Haixin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yuheng Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yan Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Jingjing Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Dongxu Jia
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Chunxia Liu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, PR China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, PR China.
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
23
|
Matter ME, Čamdžić L, Stache EE. Photothermal Conversion by Carbon Black Facilitates Aryl Migration by Photon-Promoted Temperature Gradients. Angew Chem Int Ed Engl 2023; 62:e202308648. [PMID: 37579057 DOI: 10.1002/anie.202308648] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/16/2023]
Abstract
The Newman Kwart Rearrangement (NKR) offers an efficient and high-yielding method for producing substituted thiophenols from phenols. While an industrially important protocol, it suffers from high activation energy barriers (35-43 kcal/mol), requiring the use of extreme temperatures (>200 °C) and specialty equipment. This report details a highly efficient and straightforward method for facilitating the NKR using photothermal conversion. This underused, unique reactivity pathway arises from the irradiation of nanomaterials that relax via a non-radiative decay pathway to generate intense thermal gradients. We show carbon black (CB) can be an inexpensive and abundant photothermal agent under visible light irradiation to achieve a facile NKR under mild conditions. The scope includes a wide array of stereo- and electronically diverse substrates with increasing difficulty of rearrangement, including BHT and BINOL as effective substrates. Furthermore, we demonstrate the unique application for temporal control in a thermal reaction and tunability of thermal gradients by modulating light intensity. Ultimately, photothermal conversion enables high-temperature reactions with simple, visible light irradiation.
Collapse
Affiliation(s)
- Megan E Matter
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY, 14850, USA
| | - Lejla Čamdžić
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY, 14850, USA
| | - Erin E Stache
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY, 14850, USA
| |
Collapse
|
24
|
Chen G, Wang Q, Zhu Y, Zhao M, Ma S, Bai Y, Wang J, Zou M, Cheng G. Molecularly engineered dual-network photothermal hydrogel delivery system with enhanced mechanical properties, antibacterial ability and angiogenic effect for accelerating wound healing. J Mech Behav Biomed Mater 2023; 146:106081. [PMID: 37651758 DOI: 10.1016/j.jmbbm.2023.106081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
Bacterial infection caused by trauma and chronic wounds in the most mobile area remains a challenge in clinic. It is difficult to achieve the synergistic effects of antibacterial capacity and skin regeneration using conventional therapeutic methods. Developing a multi-functional hydrogel dressing that can cope with the complex wound environment will contribute to the healing and therapeutic effects. In this work, a novel Cur@PAM/TA-Cu photothermal hydrogel delivery system was prepared by engineering tannic acid (TA) into covalent cross-linked polyacrylamide (PAM) on which the chelating tannic acid-copper metal-polyphenolic network (TA-Cu MPN) was imposed to form dual-crosslinked networks, and the natural medicine curcumin was loaded eventually. The molecularly engineered dual-crosslinked networks resulted in enhanced mechanical properties including bio-adhesion, tensile strength and self-healing, which made the hydrogel suitable for dynamic wound and various application scenarios. In addition, the excellent photothermal capacity, antioxidant effect and biocompatibility of the hydrogel were demonstrated. Notably, this curcumin loaded photothermal hydrogel exhibited superior antibacterial capacity (almost 100% killing ratio to E. coli and S. aureus) under 808 nm laser irradiation. Meanwhile, the in vivo wound healing experiment results revealed that the anti-inflammation and proangiogenic effect of Cur@PAM/TA-Cu hydrogel successfully shortened the healing time of wound and the reconstruction of skin structure and function. Thus, this dual-crosslinked multi-functional hydrogel delivery system is a promising wound dressing for accelerating wound healing.
Collapse
Affiliation(s)
- Guo Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Qiaoqiao Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Yumeng Zhu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Minqian Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Siyuan Ma
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Yifeng Bai
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jingfeng Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Meijuan Zou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Gang Cheng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
25
|
Huo J, Jia Q, Wang K, Chen J, Zhang J, Li P, Huang W. Metal-Phenolic Networks Assembled on TiO 2 Nanospikes for Antimicrobial Peptide Deposition and Osteoconductivity Enhancement in Orthopedic Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1238-1249. [PMID: 36636753 DOI: 10.1021/acs.langmuir.2c03028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The lack of antimicrobial and osteoconductive activities of titanium (Ti) for orthopedic implants has led to problems such as infection and structural looseness, which bring physical and psychological sufferings to patients as well as economic burden on the healthcare system. To endow Ti implants with anti-infective function and bioactivity, in this study, we successfully constructed TiO2 nanospike (TNS) structure on the surface of Ti followed by assembling metal-polyphenol networks (MPNs) and depositing antimicrobial peptides (AMPs). The TNSs' structure can disrupt the bacteria by physical puncture, and it was also proved to have excellent photothermal conversion performance upon near-infrared light irradiation. Furthermore, with the assistance of contact-active chemo bactericidal efficacy of AMPs, TNS-MPN-AMP nanocoating achieved physical/photothermal/chemo triple-synergistic therapy against pathogenic bacteria. The anti-infective efficiency of this multimodal treatment was obviously improved, with an antibacterial ratio of >99.99% in vitro and 95.03% in vivo. Moreover, the spike-like nanostructure of TNSs and the bioactive groups from MPNs and AMPs not only demonstrated desirable biocompatibility but also promoted the surface hydroxyapatite formation in simulated body fluid for further osseointegration enhancement. Altogether, this multifaceted TNS-MPN-AMP nanocoating endowed Ti implants with enhanced antibacterial activity, excellent cytocompatibility, and desirable osteoconductive ability.
Collapse
Affiliation(s)
- Jingjing Huo
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an710072, China
| | - Qingyan Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an710072, China
| | - Kun Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an710072, China
| | - Jingjie Chen
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an710072, China
| | - Jianhong Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an710072, China
| |
Collapse
|
26
|
Wang S, Liu Z, Wang L, Xu J, Mo R, Jiang Y, Wen C, Zhang Z, Ren L. Superhydrophobic Mechano-Bactericidal Surface with Photodynamic Antibacterial Capability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:723-735. [PMID: 36573916 DOI: 10.1021/acsami.2c21310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bacterial invasion and proliferation on various surfaces pose a serious threat to public health worldwide. Conventional antibacterial strategies that mainly rely on bactericides exhibit high bacteria-killing efficiency but might trigger the well-known risk of antibiotic resistance. Here, we report a superhydrophobic mechano-bactericidal surface with photodynamically enhanced antibacterial capability. First, bioinspired nanopillars with polycarbonate as the bulk material were replicated from anodized alumina oxide templates via a simple hot-pressing molding method. Subsequently, a facile bovine serum albumin phase-transition method was used to introduce chlorin e6 onto the nanopillar-patterned surface, which was then perfluorinated to render the surface superhydrophobic. Benefiting from its strong liquid super-repellency and photodynamically enhanced mechano-bactericidal properties, the superhydrophobic nanopillar-patterned surface exhibits 100% antibacterial efficiency after 30 min visible light irradiation (650 nm, 20 mW cm-2). More strikingly, the surface exhibited impressive long-lasting antimicrobial performance, maintaining a very high bactericidal efficiency (≥99%) even after 10 cycles of bacterial contamination tests. Also, the superhydrophobic nanopillar-patterned surface displays good hemocompatibility with a much lower than the 5% hemolysis rate. Overall, this work offers a new method for significantly enhancing the antibacterial efficiency of structural antimicrobial surfaces without involving any bactericidal agents, and this functional surface shows great potential in the field of advanced medical materials and hospital surfaces.
Collapse
Affiliation(s)
- Shujin Wang
- Key Laboratory of Bionic Engineering of Ministry of Education & College of Biological and Agricultural, Jilin University, Changchun130022, China
- College of Chemistry, Jilin University, Changchun130022, China
| | - Ziting Liu
- Key Laboratory of Bionic Engineering of Ministry of Education & College of Biological and Agricultural, Jilin University, Changchun130022, China
| | - Li Wang
- College of Chemistry, Jilin University, Changchun130022, China
| | - Jianing Xu
- College of Chemistry, Jilin University, Changchun130022, China
| | - Ru Mo
- Jilin Province People's Hospital, Changchun130021, China
| | - Yue Jiang
- Key Laboratory of Bionic Engineering of Ministry of Education & College of Biological and Agricultural, Jilin University, Changchun130022, China
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria3001, Australia
| | - Zhihui Zhang
- Key Laboratory of Bionic Engineering of Ministry of Education & College of Biological and Agricultural, Jilin University, Changchun130022, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering of Ministry of Education & College of Biological and Agricultural, Jilin University, Changchun130022, China
| |
Collapse
|
27
|
Xu Y, Cai Y, Xia Y, Wu Q, Li M, Guo N, Tu Y, Yang B, Liu Y. Photothermal nanoagent for anti-inflammation through macrophage repolarization following antibacterial therapy. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Yang Q, Zhao J, Muhammad A, Tian L, Liu Y, Chen L, Yang P. Biopolymer coating for particle surface engineering and their biomedical applications. Mater Today Bio 2022; 16:100407. [PMID: 36090610 PMCID: PMC9450159 DOI: 10.1016/j.mtbio.2022.100407] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
Surface engineering of particles based on a polymeric coating is of great interest in materials design and applications. Due to the disadvantages of non-biodegradability and undesirable biocompatibility, the application of petroleum-based synthetic polymers coating in the biomedical field has been greatly limited. In addition, there is lack of a universal surface modification method to functionalize particles of different compositions, sizes, shapes, and structures. Thus, it is imperative to develop a versatile biopolymeric coating with good biocompatibility and tunable biodegradability for the preparation of functional particle materials regardless of their surface chemical and physical structures. Recently, the natural polysaccharide polymers (e.g. chitosan and cellulose), polyphenol-based biopolymers (e.g. polydopamine and tannic acid), and proteins (e.g. amyloid-like aggregates) have been utilized in surface modification of particles, and applications of these modified particles in the field of biomedicine have been also intensively exploited. In this review, the preparation of the above three coatings on particles surface are summarized, and the applications of these materials in drug loading/release, biomineralization, cell immobilization/protection, enzyme immobilization/protection, and antibacterial/antiviral are exemplified. Finally, the challenges and the future research directions on biopolymer coating for particles surface engineering are prospected.
Collapse
Affiliation(s)
- Qingmin Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jian Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Arif Muhammad
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Lihua Tian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Lixin Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
29
|
Kloss M, Moerke C, Woitschach F, Wulf K, Illner S, Schulz S, Pauker VI, Riedel K, Grabow N, Ince H, Reisinger EC, Sombetzki M. Novel dalbavancin-PLLA implant coating prevents hematogenous Staphylococcus aureus infection in a minimally invasive mouse tail vein model. Front Bioeng Biotechnol 2022; 10:1021827. [DOI: 10.3389/fbioe.2022.1021827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
Infective/bacterial endocarditis is a rare but life-threatening disease with a hospital mortality rate of 22.7% and a 1-year mortality rate of 40%. Therefore, continued research efforts to develop efficient anti-infective implant materials are of the utmost importance. Equally important is the development of test systems that allow the performance of new materials to be comprehensively evaluated. In this study, a novel antibacterial coating based on dalbavancin was tested in comparison to rifampicin/minocycline, and the suitability of a recently developed mouse tail vein model for testing the implant coatings was validated. Small polymeric stent grafts coated with a poly-L-lactic acid (PLLA) layer and incorporated antibiotics were colonized with Staphylococcus (S.) aureus before implantation into the tail vein of mice. The main assessment criteria were the hematogenous spread of the bacteria and the local tissue reaction to the contaminated implant. For this purpose, colony-forming units (CFU) in the blood, spleen and kidneys were determined. Tail cross sections were prepared for histological analysis, and plasma cytokine levels and expression values of inflammation-associated genes were examined. Both antibiotic coatings performed excellently, preventing the onset of infection. The present study expands the range of available methods for testing the anti-infectivity of cardiovascular implants, and the spectrum of agents for effective surface coating.
Collapse
|
30
|
Wan D, Liu X, Sun W, Qiao Y, Chen DF, Zheng Y, Wu S. Sea urchin-like Bi 2S 3/curcumin heterojunction rapidly kills bacteria and promotes wound healing under near-infrared light. Biomater Sci 2022; 10:6377-6387. [PMID: 36178709 DOI: 10.1039/d2bm01474b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial infection is an urgent public health problem. We design a novel photo-responsive hybrid material by growing small molecules of curcumin (Cur) in situ on a sea urchin-like Bi2S3 surface by a one-step hydrothermal reaction method, thus forming an organic-inorganic hybrid material with interfacial contact. The Bi2S3/Cur hybrid material has good antibacterial effect under 808 nm near-infrared (NIR) light irradiation. The antibacterial mechanism is that the electron redistribution at the interface of Bi2S3/Cur excited by 808 nm NIR light will cause a large number of electrons to gather on the side of Bi2S3, forming an internal electric field to drive the excited electrons from Bi2S3 to Cur, which accelerates the separation of photoexcited electron-hole pairs and enhances the production of reactive oxygen species (ROS). In conclusion, due to these synergistic effects of the photothermal properties of Bi2S3, the production of more ROS and the release of small molecules of Cur from traditional Chinese medicine in Bi2S3/Cur, the antibacterial efficacy against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) is 99.96% and 99.03%, respectively. In vivo experiments in animals show that Bi2S3/Cur can reduce the inflammatory response and promote wound healing. This paper presents a simple, rapid and safe strategy for the treatment of wound infections with near-infrared light.
Collapse
Affiliation(s)
- Danya Wan
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
| | - Xiangmei Liu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China. .,School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Wenchan Sun
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
| | - Yuqian Qiao
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing 100871, China.
| | - Da-Fu Chen
- Beijing JiShuiTan Hospital, Beijing Research Institute Orthopaedics & Traumatology, Lab Bone Tissue Engineering, Beijing 100035, Peoples R China.
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing 100871, China.
| | - Shuilin Wu
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing 100871, China.
| |
Collapse
|
31
|
Li Y, Miao Y, Yang L, Zhao Y, Wu K, Lu Z, Hu Z, Guo J. Recent Advances in the Development and Antimicrobial Applications of Metal-Phenolic Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202684. [PMID: 35876402 PMCID: PMC9507365 DOI: 10.1002/advs.202202684] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/23/2022] [Indexed: 05/04/2023]
Abstract
Due to the abuse of antibiotics and the emergence of multidrug resistant microorganisms, medical devices, and related biomaterials are at high risk of microbial infection during use, placing a heavy burden on patients and healthcare systems. Metal-phenolic networks (MPNs), an emerging organic-inorganic hybrid network system developed gradually in recent years, have exhibited excellent multifunctional properties such as anti-inflammatory, antioxidant, and antibacterial properties by making use of the coordination between phenolic ligands and metal ions. Further, MPNs have received widespread attention in antimicrobial infections due to their facile synthesis process, excellent biocompatibility, and excellent antimicrobial properties brought about by polyphenols and metal ions. In this review, different categories of biomaterials based on MPNs (nanoparticles, coatings, capsules, hydrogels) and their fabrication strategies are summarized, and recent research advances in their antimicrobial applications in biomedical fields (e.g., skin repair, bone regeneration, medical devices, etc.) are highlighted.
Collapse
Affiliation(s)
- Yue Li
- Department of Histology and EmbryologySchool of Basic Medical SciencesDepartment of Plastic and Aesthetic SurgeryNanfang Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhou510515P. R. China
| | - Yong Miao
- Department of Histology and EmbryologySchool of Basic Medical SciencesDepartment of Plastic and Aesthetic SurgeryNanfang Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhou510515P. R. China
| | - Lunan Yang
- Department of Histology and EmbryologySchool of Basic Medical SciencesDepartment of Plastic and Aesthetic SurgeryNanfang Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhou510515P. R. China
| | - Yitao Zhao
- Department of Histology and EmbryologySchool of Basic Medical SciencesDepartment of Plastic and Aesthetic SurgeryNanfang Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhou510515P. R. China
| | - Keke Wu
- Department of Histology and EmbryologySchool of Basic Medical SciencesDepartment of Plastic and Aesthetic SurgeryNanfang Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhou510515P. R. China
| | - Zhihui Lu
- Department of Histology and EmbryologySchool of Basic Medical SciencesDepartment of Plastic and Aesthetic SurgeryNanfang Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhou510515P. R. China
- Regenerative Medicine and Tissue Repair Research CenterHuangpu Institute of MaterialsGuangzhou510530P. R. China
| | - Zhiqi Hu
- Department of Histology and EmbryologySchool of Basic Medical SciencesDepartment of Plastic and Aesthetic SurgeryNanfang Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhou510515P. R. China
| | - Jinshan Guo
- Department of Histology and EmbryologySchool of Basic Medical SciencesDepartment of Plastic and Aesthetic SurgeryNanfang Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhou510515P. R. China
| |
Collapse
|
32
|
Catechol-functionalized sulfobetaine polymer for uniform zwitterionization via pH transition approach. Colloids Surf B Biointerfaces 2022; 220:112879. [DOI: 10.1016/j.colsurfb.2022.112879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022]
|
33
|
Shi L, Liang Q, Zang Q, Lv Z, Meng X, Feng J. Construction of Prochloraz-Loaded Hollow Mesoporous Silica Nanoparticles Coated with Metal-Phenolic Networks for Precise Release and Improved Biosafety of Pesticides. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162885. [PMID: 36014750 PMCID: PMC9414849 DOI: 10.3390/nano12162885] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 05/03/2023]
Abstract
Currently, environmental-responsive pesticide delivery systems have become an essential way to improve the effective utilization of pesticides. In this paper, by using hollow mesoporous silica (HMS) as a nanocarrier and TA-Cu metal-phenolic networks as a capping agent, a pH-responsive controlled release nano-formulation loaded with prochloraz (Pro@HMS-TA-Cu) was constructed. The structure and properties of Pro@HMS-TA-Cu were adequately characterised and analysed. The results showed that the loading content of Pro@HMS-TA-Cu nanoparticles was about 17.7% and the Pro@HMS-TA-Cu nanoparticles exhibited significant pH-responsive properties. After a coating of the TA-Cu metal-phenolic network, the contact angle and adhesion work of Pro@HMS-TA-Cu nanoparticles on the surface of oilseed rape leaves after 360 s were 59.6° and 107.2 mJ·m-2, respectively, indicating that the prepared nanoparticles possessed excellent adhesion. In addition, the Pro@HMS-TA-Cu nanoparticles demonstrated better antifungal activity against Sclerotinia sclerotiorum and lower toxicity to zebrafish compared to prochloraz technical. Hence, the pH-responsive nanoparticles prepared with a TA-Cu metal-phenolic network as a capping agent are highly efficient and environmentally friendly, providing a new approach for the development of new pesticide delivery systems.
Collapse
|
34
|
Three lines of defense: A multifunctional coating with anti-adhesion, bacteria-killing and anti-quorum sensing properties for preventing biofilm formation of Pseudomonas aeruginosa. Acta Biomater 2022; 151:254-263. [PMID: 35961522 DOI: 10.1016/j.actbio.2022.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022]
Abstract
Surfaces of synthetic materials are highly susceptible to pathogenic bacteria colonization and further biofilm formation, leading to device failure in both biomedical and industrial applications. Complete elimination of the mature biofilms formed on the surfaces, however, remains a great challenge due to the complexity of chemical composition and physical structure. Therefore, prevention of biofilm formation becomes a preferred strategy for solving the biofilm-associated problems. Herein, a multifunctional coating showing three lines of defense to prevent biofilm formation of Pseudomonas aeruginosa is fabricated by a simple and versatile method. This coating is composed of multilayers of quaternized chitosan with bactericidal property and acylase with anti-quorum sensing property and a topmost layer of hyaluronic acid with anti-adhesion property. The substrate deposited with this coating could suppress initial adhesion of a majority of bacteria, and then kill the attached bacteria and interfere with their quorum sensing systems related to biofilm formation. The results of short-term antibacterial experiments show that our coating reduced 98 ± 2% of attached live bacteria. In long-term antibiofilm experiments, this "three lines of defense" design endows the coating with enhanced antibiofilm property against the biofilm formation for at least 3 days by reducing 98 ± 1% of bacterial proliferation and 71 ± 2% of biomass production. Benefiting from the natural building blocks with good biocompatibility and the versatile and environmentally friendly preparation method, this coating shows negligible cytotoxicity and broad applicability, providing great potential for a variety of biomedical applications. STATEMENT OF SIGNIFICANCE: Pathogenic biofilms formed on the surfaces of medical devices and materials pose an urgent problem, and it remains challenging to treat and eradicate the established biofilms. Herein, we developed an antibiofilm coating showing three lines of defense to prevent biofilm formation, which could be deposited on diverse substrates via a simple and versatile method. This coating was based on three natural materials with anti-adhesive, bactericidal, and anti-quorum sensing properties and showed different function in a self-adaptive way to target the sequential stages of biofilm formation by preventing initial bacterial adhesion, killing attached bacteria and interfering with their quorum sensing system to inhibit bacterial proliferation and biofilm maturation. This coating with improved antibiofilm performance might provide a simple and reliable solution to the problems associated with biofilm on surfaces.
Collapse
|
35
|
Li F, Lin L, Chi J, Wang H, Du M, Feng D, Wang L, Luo R, Chen H, Quan G, Cai J, Pan X, Wu C, Lu C. Guanidinium-rich lipopeptide functionalized bacteria-absorbing sponge as an effective trap-and-kill system for the elimination of focal bacterial infection. Acta Biomater 2022; 148:106-118. [PMID: 35671875 DOI: 10.1016/j.actbio.2022.05.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
Abstract
Focal bacterial infections are often difficult to treat due to the rapid emergence of antibiotic-resistant bacteria, high risk of relapse, and severe inflammation at local lesions. To address multidrug-resistant skin and soft tissue infections, a bacteria-absorbing sponge was prepared to involve a "trap-and-kill" mechanism. The system describes a guanidinium-rich lipopeptide functionalized lyotropic liquid-crystalline hydrogel with bicontinuous cubic networks. Amphiphilic lipopeptides can be spontaneously anchored to the lipid-water interface, exposing their bacterial targeting sequences to enhance antibacterial trapping/killing activity. Computational simulations supported our structural predictions, and the sponge was confirmed to successfully remove ∼98.8% of the bacteria in the medium. Release and degradation behavior studies indicated that the bacteria-absorbing sponge could degrade, mediate enzyme-responsive lipopeptide release, or generate ∼200 nm lipopeptide nanoparticles with environmental erosion. This implies that the sponge can effectively capture and isolate high concentrations of bacteria at the infected site and then sustainably release antimicrobial lipopeptides into deep tissues for the eradication of residual bacteria. In the animal experiment, we found that the antibacterial performance of the bacterial-absorbing sponge was significant, which demonstrated not only a long-term inhibition effect to disinfect and avoid bacterial rebound, but also a unique advantage to protect tissue from bacterial attack. STATEMENT OF SIGNIFICANCE: Host defense peptides/peptidomimetics (HDPs) have shown potential for the elimination of focal bacterial infections, but the application of their topical formulations suffers from time-consuming preparation processes, indistinctive toxicity reduction effects, and inefficient bacterial capture ability. To explore new avenues for the development of easily prepared, low-toxicity and high-efficiency topical antimicrobials, a guanidinium-rich lipopeptide was encapsulated in a lyotropic liquid-crystalline hydrogel (denoted as "bacteria-absorbing sponge") to achieve complementary superiorities. The superior characteristic of the bacteria-absorbing sponge involves a "trap-and-kill" mechanism, which undergoes not only a long-term inhibition effect to disinfect and avoid bacterial rebound, but also effective bacterial capture and isolating action to confine bacterial diffusion and protect tissues from bacterial attack.
Collapse
Affiliation(s)
- Feng Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Liming Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiaying Chi
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Hui Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Minqun Du
- Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Disang Feng
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Liqing Wang
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Rui Luo
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Hangping Chen
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
36
|
Polymeric Coatings and Antimicrobial Peptides as Efficient Systems for Treating Implantable Medical Devices Associated-Infections. Polymers (Basel) 2022; 14:polym14081611. [PMID: 35458361 PMCID: PMC9024559 DOI: 10.3390/polym14081611] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Many infections are associated with the use of implantable medical devices. The excessive utilization of antibiotic treatment has resulted in the development of antimicrobial resistance. Consequently, scientists have recently focused on conceiving new ways for treating infections with a longer duration of action and minimum environmental toxicity. One approach in infection control is based on the development of antimicrobial coatings based on polymers and antimicrobial peptides, also termed as “natural antibiotics”.
Collapse
|
37
|
Wang Y, He X, Cheng Y, Li L, Zhang K, Kang ET, Xu L. Surface co-deposition of polypyrrole nanoparticles and tannic acid for photothermal bacterial eradication. Colloids Surf B Biointerfaces 2022; 212:112381. [PMID: 35123196 DOI: 10.1016/j.colsurfb.2022.112381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
Abstract
Bacterial infections on implantable materials can cause severe complications for affected patients, posing a serious threat to human health. Therefore, the development of appropriate surface modification strategies to construct the antibacterial platforms on medical implants are urgently needed. In this work, the poly(vinyl alcohol) (PVA)-stabilized polypyrrole nanoparticles (PVA-PPy NPs) were prepared by oxidative polymerization using FeCl3 as the oxidant. Subsequent mixing of the PVA-PPy NPs solution mixture with tannic acid (TA) was facilitated by hydrogen bonding. The as-formed TA/PVA-PPy NPs can be deposited with good adhesion onto solid materials in a substrate-independent manner. The hydrophilic TA/PVA-PPy NPs-deposited titanium (Ti-TPP) surface can reduce the adhesion of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). In addition, the Ti-TPP surface had photothermal property under 808 nm near-infrared (NIR) irradiation, which can kill the adhered bacteria via the hyperthermal effect. Upon exposure to NIR, the respective survival rates of S. aureus and E. coli on the Ti-TPP surfaces were only 1.66% and 2.78%, in comparison to those on the pristine Ti surfaces. Furthermore, the Ti-TPP surface could prevent the formation of early-stage biofilm under NIR irradiation. The TA/PVA-PPy NPs composites can be utilized as a contact-photoactive antibacterial coating for biomedical applications.
Collapse
Affiliation(s)
- Yan Wang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University, Chongqing, 400715, PR China
| | - Xiaodong He
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University, Chongqing, 400715, PR China
| | - Yanfang Cheng
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University, Chongqing, 400715, PR China
| | - Lin Li
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University, Chongqing, 400715, PR China
| | - Kai Zhang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University, Chongqing, 400715, PR China
| | - En-Tang Kang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University, Chongqing, 400715, PR China; Department of Chemical and Biomolecular Engineering National University of Singapore, Kent Ridge 117576, Singapore
| | - Liqun Xu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University, Chongqing, 400715, PR China; Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province College of Chemistry and Chemical Engineering Hainan Normal University, Haikou, 571158, PR China.
| |
Collapse
|
38
|
Zhao M, Yan Y, Guo H, Zhang Y, Wu H, Fang Y, Liu Y. A multifunctional colorimetric sensor array for bacterial identification and real-time bacterial elimination to prevent bacterial contamination. Analyst 2022; 147:2247-2252. [DOI: 10.1039/d2an00445c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The constructed sensor array has simple operation and successfully integrates bacterial identification and inactivation.
Collapse
Affiliation(s)
- Minyang Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yong Yan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hanqiong Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yujie Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haotian Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuan Fang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
39
|
Sathishkumar G, Kasi G, Zhang K, Kang ET, Xu L, Yu Y. Recent progress in Tannic Acid-driven antimicrobial/antifouling surface coating strategies. J Mater Chem B 2022; 10:2296-2315. [DOI: 10.1039/d1tb02073k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Medical devices and surgical implants are a necessary part of tissue engineering and regenerative medicines. However, the biofouling and microbial colonization on the implant surface continues to be a major...
Collapse
|
40
|
Ma Z, Sun J, Dong X, Gan D, Peng W, Li Y, Qian W, Liu P, Shen J. Zwitterionic/active ester block polymers as multifunctional coating for polyurethane-based substrates. J Mater Chem B 2022; 10:3687-3695. [DOI: 10.1039/d2tb00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial associated infection, blood coagulation, and tissue adhesion are severe issues associated with biomedical implants & devices in clinic applications. Here, we report a general strategy to simultaneously tackle these...
Collapse
|