1
|
Song Y, Wang X, Wang L, Qu L, Zhang X. Functionalized Face Masks as Smart Wearable Sensors for Multiple Sensing. ACS Sens 2024; 9:4520-4535. [PMID: 39297358 DOI: 10.1021/acssensors.4c01705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Wearable sensors provide continuous physiological information and measure deviations from healthy baselines, resulting in the potential to personalize health management and diagnosis of diseases. With the emergence of the COVID-19 pandemic, functionalized face masks as smart wearable sensors for multimodal and/or multiplexed measurement of physical parameters and biochemical markers have become the general population for physiological health management and environmental pollution monitoring. This Review examines recent advances in applications of smart face masks based on implantation of digital technologies and electronics and focuses on respiratory monitoring applications with the advantages of autonomous flow driving, enrichment enhancement, real-time monitoring, diversified sensing, and easily accessible. In particular, the detailed introduction of diverse respiratory signals including physical, inhalational, and exhalant signals and corresponding associations of health management and environmental pollution is presented. In the end, we also provide a personal perspective on future research directions and the remaining challenges in the commercialization of smart functionalized face masks for multiple sensing.
Collapse
Affiliation(s)
- Yongchao Song
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Xiyan Wang
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Lirong Wang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xian, Shaanxi 710126, China
| | - Lijun Qu
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
2
|
Zhu G, Wang C, Yang T, Gao N, Zhang Y, Zhu J, He X, Shao J, Li S, Zhang M, Zhang S, Gao J, Xu H. Bio-inspired gradient poly(lactic acid) nanofibers for active capturing of PM 0.3 and real-time respiratory monitoring. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134781. [PMID: 38824775 DOI: 10.1016/j.jhazmat.2024.134781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The concept of bio-inspired gradient hierarchies, in which the well-defined MOF nanocrystals serve as active nanodielectrics to create electroactive shell at poly(lactic acid) (PLA) nanofibers, is introduced to promote the surface activity and electroactivity of PLA nanofibrous membranes (NFMs). The strategy enabled significant refinement of PLA nanofibers during coaxial electrospinning (∼40 % decline of fiber diameter), accompanied by remarkable increase of specific surface area (nearly 1.5 m2/g), porosity (approximately 85 %) and dielectric constants for the bio-inspired gradient PLA (BG-PLA) NFMs. It largely boosted initial electret properties and electrostatic adsorption capability of BG-PLA NFMs, as well as charge regeneration by TENG mechanisms even under high-humidity environment. The BG-PLA NFMs thus featured exceptionally high PM0.3 filtration efficiencies with well-controlled air resistance (94.3 %, 163.4 Pa, 85 L/min), in contrast to the relatively low efficiency of only 80.0 % for normal PLA. During the application evaluation of outdoor air purification, excellent long-term filtering performance was demonstrated for the BG-PLA for up to 4 h (nearly 98.0 %, 53 Pa), whereas normal PLA exhibited a gradually declined filtration efficiency and an increased pressure drop. Moreover, the BG-PLA NFMs of increased electroactivity were ready to generate tribo-output currents as driven by respiratory vibrations, which enabled real-time monitoring of electrophysiological signals. This bio-inspired gradient strategy opens up promising pathways to engender biodegradable nanofibers of high surface activity and electroactivity, which has significant implications for intelligent protective membranes.
Collapse
Affiliation(s)
- Guiying Zhu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Cunmin Wang
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Ting Yang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Na Gao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yifan Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jintuo Zhu
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Jiang Shao
- School of Architecture & Design, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Shihang Li
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Mingming Zhang
- China Academy of Safety Science & Technology, 100012 Beijing, China
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 272100, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China.
| |
Collapse
|
3
|
Liu K, You Q, Jawed R, Han D, Miao Y, Gu X, Dong J, Butch CJ, Wang Y. Purine-Doped g-C 3N 4-Modified Fabrics for Personal Protective Masks with Rapid and Sustained Antibacterial Activity. ACS APPLIED BIO MATERIALS 2024; 7:2911-2923. [PMID: 38619913 DOI: 10.1021/acsabm.3c01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Protective masks are critical to impeding microorganism transmission but can propagate infection via pathogen buildup and face touching. To reduce this liability, we integrated electrospun photocatalytic graphitic carbon nitride (g-C3N4) nanoflakes into standard surgical masks to confer a self-sanitization capacity. By optimizing the purine/melamine precursor ratio during synthesis, we reduced the g-C3N4 band gap from 2.92 to 2.05 eV, eliciting a 4× increase in sterilizing hydrogen peroxide production under visible light. This narrower band gap enables robust photocatalytic generation of reactive oxygen species from environmental and breath humidity to swiftly eliminate accumulated microbes. Under ambient sunlight, the g-C3N4 nanocomposite mask layer achieved a 97% reduction in the bacterial viability during typical use. Because the optimized band gap also allows photocatalytic activity under shadowless lamp illumination, the self-cleaning functionality could mitigate infection risk from residual pathogens in routine hospital settings. Both g-C3N4 and polycaprolactone demonstrate favorable biocompatibility and biodegradability, making this approach preferable over current commercially available metal-based options. Given the abundance and low cost of these components, this scalable approach could expand global access to reusable self-sanitizing protective masks, serving as a sustainable public health preparedness measure against future pandemics, especially in resource-limited settings.
Collapse
Affiliation(s)
- Kai Liu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Qi You
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Rohil Jawed
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Dong Han
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yufei Miao
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Xiang Gu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Junming Dong
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Christopher J Butch
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Dou Y, Wang N, Zhang S, Sun C, Chen J, Qu Z, Cui A, Li J. Electroactive nanofibrous membrane with antibacterial and deodorizing properties for air filtration. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134064. [PMID: 38513444 DOI: 10.1016/j.jhazmat.2024.134064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Water vapor from respiration can severely accelerate the charge dissipation of the face mask, reducing filtration efficiency. Moreover, the foul odor from prolonged mask wear tends to make people remove their masks, leading to the risk of infection. In this study, an electro-blown spinning electroactive nanofibrous membrane (Zn/CB@PAN) with antibacterial and deodorization properties was prepared by adding zinc (Zn) and carbon black (CB) nanoparticles to the polyacrylonitrile (PAN) nanofibers, respectively. The filtration efficiency of Zn/CB@PAN for PM0.3 was > 99% and could still maintain excellent durability within 4 h in a high-humidity environment (25 ℃ and RH = 95%). Moreover, the bacterial interception rate of the Zn/CB@PAN could reach 99.99%, and it can kill intercepted bacteria. In addition, the deodorization rate of Zn/CB@PAN in the moist state for acetic acid was 93.75% and ammonia was 95.23%, respectively. The excellent filtering, antibacterial, and deodorizing performance of Zn/CB@PAN can be attributed to the synergistic effect of breath-induced Zn/CB galvanic couples' electroactivity, released metal ions, and generated reactive oxygen species. The developed Zn/CB@PAN could capture and kill airborne environmental pathogens under humid environments and deodorize odors from prolonged wear, holding promise for broad applications as personal protective masks.
Collapse
Affiliation(s)
- Yuejie Dou
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Na Wang
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Shaohua Zhang
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Caihong Sun
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Jinmiao Chen
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Zhenghai Qu
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Aihua Cui
- Weifang Yingke Marine Biological Material Co., Ltd, Weifang 262600, China
| | - Jiwei Li
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, Qingdao 266071, China.
| |
Collapse
|
5
|
Li J, Wang X, Wang H, Ran P, Liu Y, Wang J, Xu X, Zhou Z. Regulating molecular brush structure on cotton textiles for efficient antibacterial properties. Int J Biol Macromol 2024; 267:131486. [PMID: 38604420 DOI: 10.1016/j.ijbiomac.2024.131486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
The molecular brush structures have been developed on cotton textiles for long-term and efficient broad-spectrum antimicrobial performances through the cooperation of alkyl-chain and quaternary ammonium sites. Results show that efficient antibacterial performances can be achieved by the regulation of the alkyl chain length and quaternary ammonium sites. The antibacterial efficiency of the optimized molecular brush structure of [3-(N,N-Dimethylamino)propyl]trimethoxysilane with cetyl modification on cotton textiles (CT-DM-16) can reach more than 99 % against both E. coli and S. aureus. Alkyl-chain grafting displayed significantly improvement in the antibacterial activity against S. aureus with (N,N-Diethyl-3-aminopropyl)trimethoxysilane modification on cotton textiles (CT-DE) based materials. The positive N sites and alkyl chains played important roles in the antibacterial process. Proteomic analysis reveals that the contributions of cytoskeleton and membrane-enclosed lumen in differentially expressed proteins have been increased for the S. aureus antibacterial process, confirming the promoted puncture capacity with alkyl-chain grafting. Theoretical calculations indicate that the positive charge of N sites can be enhanced through alkyl-chain grafting, and the possible distortion of the brush structure in application can further increase the positive charge of N sites. Uncovering the regulation mechanism is considered to be important guidance to develop novel and practical antibacterial materials.
Collapse
Affiliation(s)
- Jie Li
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China; Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Wang
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610031, China.
| | - Hui Wang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Pan Ran
- School of Bioscience and Technology, Chengdu Medical College, Chengdu 610500, China
| | - Yazhou Liu
- School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiahao Wang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaoling Xu
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Zuowan Zhou
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
6
|
Zhang S, Wang N, Zhang Q, Guan R, Qu Z, Sun L, Li J. The Rise of Electroactive Materials in Face Masks for Preventing Virus Infections. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48839-48854. [PMID: 37815875 DOI: 10.1021/acsami.3c10465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Air-transmitted pathogens may cause severe epidemics, posing considerable threats to public health and safety. Wearing a face mask is one of the most effective ways to prevent respiratory virus infection transmission. Especially since the new coronavirus pandemic, electroactive materials have received much attention in antiviral face masks due to their highly efficient antiviral capabilities, flexible structural design, excellent sustainability, and outstanding safety. This review first introduces the mechanism for preventing viral infection or the inactivation of viruses by electroactive materials. Then, the applications of electrostatic-, conductive-, triboelectric-, and microbattery-based materials in face masks are described in detail. Finally, the problems of various electroactive antiviral materials are summarized, and the prospects for their future development directions are discussed. In conclusion, electroactive materials have attracted great attention for antiviral face masks, and this review will provide a reference for materials scientists and engineers in antiviral materials and interfaces.
Collapse
Affiliation(s)
- Shaohua Zhang
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
| | - Na Wang
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, Qingdao 266071, People's Republic of China
| | - Qian Zhang
- Department of Respirology, Qingdao Women and Children's Hospital, Qingdao 266034, People's Republic of China
| | - Renzheng Guan
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
| | - Zhenghai Qu
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
| | - Lirong Sun
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
| | - Jiwei Li
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, Qingdao 266071, People's Republic of China
| |
Collapse
|
7
|
Venkataraman D, Shabani E, Park JH. Advancement of Nonwoven Fabrics in Personal Protective Equipment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3964. [PMID: 37297096 PMCID: PMC10253991 DOI: 10.3390/ma16113964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
While nonwoven fabrics have existed for several decades, their usage in personal protective equipment (PPE) has been met with a rapid surge of demands, in part due to the recent COVID-19 pandemic. This review aims to critically examine the current state of nonwoven PPE fabrics by exploring (i) the material constituents and processing steps to produce fibers and bond them, and (ii) how each fabric layer is integrated into a textile, and how the assembled textiles are used as PPE. Firstly, filament fibers are manufactured via dry, wet, and polymer-laid fiber spinning methods. Then the fibers are bonded via chemical, thermal, and mechanical means. Emergent nonwoven processes such as electrospinning and centrifugal spinning to produce unique ultrafine nanofibers are discussed. Nonwoven PPE applications are categorized as filters, medical usage, and protective garments. The role of each nonwoven layer, its role, and textile integration are discussed. Finally, the challenges stemming from the single-use nature of nonwoven PPEs are discussed, especially in the context of growing concerns over sustainability. Then, emerging solutions to address sustainability issues with material and processing innovations are explored.
Collapse
Affiliation(s)
- Dhanya Venkataraman
- Department of Biomedical and Biotechnology, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Elnaz Shabani
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Jay H. Park
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| |
Collapse
|
8
|
Yang L, Li C, Wang X, Zhang X, Li Y, Liu S, Li J. Electroactive nanofibrous membrane with temperature monitoring for wound healing. RSC Adv 2023; 13:14224-14235. [PMID: 37179989 PMCID: PMC10170354 DOI: 10.1039/d3ra01665j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Developing functional dressings for promoting cellular activities and monitoring the healing progress is receiving increasingly widespread attention. In this study, Ag/Zn electrodes were deposited on the surface of a polylactic acid (PLA) nanofibrous membrane which can mimic the extracellular matrix. When wetted by wound exudate, the Ag/Zn electrodes could generate an electric stimulation (ES), promoting the migration of fibroblasts that heal wounds. Moreover, the Ag/Zn@PLA dressing showed excellent antibacterial activity against E. coli (95%) and S. aureus (97%). The study found that the electrostatic (ES) effect and the release of metal ions mainly contribute to the wound healing properties of Ag/Zn@PLA. In vivo mouse models demonstrated that Ag/Zn@PLA could promote wound healing by improving re-epithelialization, collagen deposition, and neovascularization. Additionally, the integrated sensor within the Ag/Zn@PLA dressing can monitor the wound site's temperature in real-time, providing timely information on wound inflammatory reactions. Overall, this work suggests that combining electroactive therapy and wound temperature monitoring may provide a new strategy for designing functional wound dressings.
Collapse
Affiliation(s)
- Liguo Yang
- College of Textiles and Clothing, Industrial Research Institute of Nonwovens and Technical Textiles, Qingdao University Qingdao 266071 China
| | - Chenglin Li
- Department of Biochemistry and Microbiology, Qingdao University Medical College, Qingdao University Qingdao 266003 China
| | - Xuefang Wang
- College of Textiles and Clothing, Industrial Research Institute of Nonwovens and Technical Textiles, Qingdao University Qingdao 266071 China
| | - Xiangyan Zhang
- Department of Pathology, Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao University Qingdao 266003 China
| | - Yongxin Li
- Department of Pathology, Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao University Qingdao 266003 China
| | - Shangpeng Liu
- College of Textiles and Clothing, Industrial Research Institute of Nonwovens and Technical Textiles, Qingdao University Qingdao 266071 China
| | - Jiwei Li
- College of Textiles and Clothing, Industrial Research Institute of Nonwovens and Technical Textiles, Qingdao University Qingdao 266071 China
- Shandong Center for Engineered Nonwovens Qingdao 266071 China
| |
Collapse
|
9
|
Passos de Oliveira Santos R, Hao J, Daniel de Mello Innocentini M, Frollini E, Savastano Junior H, Rutledge GC. Composite electrospun membranes based on polyacrylonitrile and cellulose nanofibrils: relevant properties for their use as active filter layers. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Negishi N, Yamano R, Hori T, Koura S, Maekawa Y, Sato T. Development of a high-speed bioaerosol elimination system for treatment of indoor air. BUILDING AND ENVIRONMENT 2023; 227:109800. [PMID: 36407015 PMCID: PMC9651995 DOI: 10.1016/j.buildenv.2022.109800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/12/2023]
Abstract
We developed a high-speed filterless airflow multistage photocatalytic elbow aerosol removal system for the treatment of bioaerosols such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human-generated bioaerosols that diffuse into indoor spaces are 1-10 μm in size, and their selective and rapid treatment can reduce the risk of SARS-CoV-2 infection. A high-speed airflow is necessary to treat large volumes of indoor air over a short period. The proposed system can be used to eliminate viruses in aerosols by forcibly depositing aerosols in a high-speed airflow onto a photocatalyst placed inside the system through inertial force and turbulent diffusion. Because the main component of the deposited bioaerosol is water, it evaporates after colliding with the photocatalyst, and the nonvolatile virus remains on the photocatalytic channel wall. The residual virus on the photocatalytic channel wall is mineralized via photocatalytic oxidation with UVA-LED irradiation in the channel. When this system was operated in a 4.5 m3 aerosol chamber, over 99.8% aerosols in the size range of 1-10 μm were removed within 15 min. The system continued delivering such performance with the continuous introduction of aerosols. Because this system exhibits excellent aerosol removal ability at a flow velocity of 5 m/s or higher, it is more suitable than other reactive air purification systems for treating large-volume spaces.
Collapse
Key Words
- AOP, advanced oxidation process
- Bioaerosol
- CFD, computational fluid dynamics
- COVID-19, coronavirus disease 2019
- DES, detached eddy simulation
- HEPA, high-efficiency particulate absorbing
- ISO, International Standard Organization
- Indoor air
- LES, Large eddy simulation
- RANS, Reynolds-averaged Navier–Stokes
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SCDLP, soya casein-digested lecithin polysorbate
- TiO2 photocatalyst
- UV, ultraviolet
- UVA, ultraviolet-A
- UVC, ultraviolet-C
- Windspeed
Collapse
Affiliation(s)
- Nobuaki Negishi
- Environment Management Research Institute, National Institute of Advanced Industrial Science and Technology, 1-16 Onogawa, Tsukuba, 305-8569, Japan
| | - Ryo Yamano
- Department of Applied Chemistry, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, 275-0016, Japan
| | - Tomoko Hori
- Environment Management Research Institute, National Institute of Advanced Industrial Science and Technology, 1-16 Onogawa, Tsukuba, 305-8569, Japan
| | - Setsuko Koura
- Department of Applied Chemistry, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, 275-0016, Japan
| | - Yuji Maekawa
- Kamaishi Electric Machinery Factory Co. Ltd., 9-171-4 Kasshi-cho, Kamaishi, 026-0055, Japan
| | - Taro Sato
- Kamaishi Electric Machinery Factory Co. Ltd., 9-171-4 Kasshi-cho, Kamaishi, 026-0055, Japan
| |
Collapse
|
11
|
Zhang H, Cao Y, Zhen Q, Hu JJ, Cui JQ, Qian XM. Facile Preparation of PET/PA6 Bicomponent Microfilament Fabrics with Tunable Porosity for Comfortable Medical Protective Clothing. ACS APPLIED BIO MATERIALS 2022; 5:3509-3518. [PMID: 35793521 DOI: 10.1021/acsabm.2c00447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Medical protective materials have broadly drawn attention due to their ability to stop the spread of infectious diseases and protect the safety of medical staff. However, creating medical protective materials that combine excellent liquid shielding performance and outstanding mechanical properties with high breathability is still a challenging task. Herein, a polyester/polyamide 6 (PET/PA6) bicomponent microfilament fabric with tunable porosity for comfortable medical protective clothing was prepared via dip-coating technology and an easy and effective thermal-belt bonding process. The dip coating of the C6-based fluorocarbon polymer endowed the samples with excellent hydrophobicity (alcohol contact angles, 130-128°); meanwhile, by adjusting the temperature and pressure of the thermal-belt bonding process, the porosity of the samples was adapted in the range of 64.19-88.64%. Furthermore, benefitting tunable porosity and surface hydrophobicity, the samples also demonstrated an excellent softness score (24.3-34.5), agreeable air permeability (46.3-27.8 mm/s), and high hydrostatic pressure (1176-4130 Pa). Significantly, the created textiles successfully filter aerosol from the air and display highly tensile strength. These excellent comprehensive performances indicate that the prepared PET/PA6 bicomponent microfilament fabrics would be an attractive choice for medical protective apparel.
Collapse
Affiliation(s)
- Heng Zhang
- School of Textile, Zhongyuan University of Technology, No. 1 Huaihe Road, Xinzheng County, 451191 Zhengzhou, Henan Province, China.,Henan Key Laboratory of Medical Polymer Materials Technology and Application, No. 1 Yangze Road, Changyuan County, 453400 Xinxiang, Henan Province, China
| | - Yang Cao
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, No. 1 Yangze Road, Changyuan County, 453400 Xinxiang, Henan Province, China.,School of Textile Science and Engineering, Tiangong University, No. 399 Binshui Xilu Road, Xiqing District, 300387 Tianjin, China
| | - Qi Zhen
- School of Clothing, Zhongyuan University of Technology, No. 1 Huaihe Road, Xinzheng County, 451191 Zhengzhou, Henan Province, China.,Henan Key Laboratory of Medical Polymer Materials Technology and Application, No. 1 Yangze Road, Changyuan County, 453400 Xinxiang, Henan Province, China
| | - Jun-Jie Hu
- Shanghai Earntz Nonwoven Co., Ltd., No. 88, Jiangong Road, Jinshan District, 201501 Shanghai, China
| | - Jing-Qiang Cui
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, No. 1 Yangze Road, Changyuan County, 453400 Xinxiang, Henan Province, China.,Henan Tuoren Medical Device Co., Ltd., Tuoren Industrial Zone, Changyuan County, No. 1 Yangze Road, Changyuan County, 453400 Xinxiang, Henan Province, China
| | - Xiao-Ming Qian
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, No. 1 Yangze Road, Changyuan County, 453400 Xinxiang, Henan Province, China.,School of Textile Science and Engineering, Tiangong University, No. 399 Binshui Xilu Road, Xiqing District, 300387 Tianjin, China
| |
Collapse
|
12
|
Shao Z, Chen Y, Jiang J, Xiao Y, Kang G, Wang X, Li W, Zheng G. Multistage-Split Ultrafine Fluffy Nanofibrous Membrane for High-Efficiency Antibacterial Air Filtration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18989-19001. [PMID: 35436100 DOI: 10.1021/acsami.2c04700] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Antibacterial air filtration membranes are essential for personal protection during the pandemic of coronavirus disease 2019 (COVID-19). However, high-efficiency filtration with low pressure drop and effective antibiosis is difficult to achieve. To solve this problem, an innovative electrospinning system with low binding energy and high conductivity was built to enhance the jet splitting, and a fluffy nanofibrous membrane containing numerous ultrafine nanofibers and large quantities of antibacterial agents was achieved, which was fabricated by electrospinning polyamide 6 (PA6), poly(vinyl pyrrolidone) (PVP), chitosan (CS), and curcumin (Cur). The filtration efficiency for 0.3 μm NaCl particles was 99.83%, the pressure drop was 54 Pa, and the quality factor (QF) was up to 0.118 Pa-1. CS and Cur synergistically enhanced the antibacterial performance; the bacteriostatic rates against Escherichia coli and Staphylococcus aureus were 99.5 and 98.9%, respectively. This work will largely promote the application of natural antibacterial agents in the development of high-efficiency, low-resistance air filters for personal protection by manufacturing ultrafine nanofibers with enhanced antibiosis.
Collapse
Affiliation(s)
- Zungui Shao
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Ying Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Jiaxin Jiang
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Yujie Xiao
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Guoyi Kang
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Xiang Wang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Wenwang Li
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Gaofeng Zheng
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| |
Collapse
|