1
|
Luo G, Liu H, Wang R, Duan C, Sun M, Lu Y, Ou Z, Hu Z. Construction of a red phosphorus-molybdenum dioxide electron-rich interface for efficient photocatalytic reduction of carbon dioxide. J Colloid Interface Sci 2025; 684:346-354. [PMID: 39798430 DOI: 10.1016/j.jcis.2024.12.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
Developing efficient catalysts to enhance photoreduction carbon dioxide (CO2) into hydrocarbon fuels is a great challenge. As metallic material, molybdenum dioxide (MoO2) has very high conductivity and charge density, which make it a promising candidate as photocatalyst. However, its photocatalytic activity is limited by the serious charge recombination. How to effectively make full use of the metallic MoO2 for photocatalytic CO2 reduction is still a critical issue. The potential effective way to solve this problem is to introduce appropriate auxiliary catalysts to construct electron-rich interfaces. In this study, red phosphorus (P) is dispersed on MoO2 nanoparticles to construct electron-rich interfaces which can serve as the active site for photocatalytic CO2 reduction. The results show that the reduction of CO2 by pure MoO2 only produces carbon monoxide (CO) and methane (CH4). However, with the aid of red P, the P-MoO2 photocatalyst can produce ethylene (C2H4) with the yield of 5.43 μmol h-1 g-1, and the CO and CH4 yields are also significantly improved. Experimental results and density functional theory (DFT) calculations indicate that photogenerated carriers can migrate from MoO2 to the interface, and the reduction of CO2 occurs at the interface. This study provides a significant insight for the design of efficient photocatalysts by using metallic photocatalysts.
Collapse
Affiliation(s)
- Guanghui Luo
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Huimin Liu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruilin Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Chengyu Duan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengdi Sun
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yinglong Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zheshun Ou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuofeng Hu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Li T, Jiang W, Wu Y, Zhou L, Ye H, Geng Y, Hu M, Liu K, Wang R, Sun Y. Controlled Fabrication of Metallic MoO 2 Nanosheets towards High-Performance p-Type 2D Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403118. [PMID: 38990881 DOI: 10.1002/smll.202403118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/09/2024] [Indexed: 07/13/2024]
Abstract
Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDCs) are extensively employed as channel materials in advanced electronic devices. The electrical contacts between electrodes and 2D semiconductors play a crucial role in the development of high-performance transistors. While numerous strategies for electrode interface engineering have been proposed to enhance the performance of n-type 2D transistors, upgrading p-type ones in a similar manner remains a challenge. In this work, significant improvements in a p-type WSe2 transistor are demonstrated by utilizing metallic MoO2 nanosheets as the electrode contact, which are controllably fabricated through physical vapor deposition and subsequent annealing. The MoO2 nanosheets exhibit an exceptional electrical conductivity of 8.4 × 104 S m‒1 and a breakdown current density of 3.3 × 106 A cm‒2. The work function of MoO2 nanosheets is determined to be ≈5.1 eV, making them suitable for contacting p-type 2D semiconductors. Employing MoO2 nanosheets as the electrode contact in WSe2 transistors results in a notable increase in the field-effect mobility to 92.0 cm2 V‒1 s‒1, which is one order of magnitude higher than the counterpart devices with conventional electrodes. This study not only introduces an intriguing 2D metal oxide to improve the electrical contact in p-type 2D transistors, but also offers an effective approach to fabricating all-2D devices.
Collapse
Affiliation(s)
- Tianchi Li
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wengui Jiang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yonghuang Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Liang Zhou
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huanyu Ye
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuchen Geng
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Minghui Hu
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Rongming Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yinghui Sun
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
3
|
Wang M, Lin Y. Gallium-based liquid metals as reaction media for nanomaterials synthesis. NANOSCALE 2024; 16:6915-6933. [PMID: 38501969 DOI: 10.1039/d3nr06566a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Gallium-based liquid metals (LMs) and their alloys have gained prominence in the realm of flexible and stretchable electronics. Recent advances have expanded the interest to explore the electron-rich core and interface of LMs to synthesize various nanomaterials, where Ga-based LMs serve as versatile reaction media. In this paper, we delve into the latest developments within this burgeoning field. Our discussion begins by elucidating the unique attributes of LMs that render them suitable as reaction media, including their high metal solubility, low standard reduction potential, self-limiting oxidation and ultra-smooth and "layer" surface. We then provide a comprehensive categorized summary of utilizing these features to fabricate a variety of nanomaterials, including pure metallic materials (metal alloys, metal crystals, porous metals, high-entropy alloys and metallic single atoms), metal-inorganic compounds (2D metal oxides, 2D metallic inorganic compounds and 2D graphitic materials), as well as metal-organic composites (metal-organic frameworks). This paper concludes by discussing the current challenges in this field and exploring potential future directions. The versatility and unique properties of Ga-based LMs are poised to play a pivotal role in the future of nanomaterial science, paving the way for more efficient, sustainable, and innovative technological solutions.
Collapse
Affiliation(s)
- Ming Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, 117585, Singapore.
| | - Yiliang Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
4
|
Mousavi M, Ghasemian MB, Baharfar M, Tajik M, Chi Y, Mao G, Kalantar-Zadeh K, Tang J. Liquid Metal Interface for Two-Precursor Autogenous Deposition of Metal Telluride-Tellurium Networks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47394-47404. [PMID: 37755698 DOI: 10.1021/acsami.3c10049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Liquid metal-electrolyte can offer electrochemically reducing interfaces for the self-deposition of low-dimensional nanomaterials. We show that implementing such interfaces from multiprecursors is a promising pathway for achieving nanostructured films with combinatory properties and functionalities. Here, we explored the liquid metal-driven interfacial growth of metal tellurides using eutectic gallium-indium (EGaIn) as the liquid metal and the cation pairs Ag+-HTeO2+ and Cu2+-HTeO2+ as the precursors. At the EGaIn-electrolyte interface, the precursors were reduced and self-deposited autogenously to form interconnected nanoparticle networks. The deposited materials consisted of metal telluride and tellurium with their relative abundance depending on the metal ion type (Ag+ and Cu2+) and the metal-to-tellurium ion ratios. When used as electrode modifiers, the synthesized materials increased the electroactive surface area of unmodified electrodes by over 10 times and demonstrated remarkable activity for model electrochemical reactions, including HexRu(III) responses and dopamine sensing. Our work reveals the promising potential of the liquid metal-templated deposition method for synthesizing complex material systems for electrochemical applications.
Collapse
Affiliation(s)
- Maedehsadat Mousavi
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Mohammad B Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
- School of Chemical and Biomolecular Engineering, University of Sydney (USYD), Darlington, New South Wales 2008, Australia
| | - Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Mohammad Tajik
- School of Chemistry, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Yuan Chi
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
- School of Chemical and Biomolecular Engineering, University of Sydney (USYD), Darlington, New South Wales 2008, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia
| |
Collapse
|
5
|
Liang S, Yang J, Li F, Xie S, Song N, Hu L. Recent progress in liquid metal printing and its applications. RSC Adv 2023; 13:26650-26662. [PMID: 37681047 PMCID: PMC10481125 DOI: 10.1039/d3ra04356h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
This paper focuses on the latest research printing technology and broad application for flexible liquid metal (LM) materials. Through the newest template printing method, centrifugal force assisted method, pen lithography technology, and laser method, the precision of liquid metal printing on the devices was improved to 10 nm. The development of novel liquid metal inks, such as PVA-LM ink and ethanol/PDMS/LM double emulsion ink, have further enhanced the recovery, rapid printing, high conductivity, and strain resistance. At the same time, liquid metals also show promise in the application of biochemical sensors, photocatalysts, composite materials, driving machines, and electrode materials. Liquid metals have been applied to biomedical, pressure/gas, and electrochemical sensors. The sensitivity, biostability, and electrochemical performance of these LM sensors were improved rapidly. They could continue to be used in healthy respiratory, heartbeat monitoring, and dopamine detection. Meanwhile, the applications of liquid metal droplets in catalytic-assisted MoS2 deposition, catalytic growth of two-dimensional (2D) lamellar, catalytic free radical polymerization, catalytic hydrogen absorption/dehydrogenation, photo/electrocatalysis, and other fields were also summarized. Through improving liquid metal composites, magnetic, thermal, electrical, and tensile enhancement alloys, and shape memory alloys with excellent properties could also be prepared. Finally, the applications of liquid metal in micro-motors, intelligent robot feet, nanorobots, self-actuation, and electrode materials were also summarized. This paper comprehensively summarizes the practical application of liquid metals in different fields, which helps understand LMs development trends, and lays a foundation for subsequent research.
Collapse
Affiliation(s)
- Shuting Liang
- College of Chemical and Environmental Engineering, Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences Chongqing 402160 PR China
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province Hangzhou 310018 China
| | - Jie Yang
- College of Chemical and Environmental Engineering, Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences Chongqing 402160 PR China
| | - Fengjiao Li
- Shenzhen Automotive Research Institute, Beijing Institute of Technology Shenzhen 518118 PR China
| | - Shunbi Xie
- College of Chemical and Environmental Engineering, Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences Chongqing 402160 PR China
| | - Na Song
- Department of Oncology, Chongqing Municipal Chinese Medicine Hospital Chongqing 400021 China
| | - Liang Hu
- Key Laboratory of Biomechanics and Mechanobiology, School of Biological Science and Medical Engineering, Beihang University Beijing 100083 PR China
| |
Collapse
|
6
|
Guo Z, Xie W, Gao X, Lu J, Ye J, Li Y, Fahad A, Zhang G, Zhao L. Nanoheterostructure by Liquid Metal Sandwich-Based Interfacial Galvanic Replacement for Cancer Targeted Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300751. [PMID: 36828793 DOI: 10.1002/smll.202300751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Indexed: 06/02/2023]
Abstract
Nanoheterostructures with exquisite interface and heterostructure design find numerous applications in catalysis, plasmonics, electronics, and biomedicine. In the current study, series core-shell metal or metal oxide-based heterogeneous nanocomposite have been successfully fabricated by employing sandwiched liquid metal (LM) layer (i.e., LM oxide/LM/LM oxide) as interfacial galvanic replacement reaction environment. A self-limiting thin oxide layer, which would naturally occur at the metal-air interface under ambient conditions, could be readily delaminated onto the surface of core metal (Fe, Bi, carbonyl iron, Zn, Mo) or metal oxide (Fe3 O4 , Fe2 O3 , MoO3 , ZrO2 , TiO2 ) nano- or micro-particles by van der Waals (vdW) exfoliation. Further on, the sandwiched LM layer could be formed immediately and acted as the reaction site of galvanic replacement where metals (Au, Ag, and Cu) or metal oxide (MnO2 ) with higher reduction potential could be deposited as shell structure. Such strategy provides facile and versatile approaches to design and fabricate nanoheterostructures. As a model, nanocomposite of Fe@Sandwiched-GaIn-Au (Fe@SW-GaIn-Au) is constructed and their application in targeted magnetic resonance imaging (MRI) guided photothermal tumor ablation and chemodynamic therapy (CDT), as well as the enhanced radiotherapy (RT) against tumors, have been systematically investigated.
Collapse
Affiliation(s)
- Zhenhu Guo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing, 100190, China
| | - Wensheng Xie
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaohan Gao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Jingsong Lu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jielin Ye
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Ying Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Abdul Fahad
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Guifeng Zhang
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing, 100190, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Lau CS, Das S, Verzhbitskiy IA, Huang D, Zhang Y, Talha-Dean T, Fu W, Venkatakrishnarao D, Johnson Goh KE. Dielectrics for Two-Dimensional Transition-Metal Dichalcogenide Applications. ACS NANO 2023. [PMID: 37257134 DOI: 10.1021/acsnano.3c03455] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Despite over a decade of intense research efforts, the full potential of two-dimensional transition-metal dichalcogenides continues to be limited by major challenges. The lack of compatible and scalable dielectric materials and integration techniques restrict device performances and their commercial applications. Conventional dielectric integration techniques for bulk semiconductors are difficult to adapt for atomically thin two-dimensional materials. This review provides a brief introduction into various common and emerging dielectric synthesis and integration techniques and discusses their applicability for 2D transition metal dichalcogenides. Dielectric integration for various applications is reviewed in subsequent sections including nanoelectronics, optoelectronics, flexible electronics, valleytronics, biosensing, quantum information processing, and quantum sensing. For each application, we introduce basic device working principles, discuss the specific dielectric requirements, review current progress, present key challenges, and offer insights into future prospects and opportunities.
Collapse
Affiliation(s)
- Chit Siong Lau
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Sarthak Das
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ivan A Verzhbitskiy
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ding Huang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yiyu Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Teymour Talha-Dean
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Physics and Astronomy, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Wei Fu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Dasari Venkatakrishnarao
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Kuan Eng Johnson Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| |
Collapse
|
8
|
Ghasemian MB, Wang Y, Allioux FM, Zavabeti A, Kalantar-Zadeh K. Coating of gallium-based liquid metal particles with molybdenum oxide and oxysulfide for electronic band structure modulation. NANOSCALE 2023; 15:5891-5898. [PMID: 36876581 DOI: 10.1039/d2nr06733a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid metal (LM) droplets are now used in many applications including catalysis, sensing, and flexible electronics. Consequently, the introduction of methods for on-demand alternating electronic properties of LMs is necessary. The active surface of LMs provides a unique environment for spontaneous chemical reactions that enable the formation of thin layers of functional materials for such modulations. Here, we showed the deposition of n-type MoOx and MoOxSy semiconductors on the surface of EGaIn LM droplets under mechanical agitation to successfully modulate their electronic structures. The "liquid solution"-"liquid metal" interaction resulted in the formation of oxide and oxysulfide layers on the surface of LM droplets. The comprehensive study of electronic and optical properties revealed a decrease in the band gap of the droplets after surface decoration with MoOx and MoOxSy, leading to deeper n-type doping of the materials. This method provides a facile procedure for engineering the electronic band structure of LM-based composites when they are necessary for various applications.
Collapse
Affiliation(s)
- Mohammad B Ghasemian
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Yifang Wang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Francois-Marie Allioux
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, Australia
| |
Collapse
|
9
|
Cai S, Ghasemian MB, Rahim MA, Baharfar M, Yang J, Tang J, Kalantar-Zadeh K, Allioux FM. Formation of inorganic liquid gallium particle-manganese oxide composites. NANOSCALE 2023; 15:4291-4300. [PMID: 36745406 DOI: 10.1039/d2nr06384k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Gallium (Ga) is a low melting point post-transition metal that, under mild mechanical agitation, can form micron and submicron-sized particles with combined fluid-like and metallic properties. In this work, an inorganic network of Ga liquid metal particles was synthesised via spontaneous formation of manganese (Mn) oxide species on their liquid metallic surfaces forming an all-inorganic composite. The micron-sized Ga particles formed by sonication were connected together by Mn oxide nanostructures spontaneously established from the reduction of a Mn salt in aqueous solution slightly above the melting point of Ga. The formed Mn oxide nanostructures were found to coalesce from the surface of the Ga particles into a continuous inorganic network. The morphology of the composites could be altered by varying the Mn salt concentration and by performing post-treatment annealing. The composites presented a shell of various Mn oxide nanostructures including wrinkled sheets, rods and nanoneedles, around spherical liquid Ga particles, and a liquid metal core. The photoelectric and optical properties of the composites were thoroughly characterised, which revealed decreasing bandgaps and valence band edge characteristics as a function of increased Mn oxide coverage. The photoluminescence properties of the composites could be also engineered by increasing the Mn oxide coverage. The all-inorganic liquid Ga composite could be formed via a straightforward reduction reaction of a Mn-rich salt at the surface of liquid Ga particles with tunable surface properties for future optoelectronic applications.
Collapse
Affiliation(s)
- Shengxiang Cai
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Mohammad B Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Md Arifur Rahim
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Jiong Yang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
10
|
Zhao Z, Soni S, Lee T, Nijhuis CA, Xiang D. Smart Eutectic Gallium-Indium: From Properties to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203391. [PMID: 36036771 DOI: 10.1002/adma.202203391] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/30/2022] [Indexed: 05/27/2023]
Abstract
Eutectic gallium-indium (EGaIn), a liquid metal with a melting point close to or below room temperature, has attracted extensive attention in recent years due to its excellent properties such as fluidity, high conductivity, thermal conductivity, stretchability, self-healing capability, biocompatibility, and recyclability. These features of EGaIn can be adjusted by changing the experimental condition, and various composite materials with extended properties can be further obtained by mixing EGaIn with other materials. In this review, not only the are unique properties of EGaIn introduced, but also the working principles for the EGaIn-based devices are illustrated and the developments of EGaIn-related techniques are summarized. The applications of EGaIn in various fields, such as flexible electronics (sensors, antennas, electronic circuits), molecular electronics (molecular memory, opto-electronic switches, or reconfigurable junctions), energy catalysis (heat management, motors, generators, batteries), biomedical science (drug delivery, tumor therapy, bioimaging and neural interfaces) are reviewed. Finally, a critical discussion of the main challenges for the development of EGaIn-based techniques are discussed, and the potential applications in new fields are prospected.
Collapse
Affiliation(s)
- Zhibin Zhao
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| | - Saurabh Soni
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Takhee Lee
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Christian A Nijhuis
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Dong Xiang
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| |
Collapse
|
11
|
Mousavi M, Mittal U, Ghasemian MB, Baharfar M, Tang J, Yao Y, Merhebi S, Zhang C, Sharma N, Kalantar-Zadeh K, Mayyas M. Liquid Metal-Templated Tin-Doped Tellurium Films for Flexible Asymmetric Pseudocapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51519-51530. [PMID: 36322105 DOI: 10.1021/acsami.2c15131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Liquid metals can be surface activated to generate a controlled galvanic potential by immersing them in aqueous solutions. This creates energized liquid-liquid interfaces that can promote interfacial chemical reactions. Here we utilize this interfacial phenomenon of liquid metals to deposit thin films of tin-doped tellurium onto rigid and flexible substrates. This is accomplished by exposing liquid metals to a precursor solution of Sn2+ and HTeO2+ ions. The ability to paint liquid metals onto substrates enables us to fabricate supercapacitor electrodes of liquid metal films with an intimately connected surface layer of tin-doped tellurium. The tin-doped tellurium exhibits a pseudocapacitive behavior in 1.0 M Na2SO4 electrolyte and records a specific capacitance of 184.06 F·g-1 (5.74 mF·cm-2) at a scan rate of 10 mV·s-1. Flexible supercapacitor electrodes are also fabricated by painting liquid metals onto polypropylene sheets and subsequently depositing tin-doped tellurium thin films. These flexible electrodes show outstanding mechanical stability even when experiencing a complete 180° bend as well as exhibit high power and energy densities of 160 W·cm-3 and 31 mWh·cm-3, respectively. Overall, this study demonstrates the attractive features of liquid metals in creating energy storage devices and exemplifies their use as media for synthesizing electrochemically active materials.
Collapse
Affiliation(s)
- Maedehsadat Mousavi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney2052, Australia
| | - Uttam Mittal
- School of Chemistry, UNSW Sydney, Kensington, New South Wales2052, Australia
| | - Mohammad B Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney2052, Australia
| | - Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney2052, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney2052, Australia
| | - Yin Yao
- Electron Microscope Unit, University of New South Wales (UNSW), Sydney Campus, Sydney, New South Wales2052, Australia
| | - Salma Merhebi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney2052, Australia
| | - Chengchen Zhang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney2052, Australia
| | - Neeraj Sharma
- School of Chemistry, UNSW Sydney, Kensington, New South Wales2052, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney2052, Australia
| | - Mohannad Mayyas
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney2052, Australia
| |
Collapse
|
12
|
Sovizi S, Tosoni S, Szoszkiewicz R. MoS 2 oxidative etching caught in the act: formation of single (MoO 3) n molecules. NANOSCALE ADVANCES 2022; 4:4517-4525. [PMID: 36341303 PMCID: PMC9595104 DOI: 10.1039/d2na00374k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
We report the presence of sub-nm MoO x clusters formed on basal planes of the 2H MoS2 crystals during thermal oxidative etching in air at a temperature of 370 °C. Using high resolution non-contact atomic force microscopy (AFM) we provide a histogram of their preferred heights. The AFM results combined with density functional theory (DFT) simulations show remarkably well that the MoO x clusters are predominantly single MoO3 molecules and their dimers at the sulfur vacancies. Additional Raman spectroscopy, and energy and wavelength dispersive X-ray spectroscopies as well as Kelvin probe AFM investigations confirmed the presence of the MoO3/MoO x species covering the MoS2 surface only sparsely. The X-ray absorption near edge spectroscopy data confirm the MoO3 stoichiometry. Taken together, our results show that oxidative etching and removal of Mo atoms at the atomic level follow predominantly via formation of single MoO3 molecules. Such findings confirm the previously only proposed oxidative etching stoichiometry.
Collapse
Affiliation(s)
- Saeed Sovizi
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki I Wigury 101 02-089 Warsaw Poland
| | - Sergio Tosoni
- Dipartimento di Scienza dei materiali, Università di Milano-Bicocca via Roberto Cozzi 55 20125 Milan Italy
| | - Robert Szoszkiewicz
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki I Wigury 101 02-089 Warsaw Poland
| |
Collapse
|
13
|
Abstract
Low melting point metals and alloys are the group of materials that combine metallic and liquid properties, simultaneously. The fascinating characteristics of liquid metals (LMs) including softness and high electrical and thermal conductivity, as well as their unique interfacial chemistry, have started to dominate various research disciplines. Utilization of LMs as responsive interfaces, enabling sensing in a flexible and versatile manner, is one of the most promising traits demonstrated for LMs. In the context of LMs-enabled sensors, gallium (Ga) and its alloys have emerged as multipurpose functional materials with many compelling physical and chemical properties. Responsiveness to different stimuli and easy-to-functionalize interfaces of Ga-based LMs make them ideal candidates for a variety of sensing applications. However, despite the vast capabilities of Ga-based LMs in sensing, applications of these materials for developing different sensors have not been fully explored. In the present review, we provide a comprehensive overview regarding the applications of Ga-based LMs in a wide range of sensing approaches that cover different physical and chemical sensors. The unique features of Ga-based LMs, which make them promising materials for sensing, are discussed in subsections followed by relevant case studies. Finally, challenges as well as the prospected future and developing motifs are highlighted for each type of LM-based sensors.
Collapse
Affiliation(s)
- Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| |
Collapse
|
14
|
Aukarasereenont P, Goff A, Nguyen CK, McConville CF, Elbourne A, Zavabeti A, Daeneke T. Liquid metals: an ideal platform for the synthesis of two-dimensional materials. Chem Soc Rev 2022; 51:1253-1276. [PMID: 35107468 DOI: 10.1039/d1cs01166a] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The surfaces of liquid metals can serve as a platform to synthesise two-dimensional materials. By exploiting the self-limiting Cabrera-Mott oxidation reaction that takes place at the surface of liquid metals exposed to ambient air, an ultrathin oxide layer can be synthesised and isolated. Several synthesis approaches based on this phenomenon have been developed in recent years, resulting in a diverse family of functional 2D materials that covers a significant fraction of the periodic table. These straightforward and inherently scalable techniques may enable the fabrication of novel devices and thus harbour significant application potential. This review provides a brief introduction to liquid metals and their alloys, followed by detailed guidance on each developed synthesis technique, post-growth processing methods, integration processes, as well as potential applications of the developed materials.
Collapse
Affiliation(s)
| | - Abigail Goff
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| | - Chung Kim Nguyen
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| | - Chris F McConville
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| |
Collapse
|
15
|
Xie H, Li Z, Cheng L, Haidry AA, Tao J, Xu Y, Xu K, Ou JZ. Recent advances in the fabrication of 2D metal oxides. iScience 2022; 25:103598. [PMID: 35005545 PMCID: PMC8717458 DOI: 10.1016/j.isci.2021.103598] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atomically thin two-dimensional (2D) metal oxides exhibit unique optical, electrical, magnetic, and chemical properties, rendering them a bright application prospect in high-performance smart devices. Given the large variety of both layered and non-layered 2D metal oxides, the controllable synthesis is the critical prerequisite for enabling the exploration of their great potentials. In this review, recent progress in the synthesis of 2D metal oxides is summarized and categorized. Particularly, a brief overview of categories and crystal structures of 2D metal oxides is firstly introduced, followed by a critical discussion of various synthesis methods regarding the growth mechanisms, advantages, and limitations. Finally, the existing challenges are presented to provide possible future research directions regarding the synthesis of 2D metal oxides. This work can provide useful guidance on developing innovative approaches for producing both 2D layered and non-layered nanostructures and assist with the acceleration of the research of 2D metal oxides.
Collapse
Affiliation(s)
- Huaguang Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Liang Cheng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Azhar Ali Haidry
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jiaqi Tao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yi Xu
- School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China
| | - Kai Xu
- School of Engineering, RMIT University, Melbourne 3000, Australia
| | - Jian Zhen Ou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- School of Engineering, RMIT University, Melbourne 3000, Australia
| |
Collapse
|