1
|
Akhound MA, Soleimani M, Pourfath M. Tunable N 2 Fixation Enabled by Ferroelectric Switching in Doped Graphene/In 2Se 3 Dual-Atom Catalysts. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15385-15397. [PMID: 40015996 PMCID: PMC11912189 DOI: 10.1021/acsami.4c21092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
The electrochemical nitrogen reduction reaction (NRR) provides a sustainable alternative to ammonia synthesis. However, the development of catalysts with high activity and selectivity under ambient conditions remains a significant challenge. In this work, we propose a class of dual-atom catalysts (DACs), consisting of two metal atoms embedded in nitrogen-doped porous graphene (M2NPG) supported on a ferroelectric α-In2Se3 monolayer. Using density functional theory (DFT) calculations, we explore the effect of ferroelectric polarization switching on the structural stability, catalytic performance, and reaction mechanisms of these DACs. By computationally screening 27 metal atoms as active sites, we identify four promising candidates (V, Co, Ru, and Ta) with V2NPG@In2Se3 standing out due to its exceptional properties. The precise control of NRR pathways, along with tunable limiting potentials and selective product formation, can be achieved through the polarization switching of the α-In2Se3 monolayer. The combination of low limiting potential, abundant active sites, tunable catalytic behavior, and high selectivity against the hydrogen evolution reaction (HER) highlights the potential of V2NPG@In2Se3 as a promising alternative to traditional single-atom catalysts. This work demonstrates a versatile strategy for integrating DACs with ferroelectric materials, offering valuable insights into designing next-generation catalysts for NRR and beyond.
Collapse
Affiliation(s)
- Mohammad Amin Akhound
- School
of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 14395-515, Iran
- CAMD,
Department of Physics, Technical University
of Denmark, DK - 2800 Kongens Lyngby, Denmark
| | - Maryam Soleimani
- Dipartimento
di Scienza dei Materiali, Università
di Milano − Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Mahdi Pourfath
- School
of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 14395-515, Iran
- Institute
for Microelectronics/E360, TU Wien, A-1040 Vienna, Austria
| |
Collapse
|
2
|
Qian Y, Zhang F, Luo X, Zhong Y, Kang DJ, Hu Y. Synthesis and Electrocatalytic Applications of Layer-Structured Metal Chalcogenides Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310526. [PMID: 38221685 DOI: 10.1002/smll.202310526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/28/2023] [Indexed: 01/16/2024]
Abstract
Featured with the attractive properties such as large surface area, unique atomic layer thickness, excellent electronic conductivity, and superior catalytic activity, layered metal chalcogenides (LMCs) have received considerable research attention in electrocatalytic applications. In this review, the approaches developed to synthesize LMCs-based electrocatalysts are summarized. Recent progress in LMCs-based composites for electrochemical energy conversion applications including oxygen reduction reaction, carbon dioxide reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, overall water splitting, and nitrogen reduction reaction is reviewed, and the potential opportunities and practical obstacles for the development of LMCs-based composites as high-performing active substances for electrocatalytic applications are also discussed. This review may provide an inspiring guidance for developing high-performance LMCs for electrochemical energy conversion applications.
Collapse
Affiliation(s)
- Yongteng Qian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
- College of Pharmacy, Jinhua Polytechnic, Jinhua, Zhejiang, 321007, P. R. China
| | - Fangfang Zhang
- College of Pharmacy, Jinhua Polytechnic, Jinhua, Zhejiang, 321007, P. R. China
| | - Xiaohui Luo
- College of Pharmacy, Jinhua Polytechnic, Jinhua, Zhejiang, 321007, P. R. China
| | - Yijun Zhong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Dae Joon Kang
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, P. R. China
| |
Collapse
|
3
|
Matsoso JB, Antonatos N, Dekanovský L, Lontio Fomekong R, Elliot JD, Gianolio D, Mazánek V, Journet C, Sofer Z. Enhancing Nitrogen Reduction Reaction through Formation of 2 D/2D Hybrid Heterostructures of MoS 2@rGO. ACS APPLIED MATERIALS & INTERFACES 2024; 16:24514-24524. [PMID: 38687904 PMCID: PMC11103663 DOI: 10.1021/acsami.4c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Given the challenging task of constructing an efficient nitrogen reduction reaction (NRR) electrocatalyst with enhanced ambient condition performance, properties such as high specific surface area, fast electron transfer, and design of the catalyst surface constitute a group of key factors to be taken into consideration to guarantee outstanding catalytic performance and durability. Thereof, this work investigates the contribution of the 2D/2D heterojunction interface between MoS2 and reduced graphene oxide (rGO) on the electrocatalytic synthesis of NH3 in an alkaline media. The results revealed remarkable NRR performance on the MoS2@rGO 2D/2D hybrid electrocatalyst, characterized by a high NRR sensitivity (faradaic efficiency) of 34.7% with an NH3 yield rate of 3.98 ± 0.19 mg h-1 cm-2 at an overpotential of -0.3 V vs RHE in 0.1 M KOH solution. The hybrid electrocatalysts also exhibited selectivity for NH3 synthesis against the production of the hydrazine (N2H4) byproduct, hindrance of the competitive hydrogen evolution reaction (HER), and good durability over an operation period of 8 h. In hindsight, the study presented a low-cost and highly efficient catalyst design for achieving enhanced ammonia synthesis in alkaline media via the formation of defect-rich ultrathin MoS2@rGO nanostructures, consisting predominantly of an HER-hindering hexagonal 2H-MoS2 phase.
Collapse
Affiliation(s)
- Joyce B. Matsoso
- Department
of Inorganic Chemistry, University of Chemistry
and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic
- Laboratoire
des Multimatériaux et Interfaces, UMR CNRS 5615, Univ-Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, Cedex, France
| | - Nikolas Antonatos
- Department
of Inorganic Chemistry, University of Chemistry
and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic
- Department
of Semiconductor Materials Engineering, Faculty of Fundamental Problems
of Technology, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Lukáš Dekanovský
- Department
of Inorganic Chemistry, University of Chemistry
and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Roussin Lontio Fomekong
- Department
of Inorganic Chemistry, University of Chemistry
and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Joshua D. Elliot
- Diamond
Light Source, Diamond House, Harwell Science and Innovation Park, Didcot OX11 0DE, Oxfordshire, U.K.
| | - Diego Gianolio
- Diamond
Light Source, Diamond House, Harwell Science and Innovation Park, Didcot OX11 0DE, Oxfordshire, U.K.
| | - Vlastimil Mazánek
- Department
of Inorganic Chemistry, University of Chemistry
and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Catherine Journet
- Laboratoire
des Multimatériaux et Interfaces, UMR CNRS 5615, Univ-Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, Cedex, France
| | - Zdeněk Sofer
- Department
of Inorganic Chemistry, University of Chemistry
and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
4
|
Na S, Chai DF, Li J, Chen S, Yang X, Fu S, Sui G, Guo D. Tuning the interface of M IM II(OH)F@M IM II1-xS (M Ⅰ: Ni, Co; M Ⅱ: Co, Fe) by atomic replacement strategy toward high performance overall water splitting. J Colloid Interface Sci 2024; 655:145-156. [PMID: 37931554 DOI: 10.1016/j.jcis.2023.10.166] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Constructing heterostructure is considered as one of the most promising strategies to reveal high efficiency hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance. Nevertheless, it is highly challenging to obtain stable interfaces and sufficient active sites via conventional method. In addition, Ni, Co and Fe elements share the valence electron structures of 3d6-84s2, the appropriate integration of these metals to induce synergistic effect in multicomponent electrocatalysts can enhance electrochemical activity. Herein, in this work, the MIMII(OH)F@MIMII1-xS (NiFe(OH)F@NiFe1-xS, NiCo(OH)F@NiCo1-xS, CoFe(OH)F@CoFe1-xS) autogenous heterostructure on nickel foam are constructed. As a result, NiFe(OH)F@NiFe1-xS-0.05, NiCo(OH)F@NiCo1-xS-0.05, and CoFe(OH)F@CoFe1-xS-0.05 demonstrate outstanding overpotential for HER (70 mV, 90 mV, 81 mV at -10 mA cm-2) and OER (370 mV, 470 mV, 370 mV at 10 mA cm-2) in alkaline electrolyte, while the overpotential for HER is 176 mV, 189 mV, 167 mV at -10 mA cm-2 and corresponding OER is 290 mV, 390 mV, 300 mV at 10 mA cm-2 in simulated seawater, respectively. In addition, the NiFe, NiCo, CoFe-based electrolyzer acquire favorable overall water splitting activity in alkaline (1.72 V, 1.87 V, 1.66 V) and simulated seawater (1.73 V, 1.75 V, 1.69 V) at 10 mA cm-2. Overall, the above results authenticate the feasibility of developing autogenous heterostructure electrocatalysts for providing hydrogen and oxygen in alkaline and simulated seawater.
Collapse
Affiliation(s)
- Shengnan Na
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Dong-Feng Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | - Shijie Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Xue Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shanshan Fu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Guozhe Sui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| |
Collapse
|
5
|
Yang L, Han H, Sun L, Wu J, Wang M. The Advances, Challenges, and Perspectives on Electrocatalytic Reduction of Nitrogenous Substances to Ammonia: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7647. [PMID: 38138789 PMCID: PMC10744934 DOI: 10.3390/ma16247647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Ammonia (NH3) is considered to be a critical chemical feedstock in agriculture, industry, and other fields. However, conventional Haber-Bosch (HB) ammonia (NH3) production suffers from high energy consumption, harsh reaction conditions, and large carbon dioxide emissions. Despite the emergence of electrocatalytic reduction of nitrogenous substances to NH3 under ambient conditions as a new frontier, there are several bottleneck problems that impede the commercialization process. These include low catalytic efficiency, competition with the hydrogen evolution reaction, and difficulties in breaking the N≡N triple bond. In this review, we explore the recent advances in electrocatalytic NH3 synthesis, using nitrogen and nitrate as reactants. We focus on the contribution of the catalyst design, specifically based on molecular-catalyst interaction mechanisms, as well as chemical bond breaking and directional coupling mechanisms, to address the aforementioned problems during electrocatalytic NH3 synthesis. Finally, we discuss the relevant opportunities and challenges in this field.
Collapse
Affiliation(s)
- Liu Yang
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China; (L.Y.); (H.H.); (L.S.)
| | - Huichun Han
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China; (L.Y.); (H.H.); (L.S.)
| | - Lan Sun
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China; (L.Y.); (H.H.); (L.S.)
| | - Jinxiong Wu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Meng Wang
- School of Materials Engineering, Xi’an Aeronautical University, 259 West Second Ring, Xi’an 710077, China
| |
Collapse
|
6
|
Xu H, Liang N, Bai Z, Yang B, Chen D, Tang H. Design and Realization of Ni Clusters in MoS 2@Ni/RGO Catalysts for Alkaline Efficient Hydrogen Evolution Reaction. Molecules 2023; 28:6658. [PMID: 37764434 PMCID: PMC10538220 DOI: 10.3390/molecules28186658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Due to their almost zero relative hydrogen atom adsorption-free energy, MoS2-based materials have received substantial study. However, their poor electronic conductivity and limited number of catalytic active sites hinder their widespread use in hydrogen evolution reactions. On the other hand, metal clusters offer numerous active sites. In this study, by loading Ni metal clusters on MoS2 and combining them with the better electrical conductivity of graphene, the overpotential of the hydrogen evolution reaction was reduced from 165 mV to 92 mV at 10 mA·cm-2. This demonstrates that a successful method for effectively designing water decomposition is the use of synergistic interactions resulting from interfacial electron transfer between MoS2 and Ni metal clusters.
Collapse
Affiliation(s)
- Haifeng Xu
- School of Information Engineering, Suzhou University, Suzhou 234000, China
| | - Nannan Liang
- School of Information Engineering, Suzhou University, Suzhou 234000, China
- School of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Zhi Bai
- School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China
| | - Bo Yang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
| | - Dongmeng Chen
- College of Science, China University of Petroleum, Qingdao 266580, China
| | - Huaibao Tang
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
7
|
Chen Y, Liang J, Chang Z, Wang X. A {PMo12}-based 2D sandwich-like supramolecular network constructed from a new semi-rigid amide-derived ligand with enhanced capacitive activity and electrochemical sensing performances. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
8
|
Zheng J, Zhang H, Lv J, Zhang M, Wan J, Gerrits N, Wu A, Lan B, Wang W, Wang S, Tu X, Bogaerts A, Li X. Enhanced NH 3 Synthesis from Air in a Plasma Tandem-Electrocatalysis System Using Plasma-Engraved N-Doped Defective MoS 2. JACS AU 2023; 3:1328-1336. [PMID: 37234124 PMCID: PMC10207100 DOI: 10.1021/jacsau.3c00087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
We have developed a sustainable method to produce NH3 directly from air using a plasma tandem-electrocatalysis system that operates via the N2-NOx-NH3 pathway. To efficiently reduce NO2- to NH3, we propose a novel electrocatalyst consisting of defective N-doped molybdenum sulfide nanosheets on vertical graphene arrays (N-MoS2/VGs). We used a plasma engraving process to form the metallic 1T phase, N doping, and S vacancies in the electrocatalyst simultaneously. Our system exhibited a remarkable NH3 production rate of 7.3 mg h-1 cm-2 at -0.53 V vs RHE, which is almost 100 times higher than the state-of-the-art electrochemical nitrogen reduction reaction and more than double that of other hybrid systems. Moreover, a low energy consumption of only 2.4 MJ molNH3-1 was achieved in this study. Density functional theory calculations revealed that S vacancies and doped N atoms play a dominant role in the selective reduction of NO2- to NH3. This study opens up new avenues for efficient NH3 production using cascade systems.
Collapse
Affiliation(s)
- Jiageng Zheng
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Hao Zhang
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Jiabao Lv
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Meng Zhang
- College
of Optical Science and Engineering, Zhejiang
University, Hangzhou 310027, China
| | - Jieying Wan
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Nick Gerrits
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610 Wilrijk, Belgium
| | - Angjian Wu
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Bingru Lan
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Weitao Wang
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Shuangyin Wang
- State
Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xin Tu
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Annemie Bogaerts
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610 Wilrijk, Belgium
| | - Xiaodong Li
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Zhou Y, Wu Y, Guo D, Li J, Li Y, Yang X, Fu S, Sui G, Chai DF. Novel Strain Engineering Combined with a Microscopic Pore Synergistic Modulated Strategy for Designing Lattice Tensile-Strained Porous V 2C-MXene for High-Performance Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15797-15809. [PMID: 36930051 DOI: 10.1021/acsami.2c19729] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transition metal carbon/nitride (MXene) holds immense potential as an innovative electrocatalyst for enhancing the overall water splitting properties. Nevertheless, the re-stacking nature induced by van der Waals force remains a significant challenge. In this work, the lattice tensile-strained porous V2C-MXene (named as TS(24)-P(50)-V2C) is successfully constructed via the rapid spray freezing method and the following hydrothermal treatment. Besides, the influence of lattice strain degree and microscopic pores on the catalytic ability is reviewed and explored systematically. The lattice tensile strain within V2C-MXene could widen the interlayer spacing and accelerate the ion transfer. The microscopic pores could change the ion transmission path and shorten the migration distance. As a consequence, the obtained TS(24)-P(50)-V2C shows extraordinary hydrogen evolution reaction and oxygen evolution reaction activity with the overpotential of 154 and 269 mV, respectively, at the current density of 10 mA/cm2, which is quite remarkable compared to the MXene-based electrocatalysts. Moreover, the overall water splitting device assembled using TS(24)-P(50)-V2C as both anode and cathode demonstrates a low cell voltage requirement of 1.57 V to obtain 10 mA/cm2. Overall, the implementation of this work could offer an exciting avenue to overcome the re-stacking issue of V2C-MXene, affording a high-efficiency electrocatalyst with superior catalytic activity and desirable reaction kinetics.
Collapse
Affiliation(s)
- Yu Zhou
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yousen Wu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Yue Li
- School of Polymer Science & Engineering, Qingdao University of Science & Technology, Qingdao 266101, China
| | - Xue Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shanshan Fu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Guozhe Sui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Dong-Feng Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
10
|
Li K, Ding L, Xie Z, Yang G, Yu S, Wang W, Cullen DA, Meyer HM, Hu G, Ganesh P, Watkins TR, Zhang FY. Robust Copper-Based Nanosponge Architecture Decorated by Ruthenium with Enhanced Electrocatalytic Performance for Ambient Nitrogen Reduction to Ammonia. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11703-11712. [PMID: 36812428 DOI: 10.1021/acsami.2c20809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrochemical conversion of nitrogen to green ammonia is an attractive alternative to the Haber-Bosch process. However, it is currently bottlenecked by the lack of highly efficient electrocatalysts to drive the sluggish nitrogen reduction reaction (N2RR). Herein, we strategically design a cost-effective bimetallic Ru-Cu mixture catalyst in a nanosponge (NS) architecture via a rapid and facile method. The porous NS mixture catalysts exhibit a large electrochemical active surface area and enhanced specific activity arising from the charge redistribution for improved activation and adsorption of the activated nitrogen species. Benefiting from the synergistic effect of the Cu constituent on morphology decoration and thermodynamic suppression of the competing hydrogen evolution reaction, the optimized Ru0.15Cu0.85 NS catalyst presents an impressive N2RR performance with an ammonia yield rate of 26.25 μg h-1 mgcat.-1 (corresponding to 10.5 μg h-1 cm-2) and Faradic efficiency of 4.39% as well as superior stability in alkaline medium, which was superior to that of monometallic Ru and Cu nanostructures. Additionally, this work develops a new bimetallic combination of Ru and Cu, which promotes the strategy to design efficient electrocatalysts for electrochemical ammonia production under ambient conditions.
Collapse
Affiliation(s)
- Kui Li
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Lei Ding
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Zhiqiang Xie
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Gaoqiang Yang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Shule Yu
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Weitian Wang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - David A Cullen
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Harry M Meyer
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Guoxiang Hu
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Panchapakesan Ganesh
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Thomas R Watkins
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Feng-Yuan Zhang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| |
Collapse
|
11
|
In2S3/g-C3N4/CoZnAl-LDH composites with the lamellar dual S-scheme heterostructure and its enhanced photocatalytic performance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Alharthi FA, Ababtain AS, Alanazi HS, Alshayiqi AA, Hasan I. Zinc Vanadate (Zn 3V 2O 8) Immobilized Multiwall Carbon Nanotube (MWCNT) Heterojunction as an Efficient Photocatalyst for Visible Light Driven Hydrogen Production. Molecules 2023; 28:molecules28031362. [PMID: 36771030 PMCID: PMC9919953 DOI: 10.3390/molecules28031362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Z-scheme photocatalytic reaction is considered an effective strategy to promote the photogenerated electron-hole separation for significantly improving the efficiency of photocatalytic hydrogen precipitation from splitting water. In this study, a heterojunction nanocomposite material based on Zn3V2O8 (ZV) with MWCNT was prepared by a hydrothermal process. The photocatalysts were characterized by X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared (FTIR), UV-visible absorption spectroscopy, and transmission electron microscopy (TEM) to understand crystal structure, morphology, and optical properties. The efficiency of the samples was evaluated for the photocatalytic H2 production under visible solar radiation using water glycerol as a sacrificial reagent. The obtained results suggest that, between ZV and ZV@MWCNT, the latter shows higher efficiency for H2 production. The maximum H2 production efficiency was found to be 26.87 μmol g-1 h-1 for ZV and 99.55 μmol g-1 h-1 for ZV@MWCNT. The synergistic effect of MWCNT to ZV resulted in improving the efficiency of charges and light-absorbing capacity, resulting in enhanced H2 production in the heterojunction nanocomposite material. The nanocomposite was stable and highly efficient for H2 production of six or more cycles. Based on the outcomes of this study, it can be observed that forming the heterojunction of individual nano systems could result in more efficient material for H2 production under visible solar energy.
Collapse
|
13
|
Heliso Dolla T, Matthews T, Wendy Maxakato N, Ndungu P, Montini T. Recent advances in transition metal sulfide-based electrocatalysts and photocatalysts for nitrogen fixation. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2022.117049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Chen KK, Chang ZH, Chen YZ, Lu JJ, Liang JJ, Wang XL. Transition metal-decorated molybdotellurate-based architectures constructed from flexible pyrazine-pyridine ligand with tuneable electrochemical sensing performance. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Electro-Catalytic Determination of L-Cysteine Using Multi Walled Carbon Nanotubes-Co3O4 Nanocomposite/Benzoylferrocene/Ionic liquid Modified Carbon Paste Electrode. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Cui Y, Zhao C, Zhao L, Zhang X, Wang J. Preparation of porous layered cobalt-zinc sulfide nanostructures based on graphene oxide supported ZIF-8 template for high-performance supercapacitors. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Yao H, Jin G, Sui G, Li J, Guo D, Liang S, Luo Z, Xu R, Wang C, Tang J. ZIF-67-derived ZnIn2S4/NiCoP Z-scheme heterojunctions for enhanced visible-light-driven photocatalytic hydrogen production. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Two novel Anderson-type polyoxometalate based MnIII complexes constructed from pyrene derivatives: synthesis, photophysical, and electrochemical properties. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Construction of novel CdS@CuS/g-C3N4 heterojunctions for efficient visible light-driven photo-Fenton degradation performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Five compounds based on [Mo12O40]8− and [β-Mo8O26]4− anions: Electrochemical sensing, photocatalytic and supercapacitor properties. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Oxygen vacancy-engineered Fe2O3 porous microspheres with large specific surface area for hydrogen evolution reaction and lithium-sulfur battery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Liu X, Xu X, Li F, Xu J, Ma H, Sun X, Wu D, Zhang C, Ren X, Wei Q. Heterostructured Bi 2S 3/MoS 2 Nanoarrays for Efficient Electrocatalytic Nitrate Reduction to Ammonia Under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38835-38843. [PMID: 35996968 DOI: 10.1021/acsami.2c10323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing efficient electrocatalysts to realize the nitrate reduction reaction (eNO3-RR) for ammonia synthesis as an alternative to the traditional Haber-Bosch production process is of great significance. Herein, the heterostructured Bi2S3/MoS2 nanoarrays were successfully synthesized by Bi2S3 nanowires anchored on MoS2 nanosheets. Owing to the interfacial coupling effect, both particular surface area and exposure active sites increase. Density functional theory further uncovered that the excellent activity originates from charge transfer of the interface and a low potential barrier of 0.58 eV for hydrogenation of *NO to *NOH on Bi2S3/MoS2. Compared with pure Bi2S3 and MoS2 catalysts, the heterostructured Bi2S3/MoS2 nanoarrays exhibit a superior NH3 yield of 15.04 × 10-2 mmol·h-1·cm-2 and a Faraday efficiency of 88.4% at -0.8 V versus the reversible hydrogen electrode. This work provides a new avenue to explore advanced electrocatalysts, which is expected to shorten the distance from the practical application of the eNO3-RR technology.
Collapse
Affiliation(s)
- Xuejing Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Xiaolong Xu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Faying Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Jingyi Xu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Xu Sun
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Changwen Zhang
- School of Physics and Technology, University of Jinan, Jinan 250022 Shandong, China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| |
Collapse
|
23
|
Yu MS, Jesudass SC, Surendran S, Kim JY, Sim U, Han MK. Synergistic Interaction of MoS 2 Nanoflakes on La 2Zr 2O 7 Nanofibers for Improving Photoelectrochemical Nitrogen Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31889-31899. [PMID: 35816758 DOI: 10.1021/acsami.2c05653] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ammonia is a suitable hydrogen carrier with each molecule accounting for up to 17.65% of hydrogen by mass. Among various potential ammonia production methods, we adopt the photoelectrochemical (PEC) technique, which uses solar energy as well as electricity to efficiently synthesize ammonia under ambient conditions. In this article, we report MoS2@La2Zr2O7 heterostructures designed by incorporating two-dimensional (2D)-MoS2 nanoflakes on La2Zr2O7 nanofibers (MoS2@LZO) as photoelectrocatalysts. The MoS2@LZO heterostructures are synthesized by a facile hydrothermal route with electrospun La2Zr2O7 nanofibers and Mo precursors. The MoS2@LZO heterostructures work synergistically to amend the drawbacks of the individual MoS2 electrocatalysts. In addition, the harmonious activity of the mixed phase of pyrochlore/defect fluorite-structured La2Zr2O7 nanofibers generates an interface that aids in increased electrocatalytic activity by enriching oxygen vacancies in the system. The MoS2@LZO electrocatalyst exhibits an enhanced Faradaic efficiency and ammonia yield of approximately 2.25% and 10.4 μg h-1 cm-2, respectively, compared to their corresponding pristine samples. Therefore, the mechanism of improving the PEC ammonia production performance by coupling oxygen-vacant sites to the 2D-semiconductor-based electrocatalysts has been achieved. This work provides a facile strategy to improve the activity of PEC catalysts by designing an efficient heterostructure interface for PEC applications.
Collapse
Affiliation(s)
- Min Seo Yu
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Sebastian Cyril Jesudass
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Subramani Surendran
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju, Jeonnam 58330, Republic of Korea
| | - Joon Young Kim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju, Jeonnam 58330, Republic of Korea
- Research Institute, NEEL Sciences, INC., Gwangju 61186, South Korea
| | - Uk Sim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju, Jeonnam 58330, Republic of Korea
- Research Institute, NEEL Sciences, INC., Gwangju 61186, South Korea
| | - Mi-Kyung Han
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, South Korea
- Research Institute, NEEL Sciences, INC., Gwangju 61186, South Korea
| |
Collapse
|
24
|
Wang B, Yan C, Xu G, Shu X, Lv J, Cui J, Yu D, Bao Z, Wu Y. Electron coupled FeS 2/MoS 2 heterostructure for efficient electrocatalytic ammonia synthesis under ambient conditions. Dalton Trans 2022; 51:9720-9727. [PMID: 35700450 DOI: 10.1039/d2dt01467j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Developing efficient ammonia synthesis technology under ambient conditions is of vital importance. In this work, an FeS2 coupled MoS2 heterostructure with ultrathin features was designed by a one-step hydrothermal process for the electrochemical nitrogen reduction reaction. Density functional theory calculations reveal that the electronic structure of MoS2 greatly changes with the introduction of FeS2. The modulated electronic structure of MoS2 not only exhibits enhanced conductivity but also facilitates the activation of N2 molecules due to its abundant electronic region. The optimized FeS2/MoS2 nanosheet heterostructure achieves a high NH3 yield rate of 2.59 μmol h-1 mg-1 and a FE of 4.63% at -0.3 V vs. RHE. Besides, the well-designed nanocomposite also shows excellent selectivity without N2H4 by-products and exhibits good stability after electrocatalysis for 48 hours.
Collapse
Affiliation(s)
- Bo Wang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| | - Chao Yan
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| | - Guangqing Xu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, PR China. .,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei, 230009, PR China
| | - Xia Shu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, PR China. .,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei, 230009, PR China
| | - Jun Lv
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, PR China. .,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei, 230009, PR China
| | - Jiewu Cui
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, PR China. .,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei, 230009, PR China
| | - Dongbo Yu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, PR China. .,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei, 230009, PR China
| | - Zhiyong Bao
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, PR China. .,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei, 230009, PR China
| | - Yucheng Wu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, PR China. .,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei, 230009, PR China
| |
Collapse
|
25
|
He D, Sun A, Wang Y, Zhang L, Sha J. Surfactant-Assisted Solvothermal Synthesis and Mimic Enzyme Activity Study of Polyoxometalates Based Zn-Organic Framework. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02289-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
An M, Li L, Gao X, Zhu Y, Guan J, Wu Q. The improved photocatalytic performance of the gully-like CdS-APS@TiO2-ZrO2 composite by constructing Z-scheme heterojunction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Shinde PA, Chodankar NR, Abdelkareem MA, Patil SJ, Han YK, Elsaid K, Olabi AG. All Transition Metal Selenide Composed High-Energy Solid-State Hybrid Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200248. [PMID: 35441451 DOI: 10.1002/smll.202200248] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Transition metal selenides (TMSs) have enthused snowballing research and industrial attention due to their exclusive conductivity and redox activity features, holding them as great candidates for emerging electrochemical devices. However, the real-life utility of TMSs remains challenging owing to their convoluted synthesis process. Herein, a versatile in situ approach to design nanostructured TMSs for high-energy solid-state hybrid supercapacitors (HSCs) is demonstrated. Initially, the rose-nanopetal-like NiSe@Cu2 Se (NiCuSe) positive electrode and FeSe nanoparticles negative electrode are directly anchored on Cu foam via in situ conversion reactions. The complementary potential windows of NiCuSe and FeSe electrodes in aqueous electrolytes associated with the excellent electrical conductivity results in superior electrochemical features. The solid-state HSCs cell manages to work in a high voltage range of 0-1.6 V, delivers a high specific energy density of 87.6 Wh kg-1 at a specific power density of 914.3 W kg-1 and excellent cycle lifetime (91.3% over 10 000 cycles). The innovative insights and electrode design for high conductivity holds great pledge in inspiring material synthesis strategies. This work offers a feasible route to develop high-energy battery-type electrodes for next-generation hybrid energy storage systems.
Collapse
Affiliation(s)
- Pragati A Shinde
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Nilesh R Chodankar
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Mohammad Ali Abdelkareem
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Swati J Patil
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Khaled Elsaid
- Chemical Engineering Department, Texas A&M University, College Station, TX, 77843-3122, USA
| | - Abdul Ghani Olabi
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| |
Collapse
|
28
|
Sun C, Ying J, Zhang Y, Jin L, Tian A, Wang X. A series of POM-based compounds by tuning coordination groups and spacers of ligands: electrocatalytic, capacitive and photoelectrocatalytic properties. CrystEngComm 2022. [DOI: 10.1039/d1ce01419f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of POM-based compounds can be used as amperometric detectors for NO2− and Cr(vi). They also have capacitive properties and can effect the high-efficiency photoelectrocatalytic degradation of organic dyes.
Collapse
Affiliation(s)
- Chenxi Sun
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Jun Ying
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Yanping Zhang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Liang Jin
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Aixiang Tian
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiuli Wang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
29
|
Sun C, Zhang Y, Ying J, Jin L, Tian A, Wang X. A series of POM compounds constructed using a flexible ligand containing three coordination groups: electrocatalytic and photocatalytic reduction and amperometric detection of Cr( vi). NEW J CHEM 2022. [DOI: 10.1039/d1nj05316g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Four polyoxometalate-based compounds can be used as electrocatalysts and electrochemical sensors for amperometric detection of NO2− and Cr(VI), and also have the performance of photocatalytic reduction of Cr(VI).
Collapse
Affiliation(s)
- Chenxi Sun
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Yanping Zhang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Jun Ying
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Liang Jin
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Aixiang Tian
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiuli Wang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
30
|
Jin L, Ying J, Zhang Y, Sun C, Tian A, Wang X. A series of polyoxometalate compounds by tuning N sites and numbers of ligands: syntheses, characterization and electrochemical sensing, and photocatalytic and supercapacitor properties. NEW J CHEM 2022. [DOI: 10.1039/d2nj00674j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Using morpholine derivatives with different N sites and numbers, we synthesized seven compounds by a hydrothermal method. They can photocatalytically degrade organic dyes and reduce Cr(vi) and can be used as electrochemical sensors. 4 has capacitor performance.
Collapse
Affiliation(s)
- Liang Jin
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Jun Ying
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Yanping Zhang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Chenxi Sun
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Aixiang Tian
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiuli Wang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
31
|
Xu X, Zhang Y, Ying J, Jin L, Tian A, Wang X. POM-based compounds modified by mono- and bis-triazole derivatives: photocatalytic, electrochemical, and supercapacitor properties. CrystEngComm 2022. [DOI: 10.1039/d1ce01596f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Using triazole derivatives 5 POM-based compounds with electrocatalytic and capacitive properties were obtained under hydrothermal conditions. The compounds have good photocatalytic activity for the degradation of organic dyes and the reduction of Cr(vi).
Collapse
Affiliation(s)
- Xi Xu
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Yanping Zhang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Jun Ying
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Liang Jin
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Aixiang Tian
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiuli Wang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|