1
|
An Y, Han J, Gao X, Yang R, Zhang W, Ren R, Li L, Jiang W, Wang A, Ren N. Few-layer MoS 2 co-assembly with GO to optimize defect channels and stability of GO membranes for high-performance organic-inorganic separation. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137770. [PMID: 40037191 DOI: 10.1016/j.jhazmat.2025.137770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
The selective separation of organic compounds and inorganic salts is essential for wastewater recycling in fine chemical industries such as pharmaceuticals and pesticides. Membrane separation technology offers a promising solution. However, conventional organic membranes often face challenges related to precise separation and solvent resistance. While graphene oxide (GO) membranes exhibit excellent solvent resistance, their separation performance and structural stability require further improvement. In this study, we developed a GO/few-layer molybdenum disulfide (FLMoS2) membrane via co-assembly. The optimized GO/FLMoS2 membrane demonstrated a water permeability of 28.4 LMH/bar, approximately four times higher than conventional GO membranes, and achieved a separation factor exceeding 900 for organic/inorganic mixtures-among the highest reported for two-dimensional (2D) membranes. Comprehensive characterization, including low-field nuclear magnetic resonance (LF-NMR), revealed that this superior performance was attributed to controlled defect channels, enhanced interlayer cross-linking, and the intrinsic rigidity of FLMoS2, which provided high structural stability and minimal swelling. Moreover, mechanical strength assessments, including critical destructive load force and nanoindentation tests, confirmed significant improvement in structural robustness. As a result, the GO/FLMoS2 membrane maintained stable water permeability and separation efficiency over 100 hours of continuous operation and six chemical cleaning cycles, demonstrating its potential for sustainable wastewater treatment and resource recovery.
Collapse
Affiliation(s)
- Yechen An
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jinglong Han
- State Key Laboratory of Urban Water Resource and Environment, School of Eco-Environment, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Xiaoxu Gao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Ruijie Yang
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AL, Canada
| | - Wenhai Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources College of Chemistry, Xinjiang University, Urumqi, Beijing, PR China
| | - Ruiyun Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Luwei Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wenli Jiang
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA 94720, United States.
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Eco-Environment, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Eco-Environment, Harbin Institute of Technology, Shenzhen 518055, PR China
| |
Collapse
|
2
|
Yuan F, Gao Q, Lv Z, Zhang Y, Liu X, Peng J, Li Z. 2D Membranes Interlayered with Bimetallic Metal-Organic Frameworks for Lithium Separation from Brines. NANO LETTERS 2024; 24:14346-14354. [PMID: 39470653 DOI: 10.1021/acs.nanolett.4c04040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Efficient lithium extraction from salt lakes is essential for a sustainable resource supply. This study tackles the challenge of separating Li+ from Mg2+ in complex brines by innovatively integrating two-dimensional (2D) graphene oxide (GO) with bimetallic metal-organic frameworks (MOFs). Zn2+ and Co2+ ions are confined within GO interlayers through an in situ synthesis, forming a 2D Zn-Co MOFs/GO membrane (Zn-Co-GOM). This design exploits the unique advantages of bimetallic MOFs, including enhanced structural stability and superior ion separation capabilities due to the synergistic effects of Zn and Co. The Zn-Co-GOM demonstrates an impressive separation factor of 191 for Li+ over Mg2+, significantly surpassing traditional membranes. This exceptional selectivity is achieved through a combination of size exclusion effects and ion transport energy barriers. Our approach not only enhances the practical application of membrane technology for lithium extraction from salt lakes but also provides valuable insights into the underlying separation mechanisms.
Collapse
Affiliation(s)
- Furong Yuan
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qifeng Gao
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Zixiao Lv
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Yaoling Zhang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Xining 810008, China
| | - Xin Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Xining 810008, China
| | - Jiaoyu Peng
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Xining 810008, China
| | - Zhan Li
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
- Qinghai Minzu University, No. 3, Bayi Middle Road, Xining 810007, China
| |
Collapse
|
3
|
Al-Shaeli M, Benkhaya S, Al-Juboori RA, Koyuncu I, Vatanpour V. pH-responsive membranes: Mechanisms, fabrications, and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173865. [PMID: 38880142 DOI: 10.1016/j.scitotenv.2024.173865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Understanding the mechanisms of pH-responsiveness allows researchers to design and fabricate membranes with specific functionalities for various applications. The pH-responsive membranes (PRMs) are particular categories of membranes that have an amazing aptitude to change their properties such as permeability, selectivity and surface charge in response to changes in pH levels. This review provides a brief introduction to mechanisms of pH-responsiveness in polymers and categorizes the applied polymers and functional groups. After that, different techniques for fabricating pH-responsive membranes such as grafting, the blending of pH-responsive polymers/microgels/nanomaterials, novel polymers and graphene-layered PRMs are discussed. The application of PRMs in different processes such as filtration membranes, reverse osmosis, drug delivery, gas separation, pervaporation and self-cleaning/antifouling properties with perspective to the challenges and future progress are reviewed. Lastly, the development and limitations of PRM fabrications and applications are compared to provide inclusive information for the advancement of next-generation PRMs with improved separation and filtration performance.
Collapse
Affiliation(s)
- Muayad Al-Shaeli
- Paul Wurth Chair, Faculty of Science, Technology and Medicine, University of Luxembourg, Avenue de l'Universit'e, L-4365 Esch-sur-Alzette, Luxembourg
| | - Said Benkhaya
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Vahid Vatanpour
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran.
| |
Collapse
|
4
|
Sun J, Xiong Y, Jia H, Han L, Yin K. Superb microplastics separation performance of graphene oxide tuned by laser bombardment. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132599. [PMID: 37757553 DOI: 10.1016/j.jhazmat.2023.132599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Microplastics have been identified as a significant environmental threat to aquatic ecosystems and human health. Consequently, there is an urgent need for efficient separation methods for small-sized MPs. In this study, a super-hydrophilic graphene oxide (GO) membrane is successfully prepared by facilely depositing GO on a microfiltration substrate, without introducing any surface modification materials, especially nanoparticles, which may cause secondary pollution. Laser bombardment reduces GO lamellar size (23.6% of its original size) and creates an abundance of defects and undulating wrinkles, enabling the deposited GO membrane to have more and shorter pathways for water. As a result, the filtration permeance for 10 μm polyvinyl chloride reaches up to 3396 L m-2 h-1 bar-1, a 1-2-order-of-magnitude enhancement compared to the unirradiated GO membrane, and is also superior to most nanoparticle-modified GO membranes. Simultaneously, the labyrinth structure endows the membrane with a high filtration efficiency of approximately 99% for the majority of MPs. This excellent performance remains virtually unchanged after repeated use. The integration of outstanding separation effects and health safety presents opportunities for practical applications in long-term MP-in-water separation.
Collapse
Affiliation(s)
- Jiawei Sun
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China; Jiangsu Industrial Intelligent and Low-carbon Technology Engineering Center, Suzhou 215000, China; Suzhou Key Laboratory of Intelligent Low-carbon Technology Application, Suzhou 215000, China.
| | - Yuwei Xiong
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Haiyang Jia
- School of Physics and New Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Longxiang Han
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Kuibo Yin
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|
5
|
Liu H, Zhang X, Lv Z, Wei F, Liang Q, Qian L, Li Z, Chen X, Wu W. Ternary Heterostructure Membranes with Two-Dimensional Tunable Channels for Highly Selective Ion Separation. JACS AU 2023; 3:3089-3100. [PMID: 38034952 PMCID: PMC10685435 DOI: 10.1021/jacsau.3c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Selective ion separation from brines is pivotal for attaining high-purity lithium, a critical nonrenewable resource. Conventional methods encounter substantial challenges, driving the quest for streamlined, efficient, and swift approaches. Here, we present a graphene oxide (GO)-based ternary heterostructure membrane with a unique design. By utilizing Zn2+-induced confinement synthesis in a two-dimensional (2D) space, we incorporated two-dimensional zeolitic imidazolate framework-8 (ZIF-8) and zinc alginate (ZA) polymers precisely within layers of the GO membrane, creating tunable interlayer channels with a ternary heterostructure. The pivotal design lies in ion insertion into the two-dimensional (2D) membrane layers, achieving meticulous modulation of layer spacing based on ion hydration radius. Notably, the ensuing layer spacing within the hybrid ionic intercalation membrane occupies an intermediary realm, positioned astutely between small-sized hydrated ionic intercalation membrane spacing and their more extensive counterparts. This deliberate configuration accelerates the swift passage of diminutive hydrated ions while simultaneously impeding the movement of bulkier ions within the brine medium. The outcome is remarkable selectivity, demonstrated by the partitioning of K+/Li+ = 20.9, Na+/K+ = 31.2, and Li+/Mg2+ = 9.5 ion pairs. The ZIF-8/GO heterostructure significantly contributes to the selectivity, while the mechanical robustness and stability, improved by the ZA/GO heterostructure, further support its practical applicability. This report reports an advanced membrane design, offering promising prospects for lithium extraction and various ion separation processes.
Collapse
Affiliation(s)
- Huiling Liu
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- School
of Nuclear Science and Technology, Lanzhou
University, 222 Tianshui
South Road, Lanzhou 730000, China
| | - Xin Zhang
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- School
of Nuclear Science and Technology, Lanzhou
University, 222 Tianshui
South Road, Lanzhou 730000, China
| | - Zixiao Lv
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- School
of Nuclear Science and Technology, Lanzhou
University, 222 Tianshui
South Road, Lanzhou 730000, China
| | - Fang Wei
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Qing Liang
- CAS
Key Laboratory of Chemistry of Northwestern Plant Resources and Key
Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Road, Lanzhou 730000, China
| | - Lijuan Qian
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- School
of Nuclear Science and Technology, Lanzhou
University, 222 Tianshui
South Road, Lanzhou 730000, China
| | - Zhan Li
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- School
of Nuclear Science and Technology, Lanzhou
University, 222 Tianshui
South Road, Lanzhou 730000, China
| | - Ximeng Chen
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- School
of Nuclear Science and Technology, Lanzhou
University, 222 Tianshui
South Road, Lanzhou 730000, China
| | - Wangsuo Wu
- MOE
Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- School
of Nuclear Science and Technology, Lanzhou
University, 222 Tianshui
South Road, Lanzhou 730000, China
| |
Collapse
|
6
|
Liao P, Qiu Z, Zhang X, Yan W, Xu H, Jones C, Chen S. 3D Hierarchical Ti 3C 2T X@PANI-Reduced Graphene Oxide Heterostructure Hydrogel Anode and Defective Reduced Graphene Oxide Hydrogel Cathode for High-Performance Zinc Ion Capacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48416-48430. [PMID: 37791749 DOI: 10.1021/acsami.3c11035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The practical application of supercapacitors (SCs) has been known to be restricted by low energy density, and zinc ion capacitors (ZICs) with a capacitive cathode and a battery-type anode have emerged as a unique technology that can effectively mitigate the issue. To this end, the design of electrodes with low electrochemical impedance, high specific capacitance, and outstanding reaction stability represents a critical first step. Herein, we report the synthesis of hierarchical Ti3C2TX@PANI heterostructures by uniform deposition of conductive polyaniline (PANI) polymer nanofibers on the exposed surface of the Ti3C2TX nanosheets, which are then assembled into a three-dimensional (3D) cross-linking framework by a graphene oxide (GO)-assisted self-convergence hydrothermal strategy. This resulting 3D Ti3C2TX@PANI-reduced graphene oxide (Ti3C2TX@PANI-RGO) heterostructure hydrogel shows a large surface area (488.75 F g-1 at 0.5 A g-1), outstanding electrical conductivity, and fast reaction kinetics, making it a promising electrode material. Separately, defective RGO (DRGO) hydrogels are prepared by a patterning process, and they exhibit a broad and uniform distribution of mesopores, which is conducive to ion transport with an excellent specific capacitance (223.52 F g-1 at 0.5 A g-1). A ZIC is subsequently constructed by utilizing Ti3C2TX@PANI-RGO as the anode and DRGO as the cathode, which displays an extensive operating voltage (0-3.0 V), prominent energy density (1060.96 Wh kg-1 at 761.32 W kg-1, 439.87 Wh kg-1 at 9786.86 W kg-1), and durable cycle stability (retaining 67.9% of the original capacitance after 4000 cycles at 6 A g-1). This study underscores the immense prospect of the Ti3C2TX-based heterostructure hydrogel and DRGO as a feasible anode and cathode for ZICs, respectively.
Collapse
Affiliation(s)
- Peng Liao
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zenghui Qiu
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Zhang
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenjie Yan
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haijun Xu
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
| | - Colton Jones
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
7
|
Xi J, Zhang Y, Lou Y, Chu Y, Dai H, Xu Z, Xiao H, Wu W. A smart gating nanocellulose membrane showing selective separation and self-cleaning performance. Int J Biol Macromol 2023:125236. [PMID: 37302630 DOI: 10.1016/j.ijbiomac.2023.125236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
A smart gating membrane based on thermal-sensitive poly (N-isopropyl acrylamide) (PNIPAM)-grafted nanocellulose and carbon nanotube (CNT) was prepared. The presence of PNIPAM shell on cellulose nanofibrils (CNFs) endow the composite membrane with thermal responsiveness. By external stimulation, an increase temperature from 10 °C to 70 °C allows the average pore size of the membrane to be controlled from 28 nm to 110 nm, as well as the water permeance from 440 L·m-2·h-1·bar-1 to 1088 L·m-2·h-1·bar-1. The gating ratio of the membrane can reach 2.47. The photothermal effect of CNT rapidly warms up the membrane to the lowest critical solution temperature in the water, avoiding the constraint that the whole water phase cannot be heated throughout the practical use process. The membrane can precisely control the nanoparticles to concentrate at 25.3 nm, 47.7 nm or 102 nm by adjust the temperature. In addition, the water permeance can be restored to 370 L·m-2·h-1·bar-1 by washing the membrane under light. The smart gating membrane has a wide application in substance multi-stage separation and selective separation, and it can realize self-cleaning.
Collapse
Affiliation(s)
- Jianfeng Xi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanyuan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yanling Lou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Youlu Chu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyang Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Weibing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
8
|
An YC, Gao XX, Jiang WL, Han JL, Ye Y, Chen TM, Ren RY, Zhang JH, Liang B, Li ZL, Wang AJ, Ren NQ. A critical review on graphene oxide membrane for industrial wastewater treatment. ENVIRONMENTAL RESEARCH 2023; 223:115409. [PMID: 36746203 DOI: 10.1016/j.envres.2023.115409] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
An important way to promote the environmental industry's goal of carbon reduction is to promote the recycling of resources. Membrane separation technology has unique advantages in resource recovery and advanced treatment of industrial wastewater. However, the great promise of traditional organic membrane is hampered by challenges associated with organic solvent tolerance, lack of oxidation resistance, and serious membrane fouling control. Moreover, the high concentrations of organic matter and inorganic salts in the membrane filtration concentrate also hinder the wider application of the membrane separation technology. The emerging cost-effective graphene oxide (GO)-based membrane with excellent resistance to organic solvents and oxidants, more hydrophilicity, lower membrane fouling, better separation performance has been expected to contribute more in industrial wastewater treatment. Herein, we provide comprehensive insights into the preparation and characteristic of GO membranes, as well as current research status and problems related to its future application in industrial wastewater treatment. Finally, concluding remarks and future perspectives have been deduced and recommended for the GO membrane separation technology application for industrial wastewater treatment, which leads to realizing sustainable wastewater recycling and a nearly "zero discharge" water treatment process.
Collapse
Affiliation(s)
- Ye-Chen An
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xiao-Xu Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wen-Li Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Jing-Long Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| | - Yuan Ye
- Key Laboratory for Advanced Technology in Environment Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Tian-Ming Chen
- Key Laboratory for Advanced Technology in Environment Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Rui-Yun Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jia-Hui Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| |
Collapse
|
9
|
Zhou K, Guo C, Gan F, Xin JH, Yu H. Large-area ultra-thin GO nanofiltration membranes prepared by a pre-crosslinking rod coating technique. J Colloid Interface Sci 2023; 640:261-269. [PMID: 36863182 DOI: 10.1016/j.jcis.2023.02.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
In existing separation membranes, it is difficult to quickly produce large-area graphene oxide (GO) nanofiltration membranes with high permeability and high rejection, which is the bottleneck of industrialization. In this study, a pre-crosslinking rod-coating technique is reported. A GO-P-Phenylenediamine (PPD) suspension was obtained by chemically crosslinking GO and PPD for 180 min. After scraping and coating with a Mayer rod, the ultra-thin GO-PPD nanofiltration membrane with an area of 400 cm2 and a thickness of 40 nm was prepared in 30 s. The PPD formed an amide bond with GO to improve its stability. It also increased the layer spacing of GO membrane, which could improve the permeability. The prepared GO nanofiltration membrane had a 99 % rejection rate for dyes such as methylene blue, crystal violet, and Congo red. Meanwhile, the permeation flux reached to 42 LMH/bar, which was 10 times that of the GO membrane without PPD crosslinking, and it still maintained excellent stability under strongly acidic and basic conditions. This work successfully solved the problems of GO nanofiltration membranes, including the large-area fabrication, high permeability and high rejection.
Collapse
Affiliation(s)
- Kai Zhou
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Changsheng Guo
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Feng Gan
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - John H Xin
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Hui Yu
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
10
|
Torres I, González-Tobío B, Ares P, Gómez-Herrero J, Zamora F. Evaluation of the degradation of the graphene-polypropylene composites of masks in harsh working conditions. MATERIALS TODAY. CHEMISTRY 2022; 26:101146. [PMID: 36159446 PMCID: PMC9481924 DOI: 10.1016/j.mtchem.2022.101146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 05/12/2023]
Abstract
The recent COVID-19 outbreak has led health authorities to recommend at least the use of surgical masks, most preferably respirators (FFP2 or KN95), to prevent the spread of the virus. Non-woven fabrics have been chosen as the best option to manufacture the face masks, due to their filtration efficiency, low cost, and versatility. Modifying the mask filters with graphene has been of great interest due to its potential use as antibacterial and virucidal properties. Indeed, some companies have commercialized face masks in which graphene is coated and/or embedded. However, the Canadian sanitary authorities advised against using the Shandong Shengquan New Materials Co. graphene masks because of the possibility of pulmonary damage produced by graphene inhalation. Thus, we have analyzed the stability of the graphene filter of these masks and compared it with two other commercially available graphene mask filters, evaluating the morphological and spectroscopical change of the fibers, as well as the particles released during the endurance tests. Our work introduces the necessary tools and methodology to evaluate the potential degradation of face masks under extreme working conditions. These methods complement the present standard tests ensuring the security of the new filters based on composites or nanomaterials.
Collapse
Affiliation(s)
- I Torres
- Departamento de Química Inorgánica, Institute for Advanced Research in Chemical Sciences (IAdChem) and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - B González-Tobío
- Departamento de Química Inorgánica, Institute for Advanced Research in Chemical Sciences (IAdChem) and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - P Ares
- Departamento de Física de La Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - J Gómez-Herrero
- Departamento de Física de La Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - F Zamora
- Departamento de Química Inorgánica, Institute for Advanced Research in Chemical Sciences (IAdChem) and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
11
|
Kamran U, Rhee KY, Lee SY, Park SJ. Innovative progress in graphene derivative-based composite hybrid membranes for the removal of contaminants in wastewater: A review. CHEMOSPHERE 2022; 306:135590. [PMID: 35803370 DOI: 10.1016/j.chemosphere.2022.135590] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/04/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Graphene derivatives (graphene oxide) are proved as an innovative carbon materials that are getting more attraction in membrane separation technology because of its unique properties and capability to attain layer-to-layer stacking, existence of high oxygen-based functional groups, and generation of nanochannels that successively enhance the selective pollutants removal performance. The review focused on the recent innovations in the development of graphene derivative-based composite hybrid membranes (GDHMs) for the removal of multiple contaminants from wastewater treatment. To design GDHMs, it was observed that at first GO layers undergo chemical treatments with either different polymers, plasma, or sulfonyl. After that, the chemically treated GO layers were decorated with various active functional materials (either with nanoparticles, magnetite, or nanorods, etc.). By preparing GDHMs, properties such as permeability, porosity, hydrophilicity, water flux, stability, feasibility, mechanical strength, regeneration ability, and antifouling tendency were excessively improved as compared to pristine GO membranes. Different types of novel GDHMs were able to remove toxic dyes (77-100%), heavy metals/ions (66-100%), phenols (40-100%), and pharmaceuticals (74-100%) from wastewater with high efficiency. Some of GDHMs were capable to show dual contaminant removal efficacy and antibacterial activity. In this study, it was observed that the most involved mechanisms for pollutants removal are size exclusion, transport, electrostatic interactions, adsorption, and donnan exclusion. In addition to this, interaction mechanism during membrane separation technology has also been elaborated by density functional theory. At last, in this review the discussion related to challenges, limitations, and future outlook for the applications of GDHMs has also been provided.
Collapse
Affiliation(s)
- Urooj Kamran
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea; Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin, 445-701, South Korea
| | - Kyong Yop Rhee
- Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin, 445-701, South Korea.
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.
| |
Collapse
|
12
|
Sun T, Zhu Z. Light resonantly enhances the permeability of functionalized membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Deng Y, Wang Y, Xiao X, Saucedo BJ, Zhu Z, Xie M, Xu X, Yao K, Zhai Y, Zhang Z, Chen J. Progress in Hybridization of Covalent Organic Frameworks and Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202928. [PMID: 35986438 DOI: 10.1002/smll.202202928] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) hybrid materials are a class of porous crystalline materials that integrate MOFs and COFs with hierarchical pore structures. As an emerging porous frame material platform, MOF/COF hybrid materials have attracted tremendous attention, and the field is advancing rapidly and extending into more diverse fields. Extensive studies have shown that a broad variety of MOF/COF hybrid materials with different structures and specific properties can be synthesized from diverse building blocks via different chemical reactions, driving the rapid growth of the field. The allowed complementary utilization of π-conjugated skeletons and nanopores for functional exploration has endowed these hybrid materials with great potential in challenging energy and environmental issues. It is necessary to prepare a "family tree" to accurately trace the developments in the study of MOF/COF hybrid materials. This review comprehensively summarizes the latest achievements and advancements in the design and synthesis of MOF/COF hybrid materials, including COFs covalently bonded to the surface functional groups of MOFs (MOF@COF), MOFs grown on the surface of COFs (COF@MOF), bridge reaction between COF and MOF (MOF+COF), and their various applications in catalysis, energy storage, pollutant adsorption, gas separation, chemical sensing, and biomedicine. It concludes with remarks concerning the trend from the structural design to functional exploration and potential applications of MOF/COF hybrid materials.
Collapse
Affiliation(s)
- Yang Deng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yue Wang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Brett Jacob Saucedo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhijun Zhu
- Institute of Molecular Metrics, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Mingsen Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xinru Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Kun Yao
- Shenzhen Zhongxing New Material Technology Company Ltd., Shenzhen, 518000, P. R. China
| | - Yanling Zhai
- Institute of Molecular Metrics, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
14
|
Qiu M, Shen Z, Xia Q, Li X, Huang H, Wang Y, Liu Y, Wang Y. Metal-polyphenol cross-linked titanium carbide membranes with stable interlayer spacing for efficient wastewater treatment. J Colloid Interface Sci 2022; 628:649-659. [PMID: 36027775 DOI: 10.1016/j.jcis.2022.08.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
Membranes based on transition metal carbides/nitrides (MXenes) have significant water treatment potential because of their unique molecular sieving properties and excellent permeation performance. However, hydrophilic MXenes swell upon water immersion, and improving their stability remains challenging. In this study, a Fe3+-tannic acid (TA) complex was used as a cross-linker and surface modifier to prepare high-performance titanium carbide (Ti3C2Tx) MXene laminar membranes. Fe3+-TA formation on the nanosheets increased the interlayer spacing and stabilized the laminar structure. The membrane with the highest performance among the as-prepared membranes exhibited a high water permeance of 90.5 L/m-2(-|-)h-1 bar-1 (which is twice that of the pristine Ti3C2Tx membrane) and good separation efficiency (methyl blue rejection rate: ∼99.8 %; Na2SO4 rejection rate: ∼5.0 %). Furthermore, the Fe3+-TA complex enhanced the membrane hydrophilicity, resulting in excellent antifouling properties. This study provides an environmentally friendly and facile method for fabricating two-dimensional loose nanofiltration membranes for textile wastewater treatment.
Collapse
Affiliation(s)
- Ming Qiu
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhangfeng Shen
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Qineng Xia
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xi Li
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Hong Huang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yuan Wang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yanan Liu
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yangang Wang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
15
|
Li P, Jiang L, Liu L, Zhao P, Xie G, Xu X, Liu C, Jia J, Liu M, Zhang M. Chelation-based metal cation stabilization of graphene oxide membranes towards efficient sieving of mono/divalent ions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Kim JY, Choi Y, Choi J, Kim YJ, Kang J, Kim JP, Kim JH, Kwon O, Kim SS, Kim DW. Graphene Nanoribbon/Carbon Nanotube Hybrid Hydrogel: Rheology and Membrane for Ultrafast Molecular Diafiltration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11779-11788. [PMID: 35192336 DOI: 10.1021/acsami.1c24733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hybrids based on carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) are expected to have synergistic effects for various applications. Herein, we demonstrate a simple one-pot synthesis of a CNT/GNR hybrid material by adjusting the oxidation and unzipping conditions of multi-walled CNTs (MWNTs). The MWNT/graphene oxide nanoribbon (GONR) hybrid was dispersed in various solvents, particularly showing the hybrid hydrogel phase in water at a concentration of 40 mg mL-1. The MWNT/GONR hydrogel exhibited shear-thinning behavior, which can be beneficial for coating a large-area MWNT/GONR layer onto a polymeric porous support by using a scalable slot-die coater. The MWNT/GONR membrane exhibited an outstanding nanofiltration performance, with a molecular weight cutoff of 300 Da and a dye/salt diafiltration performance with a separation factor of 1000 and a water flux of 367.8 LMH, far surpassing the upper bound of diafiltration performance of the existing membranes.
Collapse
Affiliation(s)
- Ju Yeon Kim
- Department of Chemical and Biomolecular Engineering, YONSEI University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yunkyu Choi
- Department of Chemical and Biomolecular Engineering, YONSEI University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiho Choi
- Carbon Composite Materials Research Center, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do 55324, Republic of Korea
| | - Yong-Jae Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junhyeok Kang
- Department of Chemical and Biomolecular Engineering, YONSEI University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jeong Pil Kim
- Department of Chemical and Biomolecular Engineering, YONSEI University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ji Hoon Kim
- Department of Chemical and Biomolecular Engineering, YONSEI University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ohchan Kwon
- Department of Chemical and Biomolecular Engineering, YONSEI University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sung-Soo Kim
- Carbon Composite Materials Research Center, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do 55324, Republic of Korea
| | - Dae Woo Kim
- Department of Chemical and Biomolecular Engineering, YONSEI University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
17
|
Wang J, Yu Z, Zhu X, Xiao X, Pang Y, Tan Q, Liu Y. A super-hydrophilic NH 2-MIL-125 composite film with dopamine-modified graphene oxide is used for water treatment. NEW J CHEM 2022. [DOI: 10.1039/d2nj02181a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is always concerning about how to remove oil–water emulsions and dyes simultaneously and how to find a suitable separation film.
Collapse
Affiliation(s)
- Juan Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Zongxue Yu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Southwest Petr Univ, Res Inst Ind Hazardous Waste Disposal & Resource, Chengdu 610500, Sichuan, P. R. China
| | - Ximei Zhu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Xuehan Xiao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Yao Pang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - QiuYue Tan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Yucheng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Southwest Petr Univ, Res Inst Ind Hazardous Waste Disposal & Resource, Chengdu 610500, Sichuan, P. R. China
| |
Collapse
|