1
|
Liu Z, Lv Y, Sun Y, Hong C, Fan Y, Ma X, Gao C, Lin J, Chen T, Chen J, Wu A. New insights of transition metal sulfide nanoparticles for tumor precision diagnosis and treatment. J Control Release 2025:113871. [PMID: 40418988 DOI: 10.1016/j.jconrel.2025.113871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/13/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025]
Abstract
Transition metal sulfide nanoparticles (TMSs), with their unique photothermal conversion effects, Fenton-like catalytic activity, engineerable structure, and good biocompatibility, are becoming a cutting-edge research focus in the field of tumor precision diagnosis and therapy. This review systematically explores the groundbreaking potential of TMSs (MxSy, M = Fe, Mn, Cu, Mo, Co, Ni, W, etc.) in tumor precision diagnosis, specific non-invasive treatment, and multimodal synergistic therapy from the perspective of "structural design-function regulation-integrated diagnosis and therapy." The exceptional magnetic properties, photothermal effects, and high X-ray absorption capabilities of TMSs have driven extensive research and widespread application in tumor imaging, including magnetic resonance imaging, photoacoustic imaging, and computed tomography. Furthermore, we delve into mechanistically integrated strategies for various clinical applications, such as phototherapy, chemodynamic therapy, sonodynamic therapy, gas therapy, and immunotherapy. These new approaches demonstrate high specificity, efficacy, and low toxicity compared with traditional clinical treatments, highlighting the significant application value of TMSs in revolutionizing cancer therapy. Finally, the review addresses the opportunities and challenges of employing transition TMSs as nano-formulations for cancer. This review aims to provide new insights into the prospects and hurdles that need to be addressed to fully exploit the potential of TMSs in precision tumor therapy and integrated diagnosis and treatment.
Collapse
Affiliation(s)
- Zhusheng Liu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Yagui Lv
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yanzi Sun
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Chengyuan Hong
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yubo Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Xuehua Ma
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Changyong Gao
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jie Lin
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tianxiang Chen
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Junge Chen
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China.
| | - Aiguo Wu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| |
Collapse
|
2
|
Xie L, Wu H, Li Y, Shi L, Liu Y. Recent Development of Nanozymes for Combating Bacterial Drug Resistance: A Review. Adv Healthc Mater 2025; 14:e2402659. [PMID: 39388414 DOI: 10.1002/adhm.202402659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/31/2024] [Indexed: 10/12/2024]
Abstract
The World Health Organization has warned that without effective action, deaths from drug-resistant bacteria can exceed 10 million annually, making it the leading cause of death. Conventional antibiotics are becoming less effective due to rapid bacterial drug resistance and slowed new antibiotic development, necessitating new strategies. Recently, materials with catalytic/enzymatic properties, known as nanozymes, have been developed, inspired by natural enzymes essential for bacterial eradication. Unlike recent literature reviews that broadly cover nanozyme design and biomedical applications, this review focuses on the latest advancements in nanozymes for combating bacterial drug resistance, emphasizing their design, structural characteristics, applications in combination therapy, and future prospects. This approach aims to promote nanozyme development for combating bacterial drug resistance, especially towards clinical translation.
Collapse
Affiliation(s)
- Lingping Xie
- The People's Hospital of Yuhuan, Taizhou, Zhejiang, 317600, China
| | - Haoyue Wu
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Yuanfeng Li
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yong Liu
- The People's Hospital of Yuhuan, Taizhou, Zhejiang, 317600, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Yan Y, Xu N, Wang X, Shi L, Huang Q, Wang J, Li X, Ni T, Yang Z, Guo W. Mesoporous polydopamine/copper sulfide hybrid nanocomposite for highly efficient NIR-triggered bacterial inactivation. Int J Biol Macromol 2024; 277:134238. [PMID: 39084434 DOI: 10.1016/j.ijbiomac.2024.134238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/08/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Polydopamine has gained considerable attention in the biomaterial domain owing to its excellent biocompatibility, antioxidant activity, photothermal effect and adhesion property. Herein, copper sulfide (Cu2-xS) wrapped in mesoporous polydopamine (MPDA) was synthesized through in-situ polymerization, followed by the surface modification with cationic polyethyleneimine (PEI). The mussel-inspired MPDA matrix successfully prevented the oxidation and agglomeration of Cu2-xS nanoparticles, and regulated the release of copper ions and reactive oxygen species (ROS) levels. Surface-modified PEI endow MPDA@Cu2-xS with positive charges, facilitating their rapid contact with negatively charged bacteria through electrostatic interactions. The pH-dependent Cu+/Cu2+ release and NIR-responsive ROS generation were confirmed using molecular probes and electron spin resonance (ESR). The MPDA@Cu2-xS/PEI showed significantly enhanced antibacterial activity and reduced cytotoxicity for NIH3T3 cells. Under NIR irradiation (1.0 W/cm2, 10 min), germicidal efficiency against Escherichia coli (E. coli) and Staphyloccocus aureus (S. aureus) could reach 100 % and 99.94 %, respectively. The exceptional antibacterial activities of MPDA@Cu2-xS/PEI was mainly attributed to the synergistic photothermal effect, controlled release of copper ions and ROS generation, as well as electrostatic interaction. More importantly, the MPDA@Cu2-xS/PEI composite exhibited excellent biocompatibility and biosafety. Overall, this organic/inorganic hybrid holds great potential as a promising candidate for wound treatment.
Collapse
Affiliation(s)
- Yunhui Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang engineering technology research center of functional medicine nanomaterials, Xinxiang Medical University, Xinxiang 453003, China.
| | - Na Xu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang engineering technology research center of functional medicine nanomaterials, Xinxiang Medical University, Xinxiang 453003, China
| | - Xian Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang engineering technology research center of functional medicine nanomaterials, Xinxiang Medical University, Xinxiang 453003, China
| | - Li Shi
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang engineering technology research center of functional medicine nanomaterials, Xinxiang Medical University, Xinxiang 453003, China
| | - Qianqian Huang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang engineering technology research center of functional medicine nanomaterials, Xinxiang Medical University, Xinxiang 453003, China
| | - Jia Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang engineering technology research center of functional medicine nanomaterials, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiangrong Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang engineering technology research center of functional medicine nanomaterials, Xinxiang Medical University, Xinxiang 453003, China
| | - Tianjun Ni
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang engineering technology research center of functional medicine nanomaterials, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhijun Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang engineering technology research center of functional medicine nanomaterials, Xinxiang Medical University, Xinxiang 453003, China
| | - Wei Guo
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang engineering technology research center of functional medicine nanomaterials, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
4
|
Li Y, Yu J, Zhang W, Shan J, Chen H, Ma Y, Wang X. Copper selenide nanosheets with photothermal therapy-related properties and multienzyme activity for highly effective eradication of drug resistance. J Colloid Interface Sci 2024; 666:434-446. [PMID: 38608638 DOI: 10.1016/j.jcis.2024.03.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Bacterial infections are among the most significant causes of death in humans. Chronic misuse or uncontrolled use of antibiotics promotes the emergence of multidrug-resistant superbugs that threaten public health through the food chain and cause environmental pollution. Based on the above considerations, copper selenide nanosheets (CuSe NSs) with photothermal therapy (PTT)- and photodynamic therapy (PDT)-related properties have been fabricated. These CuSe NSs possess enhanced PDT-related properties and can convert O2 into highly toxic reactive oxygen species (ROS), which can cause significant oxidative stress and damage to bacteria. In addition, CuSe NSs can efficiently consume glutathione (GSH) at bacterial infection sites, thus further enhancing their sterilization efficacy. In vitro antibacterial experiments with near-infrared (NIR) irradiation have shown that CuSe NSs have excellent photothermal bactericidal properties. These experiments also showed that CuSe NSs exerted excellent bactericidal effects on wounds infected with methicillin-resistant Staphylococcus aureus (MRSA) and significantly promoted the healing of infected wounds. Because of their superior biological safety, CuSe NSs are novel copper-based antimicrobial agents that are expected to enter clinical trials, serving as a modern approach to the major problem of treating bacterially infected wounds.
Collapse
Affiliation(s)
- Yongsheng Li
- Department of Vascular Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jiajia Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Zhang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China
| | - Jie Shan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hongrang Chen
- Department of Hepatobiliary Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Ma
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.
| | - Xianwen Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
5
|
Li J, Cai X, Jiang P, Wang H, Zhang S, Sun T, Chen C, Fan K. Co-based Nanozymatic Profiling: Advances Spanning Chemistry, Biomedical, and Environmental Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307337. [PMID: 37724878 DOI: 10.1002/adma.202307337] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Nanozymes, next-generation enzyme-mimicking nanomaterials, have entered an era of rational design; among them, Co-based nanozymes have emerged as captivating players over times. Co-based nanozymes have been developed and have garnered significant attention over the past five years. Their extraordinary properties, including regulatable enzymatic activity, stability, and multifunctionality stemming from magnetic properties, photothermal conversion effects, cavitation effects, and relaxation efficiency, have made Co-based nanozymes a rising star. This review presents the first comprehensive profiling of the Co-based nanozymes in the chemistry, biology, and environmental sciences. The review begins by scrutinizing the various synthetic methods employed for Co-based nanozyme fabrication, such as template and sol-gel methods, highlighting their distinctive merits from a chemical standpoint. Furthermore, a detailed exploration of their wide-ranging applications in biosensing and biomedical therapeutics, as well as their contributions to environmental monitoring and remediation is provided. Notably, drawing inspiration from state-of-the-art techniques such as omics, a comprehensive analysis of Co-based nanozymes is undertaken, employing analogous statistical methodologies to provide valuable guidance. To conclude, a comprehensive outlook on the challenges and prospects for Co-based nanozymes is presented, spanning from microscopic physicochemical mechanisms to macroscopic clinical translational applications.
Collapse
Affiliation(s)
- Jingqi Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinda Cai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Peng Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Huayuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shiwei Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
6
|
Li Z, Wei W, Zhang M, Guo X, Zhang B, Wang D, Jiang X, Liu F, Tang J. Cryptotanshinone-Doped Photothermal Synergistic MXene@PDA Nanosheets with Antibacterial and Anti-Inflammatory Properties for Wound Healing. Adv Healthc Mater 2023; 12:e2301060. [PMID: 37387333 DOI: 10.1002/adhm.202301060] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Humans are threatened by bacteria and other microorganisms, resulting in countless pathogen-related infections and illnesses. Accumulation of reactive oxygen species (ROS) in infected wounds activates strong inflammatory responses. The overuse of antibiotics has led to increasing bacterial resistance. Therefore, effective ROS scavenging and bactericidal capacity are essential and the advanced development of collaborative therapeutic techniques to combat bacterial infections is needed. Here, this work developes an MXene@polydopamine-cryptotanshinone (MXene@PDA-CPT) antibacterial nanosystem with excellent reactive oxygen and nitrogen species scavenging ability, which effectively inactivates drug-resistant bacteria and biofilms, thereby promoting wound healing. In this system, the adhesion of polydopamine nanoparticles to MXene produced a photothermal synergistic effect and free radical scavenging activity, presenting a promising antibacterial and anti-inflammatory strategy. This nanosystem causes fatal damage to bacterial membranes. The loading of cryptotanshinone further expanded the advantages of the system, causing a stronger bacterial killing effect and inflammation mitigatory effect with desired biosafety and biocompatibility. In addition, combining nanomaterials and active ingredients of traditional Chinese medicine, this work provides a new rationale for the future development of wound dressings, which contributes to eliminating bacterial resistance, delaying disease deterioration, and alleviating the pain of patients.
Collapse
Affiliation(s)
- Zongjia Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wei Wei
- Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Miaomiao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xinyue Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bailin Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Dapeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Fangxin Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
7
|
Jia P, Zou Y, Jiang J. CuS Hybrid Hydrogel for Near-Infrared-Enhanced Infected Wound Healing: A Gelatin-Assisted Synthesis and Direct Incorporation Strategy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22929-22943. [PMID: 37139829 DOI: 10.1021/acsami.3c02241] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Developing antibacterial hydrogels, with good mechanical strength and self-healing ability to resist bacterial invasion and accelerate skin regeneration, is critical for infected full-thickness skin wound treatment. Herein, we report a gelatin-assisted synthesis and direct incorporation strategy to construct a CuS hybrid hydrogel for infected wound healing applications. CuS nanodots (NDs) were synthesized directly inside a gelatin host matrix (Gel-CuS), and these tightly confined and evenly distributed CuS NDs displayed superb dispersibility and stability against oxidation. Gel-CuS was then used to crosslink with oxidized dextran (ODex) to form a Gel-CuS-8/ODex hydrogel (8 stands for the concentration of CuS, in mM) via a facile Schiff-base reaction, which exhibited improved mechanical properties, excellent adhesion and self-healing ability, suitable swelling and degradation behavior, and good biocompatibility. The Gel-CuS-8/ODex hydrogel can act as an efficient antibacterial agent due to its photothermal and photodynamic properties under a 1064 nm laser irradiation. Furthermore, in animal experiments, when being applied as wound dressing, the Gel-CuS-8/ODex hydrogel significantly promoted infected full-thickness cutaneous wound healing through improved epidermis and granulation tissue formation and accelerated generation of new blood vessels, hair follicles, and collagen deposition after proper near-infrared irradiation treatment. This work provides a promising strategy to synthesize functional inorganic nanomaterials tightly and evenly embedded inside modified natural hydrogel networks for wound healing applications.
Collapse
Affiliation(s)
- Pengpeng Jia
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yu Zou
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jiang Jiang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
8
|
Ding X, Zhao Z, Zhang Y, Duan M, Liu C, Xu Y. Activity Regulating Strategies of Nanozymes for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207142. [PMID: 36651009 DOI: 10.1002/smll.202207142] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
On accounts of the advantages of inherent high stability, ease of preparation and superior catalytic activities, nanozymes have attracted tremendous potential in diverse biomedical applications as alternatives to natural enzymes. Optimizing the activity of nanozymes is significant for widening and boosting the applications into practical level. As the research of the catalytic activity regulation strategies of nanozymes is boosting, it is essential to timely review, summarize, and analyze the advances in structure-activity relationships for further inspiring ingenious research into this prosperous area. Herein, the activity regulation methods of nanozymes in the recent 5 years are systematically summarized, including size and morphology, doping, vacancy, surface modification, and hybridization, followed by a discussion of the latest biomedical applications consisting of biosensing, antibacterial, and tumor therapy. Finally, the challenges and opportunities in this rapidly developing field is presented for inspiring more and more research into this infant yet promising area.
Collapse
Affiliation(s)
- Xiaoteng Ding
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhen Zhao
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yanfang Zhang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Meilin Duan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Chengzhen Liu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
9
|
Wang B, Zhang W, Pan Q, Tao J, Li S, Jiang T, Zhao X. Hyaluronic Acid-Based CuS Nanoenzyme Biodegradable Microneedles for Treating Deep Cutaneous Fungal Infection without Drug Resistance. NANO LETTERS 2023; 23:1327-1336. [PMID: 36749122 DOI: 10.1021/acs.nanolett.2c04539] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Deep cutaneous fungal infection (DCFI) is difficult to be treated by the traditional topical application due to low drug transdermal efficiency, poor fungicidal effect, and easy to develop drug resistance. Here, we report a novel biodegradable microneedle patch (CuS/PAF-26 MN) for DCFI treatment. CuS/PAF-26 MN is composed of hyaluronic acid (HA) and sodium carboxymethylcellulose (CMC-Na), which can simultaneously deliver copper sulfide nanoenzyme (CuS NE) and antimicrobial peptide (PAF-26). CuS NE catalyzes hydrogen peroxide to produce reactive oxygen species (ROS), and PAF-26 directly destroys the cell membrane of fungi. The combination of ROS toxicity produced by CuS NE and the destruction of fungal membrane by PAF-26 shows strong antifungal activities without drug resistance. The antifungal effect of CuS/PAF-26 MN is significantly superior to that of traditional ointment, CuS MN or PAF-26 MN in a DCFI mouse model. Therefore, CuS/PAF-26 MN shows a promising application prospect for treating DCFI.
Collapse
Affiliation(s)
- Bingjie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenshang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qi Pan
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao 266042, China
| | - Jiaojiao Tao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shuang Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
10
|
Zhou Y, Jiang Y, Cai J, Wang J, Li S, Wang M, Zhou X, Wang X, Zhao X, Ren L. A core/shell nanogenerator achieving pH-responsive nitric oxide release for treatment of infected diabetic wounds. NANOSCALE 2022; 14:14984-14996. [PMID: 36193714 DOI: 10.1039/d2nr03704a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nitric oxide is critical for eliminating infection and promoting regeneration in diabetic wounds. However, clinical uses of nitric oxide are limited by its high activity and lack of specificity in targeting infections. Herein, we develop an intelligent nitric oxide nanogenerator comprising isosorbide dinitrate (ISDN)-coated copper sulfide (CuS)/calcium carbonate (CaCO3) core/shell nanoparticles (CuS@CaCO3-ISDN) to target the acidic microenvironment of the infected diabetic wounds. Meaningfully, triggered by acid decomposition of CaCO3, this nanogenerator can achieve a responsive and accelerated release of nitric oxide from ISDN through enzyme-mimicking redox processes that involve CuS nanoparticles and then inactivate biofilm bacteria through the pathways of oxidative stress and disruption of adenosine triphosphate (ATP)-related energy metabolism. Moreover, after eliminating the infection, the pH-responsive release of nitric oxide can promote the proliferation of blood vessels and tissue regeneration and accelerate diabetic wound closure. This study expands the use of nitric oxide donors in wound treatment by developing the enzyme-mimicking release strategy, and the pH-responsive core/shell nanogenerator is promising for a variety of anti-infection therapeutic applications.
Collapse
Affiliation(s)
- Yaming Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.
| | - Yanjie Jiang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.
| | - Jingfeng Cai
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.
| | - Jiaping Wang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.
| | - Shuo Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Miao Wang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.
| | - Xi Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.
| | - Xiumin Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Xueqin Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Lei Ren
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China.
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
11
|
Sun C, Wang X, Dai J, Ju Y. Metal and Metal Oxide Nanomaterials for Fighting Planktonic Bacteria and Biofilms: A Review Emphasizing on Mechanistic Aspects. Int J Mol Sci 2022; 23:11348. [PMID: 36232647 PMCID: PMC9569886 DOI: 10.3390/ijms231911348] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The misuse and mismanagement of antibiotics have made the treatment of bacterial infections a challenge. This challenge is magnified when bacteria form biofilms, which can increase bacterial resistance up to 1000 times. It is desirable to develop anti-infective materials with antibacterial activity and no resistance to drugs. With the rapid development of nanotechnology, anti-infective strategies based on metal and metal oxide nanomaterials have been widely used in antibacterial and antibiofilm treatments. Here, this review expounds on the state-of-the-art applications of metal and metal oxide nanomaterials in bacterial infective diseases. A specific attention is given to the antibacterial mechanisms of metal and metal oxide nanomaterials, including disrupting cell membranes, damaging proteins, and nucleic acid. Moreover, a practical antibiofilm mechanism employing these metal and metal oxide nanomaterials is also introduced based on the composition of biofilm, including extracellular polymeric substance, quorum sensing, and bacteria. Finally, current challenges and future perspectives of metal and metal oxide nanomaterials in the anti-infective field are presented to facilitate their development and use.
Collapse
Affiliation(s)
- Caixia Sun
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaobai Wang
- Department of Materials Application Research, AVIC Manufacturing Technology Institute, Beijing 100024, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 211198, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Animal Bacteriology (Ministry of Agriculture), College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
12
|
A colorimetric assay for cholesterol based on the encapsulation of multienzyme in leaf-shape crossed ZIF-L. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Guo N, Xia Y, Duan Y, Wu Q, Xiao L, Shi Y, Yang B, Liu Y. Self-enhanced photothermal-chemodynamic antibacterial agents for synergistic anti-infective therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Zhou C, Wang Q, Jiang J, Gao L. Nanozybiotics: Nanozyme-Based Antibacterials against Bacterial Resistance. Antibiotics (Basel) 2022; 11:antibiotics11030390. [PMID: 35326853 PMCID: PMC8944833 DOI: 10.3390/antibiotics11030390] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/27/2023] Open
Abstract
Infectious diseases caused by bacteria represent a global threat to human health. However, due to the abuse of antibiotics, drug-resistant bacteria have evolved rapidly and led to the failure of antibiotics treatment. Alternative antimicrobial strategies different to traditional antibiotics are urgently needed. Enzyme-based antibacterials (Enzybiotics) have gradually attracted interest owing to their advantages including high specificity, rapid mode-of-action, no resistance development, etc. However, due to their low stability, potential immunogenicity, and high cost of natural enzymes, enzybiotics have limitations in practical antibacterial therapy. In recent years, many nanomaterials with enzyme-like activities (Nanozymes) have been discovered as a new generation of artificial enzymes and perform catalytic antibacterial effects against bacterial resistance. To highlight the progress in this field of nanozyme-based antibacterials (Nanozybiotics), this review discussed the antibacterial mechanism of action of nanozybiotics with a comparison with enzybiotics. We propose that nanozybiotics may bear promising applications in antibacterial therapy, due to their high stability, rapid bacterial killing, biofilm elimination, and low cost.
Collapse
Affiliation(s)
- Caiyu Zhou
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Q.W.); (J.J.)
- College of Life Sciences, Graduate School of University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Wang
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Q.W.); (J.J.)
- College of Life Sciences, Graduate School of University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Q.W.); (J.J.)
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Q.W.); (J.J.)
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Correspondence:
| |
Collapse
|