1
|
Fu Y, Qiu Z, Cao Y, Jiang M, Cui X. Hydrogel-exosome complexes: a novel strategy for cardiovascular regeneration. NANOSCALE 2025. [PMID: 40434070 DOI: 10.1039/d5nr00892a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Cardiovascular disease (CVD) remains one of the leading causes of high mortality and morbidity worldwide, posing a substantial threat to global health. Mesenchymal stem cell (MSC) therapy has emerged as a promising treatment approach, primarily through the secretion of various bioactive factors. Exosomes (Exos), in particular, stand out as the most effective components, as their noncoding RNA and proteins play a crucial role in promoting the repair of cardiac function, positioning them a promising cell-free therapy for CVD. However, challenges such as poor stability, low delivery efficiency, weak targeting, and rapid immune-mediated clearance hinder the broader application of Exos, presenting significant obstacles for further clinical translation. Recent advancements in biomaterials, particularly hydrogels, offer new avenues for Exos-based CVD therapies. Hydrogels, with their ability to improve stability, release control, and targeting, have gained considerable attention in the biomedical field. This review explores the latest research developments regarding the treatment of CVD using Exos, and highlights their synergistic application with hydrogels, which provide valuable insights for advancing Exos-based therapies and developing novel therapeutic strategies for CVD.
Collapse
Affiliation(s)
- Yonglin Fu
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China.
| | - Zixiong Qiu
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China.
| | - Yifang Cao
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China.
| | - Mei Jiang
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China.
| | - Xiaojun Cui
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China.
- Kashi University School of Medicine, Xinjiang, 844000, China
| |
Collapse
|
2
|
Nishiguchi A, Ohta M, Palai D, Ito S, Mori K, Akagi R, Bajan C, Lambard G, Sodeyama K, Taguchi T. In Situ Forming Supramolecular Nanofiber Hydrogel as a Biodegradable Liquid Embolic Agent for Postembolization Tissue Remodeling. Adv Healthc Mater 2025; 14:e2403784. [PMID: 39511876 DOI: 10.1002/adhm.202403784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Indexed: 11/15/2024]
Abstract
Embolic agents have been widely used to treat blood vessel abnormalities in interventional radiology as a minimally invasive procedure. However, only a few biodegradable liquid embolic agents exhibit high embolization performance, biodegradability, and operability. Herein, the design of in situ-forming supramolecular nanofiber (SNF) hydrogels is reported as biodegradable liquid embolic agents with the assistance of Bayesian optimization through an active learning pipeline. Chemically modified gelatin with hydrogen-bonding moieties produces fibrin-inspired nanofiber-based hydrogels with a high blood coagulation capacity. The low viscosity of the SNF hydrogels makes them injectable using a microcatheter, and the hydrogel shows sufficient tissue adhesion to the blood vessel walls and very weak adhesion to the catheter tubes. Moreover, the SNF hydrogels exhibit high blood compatibility, cytocompatibility, cell-adhesive properties, and biodegradability (in vitro and in vivo). Intravascularly delivered SNF hydrogels induce embolization of rat femoral arteries. This biodegradable liquid embolic agent could be a powerful tool for interventional radiology in the treatment of various diseases, including aortic aneurysm stent grafting, gynecological diseases, and liver cancer.
Collapse
Affiliation(s)
- Akihiro Nishiguchi
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Miho Ohta
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Debabrata Palai
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Shima Ito
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kensaku Mori
- Department of Radiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Ryotaro Akagi
- Data-Driven Materials Research Field, Center for Basic Research on Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Christophe Bajan
- Data-Driven Materials Research Field, Center for Basic Research on Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Guillaume Lambard
- Data-Driven Materials Research Field, Center for Basic Research on Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Keitaro Sodeyama
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- Data-Driven Materials Research Field, Center for Basic Research on Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Tetsushi Taguchi
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
3
|
Wen C, Lee K, Wang Y, Wang X, Wang Y. Bidirectional Enzyme Inhibition and Activation for In Situ Formation of Injectable Hydrogel Using a Bispecific Aptamer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26751-26759. [PMID: 39642164 DOI: 10.1021/acs.langmuir.4c03925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
In situ injectable hydrogels have been explored for biomedical applications, including regenerative medicine and drug delivery. However, controlling the kinetics of their gelation to facilitate easy injection remains a challenge. The purpose of this study was to demonstrate the potential of using bispecific aptamers and complementary sequences as a bidirectional modulation system for controlling enzyme-mediated hydrogel formation kinetics. The results show that a bispecific thrombin-binding aptamer effectively inhibits thrombin activity and significantly slowed fibrin hydrogel formation. Upon interaction with its complementary sequence, this inhibition could be reversed. As a result, the aptamer-bound thrombin was activated, leading to an acceleration of the fibrin formation kinetics. Thus, bispecific aptamers and complementary sequences can effectively function as dynamic control systems for enzyme-catalyzed in situ injectable hydrogel formation.
Collapse
Affiliation(s)
- Connie Wen
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kyungsene Lee
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yixun Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xuelin Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Li H, Liu Z, Zhang P, Zhang D. The recent research progress in the application of the nanozyme-hydrogel composite system for drug delivery. Drug Deliv 2024; 31:2417986. [PMID: 39449633 PMCID: PMC11514404 DOI: 10.1080/10717544.2024.2417986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/29/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Hydrogels, comprising 3D hydrophilic polymer networks, have emerged as promising biomaterial candidates for emulating the structure of biological tissues and delivering drugs through topical administration with good biocompatibility. Nanozymes can catalyze endogenous biomolecules, thereby initiating or inhibiting in vivo biological processes. A nanozyme-hydrogel composite inherits the biological functions of hydrogels and nanozymes, where the nanozyme serves as the catalytic core and the hydrogel forms the structural scaffold. Moreover, the composite can concentrate nanozymes in targeted lesions and catalyze the binding of a specific group of substrates, resulting in pathological microenvironment remodeling and drug-penetrating barrier impairment. The composite also shields nanozymes to prevent burst release during catalytic production and reduce related toxicity. Currently, the application of these composites has been extended to antibacterial, anti-inflammatory, anticancer, and tissue repair applications. In this review, we elucidate the preparation methods for nanozyme-hydrogel composites, provide compelling evidence of their advantages in drug delivery and provide a comprehensive overview of their biological application.
Collapse
Affiliation(s)
- Haichang Li
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhenghong Liu
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Pu Zhang
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Dahong Zhang
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
5
|
Qian W, Bai H, Yan Y, Bi Q. Regulation of physicochemical properties of alginate-based hydrogels and preliminary applications in wound healing. Int J Biol Macromol 2024; 283:137617. [PMID: 39547617 DOI: 10.1016/j.ijbiomac.2024.137617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Alginate (Alg) hydrogels have demonstrated great potential in drug delivery, wound dressings, and tissue engineering. However, the practical applications of conventional Alg hydrogels suffer from rapid degradation, insufficient controlled drug release, and poor adhesion to tissues. In this paper, the physicochemical properties of Alg hydrogels were comprehensively modulated through chemical modification and the incorporation of various polymers. The results showed that introducing neutral polymers stabilized Alg hydrogels at room temperature. However, this stabilizing effect did not persist at 37 °C. The cationic chitosan (CS) can bind to Alg through electrostatic interaction. The incorporation of CS substantially improved the stability of Alg hydrogels and remarkably prolonged the release of BSA from hydrogels to 14 days at 37 °C. Meanwhile, introducing dopamine (DA)-modified Alg enhanced the adhesion of hydrogel to porcine skin. The optimized hydrogels were utilized to encapsulate platelet-rich plasma (PRP). The PRP-loaded composite hydrogel (2 wt% Alg, with a Ca2+/carboxyl group molar ratio of 0.2, a DA/carboxyl group molar ratio of 0.2, and a CS content of 30 % of Alg) exhibited an excellent therapeutic effect in the healing of rabbit shoulder cuff injury. These findings provide valuable insights into the modulation of physicochemical properties of hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Wenfei Qian
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Hao Bai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Qing Bi
- Department of Sports Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
6
|
Tao S, Zhu S, Wang W, Cao X, Hu Y, Chen Q, Zha L, Zha Z. Shape Self-Adaptive Liquid Embolic Agent for Ultrafast and Durable Vascular Embolization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31936-31949. [PMID: 38869429 DOI: 10.1021/acsami.4c02892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Minimally invasive embolization greatly decreases the mortality resulting from vascular injuries while still suffering from a high risk of recanalization and systematic thrombosis due to the intrinsic hydrophobicity and poor adhesion of the clinically used liquid embolic agent of Lipiodol. In this study, a shape self-adaptive liquid embolic agent was developed by mixing biocompatible poly(acrylic acid) (PAA), two-dimensional magnesium-aluminum layered double hydroxide (LDH), and poly(ethylene glycol)200 (PEG200). Upon contact with blood, the injectable PAA-LDH@PEG200 would quickly absorb water to form an adhesive and mechanically strong PAA-LDH thin hydrogel within 5 s, which could firmly adhere to the blood vessel wall for ultrafast and durable embolization. In addition, benefiting from the "positively charged nucleic center effect" of LDH nanosheets, the liquid PAA-LDH@PEG200 could avoid vascular distension by PAA overexpansion and possess high shock-resistant mechanical strength from the blood flow. Furthermore, both in vitro and in vivo embolization experiments demonstrated the complete embolic capacity of liquid PAA-LDH@PEG200 without the occurrence of recanalization for 28 days and also the great potential to act as a platform to couple with chemotherapeutic drugs for the minimized transcatheter arterial chemoembolization (TACE) treatment of VX2 tumors without recurrence for 18 days. Thus, liquid PAA-LDH@PEG200 developed here possesses great potential to act as a shape self-adaptive liquid embolic agent for ultrafast and durable vascular embolization.
Collapse
Affiliation(s)
- Shi Tao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Shuangli Zhu
- Institute of Medical Health, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou 450000, P. R. China
| | - Weitao Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xiangjing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yaoyu Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Qian Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Lisha Zha
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, P. R. China
- School of Biomedical Sciences, Hunan University, Changsha 410082, P. R. China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
7
|
Perri P, Sena G, Piro P, De Bartolo T, Galassi S, Costa D, Serra R. Onyx TMGel or Coil versus Hydrogel as Embolic Agents in Endovascular Applications: Review of the Literature and Case Series. Gels 2024; 10:312. [PMID: 38786229 PMCID: PMC11120993 DOI: 10.3390/gels10050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
This review focuses on the use of conventional gel or coil and "new" generation hydrogel used as an embolic agent in endovascular applications. In general, embolic agents have deep or multidistrict vascular penetration properties as they ensure complete occlusion of vessels by exploiting the patient's coagulation system, which recognises them as substances foreign to the body, thus triggering the coagulation cascade. This is why they are widely used in the treatment of endovascular corrections (EV repair), arteriovenous malformations (AVM), endoleaks (E), visceral aneurysms or pseudo-aneurysms, and embolisation of pre-surgical or post-surgical (iatrogenic) lesions. Conventional gels such as Onyx or coils are now commercially available, both of which are frequently used in endovascular interventional procedures, as they are minimally invasive and have numerous advantages over conventional open repair (OR) surgery. Recently, these agents have been modified and optimised to develop new embolic substances in the form of hydrogels based on alginate, chitosan, fibroin and other polymers to ensure embolisation through phase transition phenomena. The main aim of this work was to expand on the data already known in the literature concerning the application of these devices in the endovascular field, focusing on the advantages, disadvantages and safety profiles of conventional and innovative embolic agents and also through some clinical cases reported. The clinical case series concerns the correction and exclusion of endoleak type I or type II appeared after an endovascular procedure of exclusion of aneurysmal abdominal aortic (EVAR) with a coil (coil penumbra released by a LANTERN microcatheter), the exclusion of renal arterial malformation (MAV) with a coil (penumbra coil released by a LANTERN microcatheter) and the correction of endoleak through the application of Onyx 18 in the arteries where sealing by the endoprosthesis was not guaranteed.
Collapse
Affiliation(s)
- Paolo Perri
- Department of Vascular and Endovascular Surgery, Annunziata Hospital, 1 Via Migliori, 87100 Cosenza, Italy; (P.P.); (P.P.)
| | - Giuseppe Sena
- Department of Vascular Surgery, “Pugliese-Ciaccio” Hospital, 88100 Catanzaro, Italy;
| | - Paolo Piro
- Department of Vascular and Endovascular Surgery, Annunziata Hospital, 1 Via Migliori, 87100 Cosenza, Italy; (P.P.); (P.P.)
| | - Tommaso De Bartolo
- Departement of Interventional Radiology, Annunziata Hospital, 1 Via Migliori, 87100 Cosenza, Italy; (T.D.B.); (S.G.)
| | - Stefania Galassi
- Departement of Interventional Radiology, Annunziata Hospital, 1 Via Migliori, 87100 Cosenza, Italy; (T.D.B.); (S.G.)
| | - Davide Costa
- Interuniversity Center of Phlebolymphology (CIFL), Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
8
|
Ai S, Gao Q, Cheng G, Zhong P, Cheng P, Ren Y, Wang H, Zhu X, Guan S, Qu X. Construction of an Injectable Composite Double-Network Hydrogel as a Liquid Embolic Agent. Biomacromolecules 2024; 25:2052-2064. [PMID: 38426456 DOI: 10.1021/acs.biomac.3c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Conventional embolists disreputably tend to recanalization arising from the low filling ratio due to their rigidity or instability. As a result, intelligent hydrogels with a tunable modulus may meaningfully improve the therapeutic efficacy. Herein, an injectable composite double-network (CDN) hydrogel with high shear responsibility was prepared as a liquid embolic agent by cross-linking poly(vinyl alcohol) (PVA) and carboxymethyl chitosan (CMC) via dynamic covalent bonding of borate ester and benzoic-imine. A two-dimensional nanosheet, i.e., layered double hydroxide (LDH), was incorporated into the network through physical interactions which led to serious reduction of yield stress for the injection of the hydrogel and the capacity for loading therapeutic agents like indocyanine green (ICG) and doxorubicin (DOX) for the functions of photothermal therapy (PTT) and chemotherapy. The CDN hydrogel could thus be transported through a thin catheter and further in situ strengthened under physiological conditions, like in blood, by secondarily cross-linking with phosphate ions for longer degradation duration and better mechanical property. These characteristics met the requirements of arterial interventional embolization, which was demonstrated by renal embolism operation on rabbits, and meanwhile favored the inhibition of subcutaneous tumor growth on an animal model. Therefore, this work makes a breakthrough in the case of largely reducing the embolism risks, thus affording a novel generation for interventional embolization.
Collapse
Affiliation(s)
- Shili Ai
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qinzong Gao
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Gele Cheng
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
- Duke Kunshan University, Suzhou, Jiangsu 215316, China
| | - Pengfei Zhong
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Peiyu Cheng
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Yingying Ren
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hao Wang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Xu Zhu
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaozhong Qu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
9
|
Lee IK, Xie R, Luz-Madrigal A, Min S, Zhu J, Jin J, Edwards KL, Phillips MJ, Ludwig AL, Gamm DM, Gong S, Ma Z. Micromolded honeycomb scaffold design to support the generation of a bilayered RPE and photoreceptor cell construct. Bioact Mater 2023; 30:142-153. [PMID: 37575875 PMCID: PMC10415596 DOI: 10.1016/j.bioactmat.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/27/2023] [Accepted: 07/22/2023] [Indexed: 08/15/2023] Open
Abstract
Age-related macular degeneration (AMD) causes blindness due to loss of retinal pigment epithelium (RPE) and photoreceptors (PRs), which comprise the two outermost layers of the retina. Given the small size of the macula and the importance of direct contact between RPE and PRs, the use of scaffolds for targeted reconstruction of the outer retina in later stage AMD and other macular dystrophies is particularly attractive. We developed microfabricated, honeycomb-patterned, biodegradable poly(glycerol sebacate) (PGS) scaffolds to deliver organized, adjacent layers of RPE and PRs to the subretinal space. Furthermore, an optimized process was developed to photocure PGS, shortening scaffold production time from days to minutes. The resulting scaffolds robustly supported the seeding of human pluripotent stem cell-derived RPE and PRs, either separately or as a dual cell-layered construct. These advanced, economical, and versatile scaffolds can accelerate retinal cell transplantation efforts and benefit patients with AMD and other retinal degenerative diseases.
Collapse
Affiliation(s)
- In-Kyu Lee
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Ruosen Xie
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Agustin Luz-Madrigal
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Comparative Biomedical Sciences, University of Wisconsin–Madison, Madison, WI, 53706, USA
| | - Seunghwan Min
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jingcheng Zhu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jiahe Jin
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - M. Joseph Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Allison L. Ludwig
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - David M. Gamm
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Comparative Biomedical Sciences, University of Wisconsin–Madison, Madison, WI, 53706, USA
| | - Shaoqin Gong
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhenqiang Ma
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Grainger Institute for Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
10
|
Yin Y, Gu Q, Liu X, Liu F, McClements DJ. Double network hydrogels: Design, fabrication, and application in biomedicines and foods. Adv Colloid Interface Sci 2023; 320:102999. [PMID: 37783067 DOI: 10.1016/j.cis.2023.102999] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/25/2023] [Accepted: 09/16/2023] [Indexed: 10/04/2023]
Abstract
Research on the design, fabrication, and application of double network (DN) hydrogels, assembled from pairs of polymers, has grown recently due to their unique structural, physicochemical, and functional properties. DN hydrogels can be designed to exhibit a broader range of functional attributes than single network (SN) ones, which extends their applications in various fields. There has been strong interest in the development of biopolymer DN hydrogels because of their environmental, sustainability, and safety benefits. However, there is limited knowledge on the formation and application of these novel materials. This article reviews the principles underlying the design and fabrication of hydrogels using different crosslinking approaches, including covalent and/or non-covalent bonding, and the formation mechanisms, network structures, and functional attributes of different DN hydrogels. The impact of polymer composition, structural organization, and bonding on the mechanical and functional properties of DN hydrogels is reviewed. Potential applications of these hydrogels are highlighted, including in tissue engineering, biomedicines, and foods. The functional attributes of DN hydrogels can be tailored to each of these applications by careful selection of the biopolymers and crosslinking mechanisms used to assemble them. Finally, areas where further research are needed to overcome the current limitations of DN hydrogels are highlighted.
Collapse
Affiliation(s)
- Yan Yin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingzhuo Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | | |
Collapse
|
11
|
Li T, Luo Y, Wu S, Xia X, Zhao H, Xu X, Luo X. Super-Rapid In Situ Formation of a Silver Ion-Induced Supramolecular Hydrogel with Efficient Antibacterial Activity for Root Canal Disinfection. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37321566 DOI: 10.1021/acsami.3c03335] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Supramolecular hydrogels prepared using low-molecular-weight gelators have attracted considerable attention for biomedical applications. However, in situ supramolecular hydrogels are limited in terms of their prolonged gelation time and/or unstable nature at high temperatures. In this study, we constructed a stable supramolecular Ag-isoG hydrogel through super-rapid in situ formation, wherein hydrogelation process occurred instantaneously upon mixing isoG and Ag+ within 1 s under ambient conditions. Interestingly, unlike most nucleoside-based supramolecular hydrogels, this Ag-isoG hydrogel remains stable even at a high temperature (100 °C). Moreover, the as-designed hydrogel demonstrated significant antibacterial activity against Staphylococcus aureus and the oral bacterium Streptococcus mutans owing to the strong chelating ability of Ag ions, and the hydrogel exhibited relatively low cytotoxicity in root canal and an easy removal feature by saline. The hydrogel was then applied to a root canal infection model, which demonstrated strong antibacterial activity against Enterococcus faecalis, with performance even better than that of the regular calcium hydroxide paste. This feature makes the Ag-isoG hydrogel a prospective alternative material as intracanal medicaments for root canal treatment.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yu Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Shihong Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xin Xia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xiaobo Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
12
|
Costa FJP, Nave M, Lima-Sousa R, Alves CG, Melo BL, Correia IJ, de Melo-Diogo D. Development of Thiol-Maleimide hydrogels incorporating graphene-based nanomaterials for cancer chemo-photothermal therapy. Int J Pharm 2023; 635:122713. [PMID: 36764414 DOI: 10.1016/j.ijpharm.2023.122713] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Nano-sized materials have been widely explored in the biomedicine field, especially due to their ability to encapsulate drugs intended to be delivered to cancer cells. However, systemically administered nanomaterials face several barriers that can hinder their tumor-homing capacity. In this way, researchers are now focusing their efforts in developing technologies that can deliver the nanoparticles directly into the tumor tissue. Particularly, hydrogels assembled using Thiol-Maleimide Michael type additions are emerging for this purpose due to their capacity to incorporate high nanoparticles' doses in a compact 3D structure as well as good chemical selectivity, biocompatibility, and straightforward preparation. Nevertheless, such hydrogels have been mostly prepared using synthetic polymers, which is not ideal due to their poor biodegradability. In this work, a novel natural polymer-based Thiol-Maleimide hydrogel was produced for application in breast cancer chemo-photothermal therapy. To obtain natural polymers compatible with this crosslinking chemistry, Hyaluronic acid was endowed with Thiol groups and deacetylated Chitosan was grafted with Maleimide groups. Parallelly, Doxorubicin loaded Dopamine-reduced graphene oxide (DOX/DOPA-rGO) was prepared for attaining Near Infrared (NIR) light responsive chemo-photothermal nanoagents. By simply mixing Hyaluronic Acid-Thiol, deacetylated Chitosan-Maleimide and DOX/DOPA-rGO, Thiol-Maleimide crosslinked hydrogels incorporating this nanomaterial could be assembled (DOX/DOPA-rGO@TMgel). When breast cancer cells were incubated with DOPA-rGO@TMgel and exposed to NIR light (photothermal therapy), their viability was reduced to about 59 %. On the other hand, DOX/DOPA-rGO@TMgel (chemotherapy) reduced cancer cells' viability to 50 %. In stark contrast, the combined action of DOX/DOPA-rGO@TMgel and NIR light decreased breast cancer cells' viability to just 21 %, highlighting its chemo-photothermal potential.
Collapse
Affiliation(s)
- Francisco J P Costa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Micaela Nave
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, 3030-790 Coimbra, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|