1
|
Dai J, Roshan H, De Franco M, Goldoni L, De Boni F, Xi J, Yuan F, Dong H, Wu Z, Di Stasio F, Manna L. Partial Ligand Stripping from CsPbBr 3 Nanocrystals Improves Their Performance in Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11627-11636. [PMID: 38381521 PMCID: PMC11932522 DOI: 10.1021/acsami.3c15201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
Halide perovskite nanocrystals (NCs), specifically CsPbBr3, have attracted considerable interest due to their remarkable optical properties for optoelectronic devices. To achieve high-efficiency light-emitting diodes (LEDs) based on CsPbBr3 nanocrystals (NCs), it is crucial to optimize both their photoluminescence quantum yield (PLQY) and carrier transport properties when they are deposited to form films on substrates. While the exchange of native ligands with didodecyl dimethylammonium bromide (DDAB) ligand pairs has been successful in boosting their PLQY, dense DDAB coverage on the surface of NCs should impede carrier transport and limit device efficiency. Following our previous work, here, we use oleyl phosphonic acid (OLPA) as a selective stripping agent to remove a fraction of DDAB from the NC surface and demonstrate that such stripping enhances carrier transport while maintaining a high PLQY. Through systematic optimization of OLPA dosage, we significantly improve the performance of CsPbBr3 LEDs, achieving a maximum external quantum efficiency (EQE) of 15.1% at 516 nm and a maximum brightness of 5931 cd m-2. These findings underscore the potential of controlled ligand stripping to enhance the performance of CsPbBr3 NC-based optoelectronic devices.
Collapse
Affiliation(s)
- Jinfei Dai
- Key
Laboratory for Physical Electronics and Devices of the Ministry of
Education & Shaanxi Key Lab of Information Photonic Technique,
School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Hossein Roshan
- Photonic
Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Manuela De Franco
- Photonic
Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
- Università
degli Studi di Genova, Via Dodecaneso 31, 16146Genova, Italy
| | - Luca Goldoni
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Francesco De Boni
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Jun Xi
- Key
Laboratory for Physical Electronics and Devices of the Ministry of
Education & Shaanxi Key Lab of Information Photonic Technique,
School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Fang Yuan
- Key
Laboratory for Physical Electronics and Devices of the Ministry of
Education & Shaanxi Key Lab of Information Photonic Technique,
School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hua Dong
- Key
Laboratory for Physical Electronics and Devices of the Ministry of
Education & Shaanxi Key Lab of Information Photonic Technique,
School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhaoxin Wu
- Key
Laboratory for Physical Electronics and Devices of the Ministry of
Education & Shaanxi Key Lab of Information Photonic Technique,
School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Francesco Di Stasio
- Photonic
Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Liberato Manna
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| |
Collapse
|
2
|
Zeng Z, Meng Y, Yang Z, Ye Y, Lin Q, Meng Z, Hong H, Ye S, Cheng Z, Lan Q, Wang J, Chen Y, Zhang H, Bai Y, Jiang X, Liu B, Hong J, Guo T, Li F, Chen Y, Weng Z. Efficient CsPbBr 3 Perovskite Light-Emitting Diodes via Novel Multi-Step Ligand Exchange Strategy Based on Zwitterionic Molecules. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10389-10397. [PMID: 38364294 DOI: 10.1021/acsami.3c17324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Perovskite nanocrystals have absorbed increasing interest, especially in the field of optoelectronics, owing to their unique characteristics, including their tunable luminescence range, robust solution processability, facile synthesis, and so on. However, in practice, due to the inherent instability of the traditional long-chain insulating ligands surrounding perovskite quantum dots (PeQDs), the performance of the as-fabricated QLED is relatively disappointing. Herein, the zwitterion 3-(decyldimethylammonio)propanesulfonate (DLPS) with the capability of double passivating perovskite quantum dots could effectively replace the original long-chain ligand simply through a multistep post-treatment strategy to finally inhibit the formation of defects. It was indicated from theexperimental results that the DLPS, as one type of ligand with the bimolecular ion, was very adavntageous in replacing long-chain ligands and further suppressing the formation of defects. Finally, the perovskite quantum dots with greatly enhanced PLQY as high as 98% were effectively achieved. Additionally, the colloidal stability of the corresponding PeQDs has been significantly enhanced, and a transparent colloidal solution was obtained after 45 days under ambient conditions. Finally, the as-fabricated QLEDs based on the ligand-exchanged PeQDs exhibited a maximum brightness of 9464 cd/m2 and an EQE of 12.17%.
Collapse
Affiliation(s)
- Zhiwei Zeng
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Yuhan Meng
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Zunxian Yang
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, PR China
- Mindu Innovation Laboratory, Fujian Science & Technology Innovation Laboratory For Optoelectronic Information of China, Fuzhou 350108, PR China
| | - Yuliang Ye
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Qiuxiang Lin
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Zongyi Meng
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Hongyi Hong
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Songwei Ye
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Zhiming Cheng
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Qianting Lan
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Jiaxiang Wang
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Ye Chen
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Hui Zhang
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Yuting Bai
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Xudong Jiang
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Benfang Liu
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Jiajie Hong
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Tailiang Guo
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, PR China
- Mindu Innovation Laboratory, Fujian Science & Technology Innovation Laboratory For Optoelectronic Information of China, Fuzhou 350108, PR China
| | - Fushan Li
- National & Local United Engineering Research Center of Flat Panel Display Technology, Fuzhou University, Fuzhou 350108, PR China
- Mindu Innovation Laboratory, Fujian Science & Technology Innovation Laboratory For Optoelectronic Information of China, Fuzhou 350108, PR China
| | - Yongyi Chen
- Department of Physics, School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108 China
| | - Zhenzhen Weng
- Department of Physics, School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108 China
| |
Collapse
|
3
|
Yue Y, Zou X, Liu L, Liu X, Zhang B, Zhao B, Chen M, Fu Y, Zhang Y, Niu L. Cyanuric Acid-Functionalized Perovskite Nanocrystals toward Low Interface Impedance, High Environmental Stability, and Superior Electrochemiluminescence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7531-7542. [PMID: 38291590 DOI: 10.1021/acsami.3c13936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Perovskite nanocrystals (PNs) have received much attention as luminescence materials in the field of electrochemiluminescence (ECL). However, as one key factor for determining the optoelectronic properties of the surface state of PNs, the surface passivation layer of PNs has enormous difficulty in simultaneously meeting the requirements of high ECL efficiency, conductivity, and stability. Herein, an effective surface modification strategy with cyanuric acid (CA) is used to solve such issue. As confirmed, the CA molecules are chemically anchored onto the surface of PNs via the Lewis interaction between π electrons of the triazine ring and the empty orbit of Pb2+. Benefiting from the above interaction, the electrochemical impedance of PNs is decreased greatly without the loss of light-emitting efficiency. Moreover, the stability of PNs under O2 exposure is improved by almost sixfold. These improvements are confirmed to be beneficial for enhancing the ECL behaviors of PNs under electrochemical operation. Upon cathode ECL driving conditions in aqueous media, the ECL intensity and efficiency of PNs are increased to 200 and 170%, respectively. This work provides a new modification strategy to holistically improve the ECL performance of PNs, which is instructive to exploring robust perovskite nanomaterials for electrochemical applications.
Collapse
Affiliation(s)
- Yifei Yue
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
| | - Xingzi Zou
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
| | - Lihui Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing210023, China
| | - Xuejing Liu
- Key Laboratory on Resources Chemicals and Material of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Baohua Zhang
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing210023, China
| | - Bolin Zhao
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
| | - Mei Chen
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
| | - Yuxuan Fu
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
| | - Yuwei Zhang
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
| | - Li Niu
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
| |
Collapse
|
4
|
Zhao C, Zhu C, Yu Y, Xue W, Liu X, Yuan F, Dai J, Wang S, Jiao B, Wu Z. Multifunctional Short-Chain 2-Thiophenealkylammonium Bromide Ligand-Assisted Perovskite Quantum Dots for Efficient Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40080-40087. [PMID: 37578891 DOI: 10.1021/acsami.3c08008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Lead halide perovskite quantum dots (QDs) have attracted great interest for application in light-emitting diodes (LEDs) due to their high photoluminescence quantum yield (PLQY), solution processability, and high color purity, showing great potential for next-generation full-color display and lighting technologies. Conventional long-chain insulating oleic acid (OA)/oleamine (OAm) ligands exhibit dynamic binding to the surface of QDs, resulting in a plethora of extra surface defects and inferior optoelectronic properties. Herein, a sole multifunctional ligand with optimized carbon chain length, that is, 2-thiophenepropylamine bromide (ThPABr), was creatively designed and introduced into CsPbBr3 QDs, which not only replaces OAm and provides a bromine source but also coordinates with the uncoordinated surface Pb2+ of QDs through the thiophene, passivating surface defects and increasing the PLQY of the film to 83%. More importantly, the interaction between the electron donor-thiophene ring and QDs can enhance electron injection and improve carrier balance. The resulting green LED exhibited significant performance improvement, showing ultrahigh spectral stability under high operating voltage, achieving a maximum external quantum efficiency of 10.5%, and extending the operating lifetime to 5-fold that of the reference. Designing a single multifunctional ligand presents a promising and convenient strategy for selecting surface ligands that can enhance the performance of LEDs or other optoelectronic devices.
Collapse
Affiliation(s)
- Chenjing Zhao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chunrong Zhu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yue Yu
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, Shaanxi China
| | - Wenhao Xue
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoyun Liu
- Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Fang Yuan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinfei Dai
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shuangpeng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Bo Jiao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
5
|
Zhang Y, Hou G, Wu Y, Chen M, Dai Y, Liu S, Zhao Q, Lin H, Fang J, Jing C, Chu J. Surface Reconstruction of CsPbBr 3 Nanocrystals by the Ligand Engineering Approach for Achieving High Quantum Yield and Improved Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6222-6230. [PMID: 37079335 DOI: 10.1021/acs.langmuir.3c00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Oleylamine/oleic acid (OAm/OA) as the commonly used ligand is indispensable in the synthesis of perovskite nanocrystals (PNCs). Unfortunately, poor colloidal stability and unsatisfactory photoluminescence quantum yield (PLQY) are observed, resulting from a highly dynamic binding nature between ligands. Herein, we adopt a facile hybrid ligand (DDAB/ZnBr2) passivation strategy to reconstruct the surface chemistry of CsPbBr3 NCs. The hybrid ligand can detach the native surface ligand, in which the acid-base reactions between ligands are suppressed effectively. Also, they can substitute the loose capping ligand, anchor to the surface firmly, and supply sufficient halogens to passivate the surface trap, realizing an exceptional PLQY of 95% and an enhanced tolerance toward ambient storage, UV irradiation, anti-solvents, and thermal treatment. Besides, the as-fabricated white light-emitting diode (WLED) utilizing the PNCs as the green-emitting phosphor has a luminous efficiency around 73 lm/W; the color gamut covers 125% of the NTSC standard.
Collapse
Affiliation(s)
- Yu Zhang
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Guangning Hou
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Yong Wu
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Maosheng Chen
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Yannan Dai
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Shaohua Liu
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Qingbiao Zhao
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Hechun Lin
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Junfeng Fang
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Chengbin Jing
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Junhao Chu
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| |
Collapse
|
6
|
Sun W, Yun R, Liu Y, Zhang X, Yuan M, Zhang L, Li X. Ligands in Lead Halide Perovskite Nanocrystals: From Synthesis to Optoelectronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205950. [PMID: 36515335 DOI: 10.1002/smll.202205950] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Ligands are indispensable for perovskite nanocrystals (NCs) throughout the whole lifetime, as they not only play key roles in the controllable synthesis of NCs with different sizes and shapes, but also act as capping shell that affects optical properties and electrical coupling of NCs. Establishing a systematic understanding of the relationship between ligands and perovskite NCs is significant to enable many potential applications of NCs. This review mainly focuses on the influence of ligands on perovskite NCs. First of all, the ligands-dominated size and shape control of NCs is discussed. Whereafter, the surface defects of NCs and the bonding between ligands and perovskite NCs are classified, and corresponding post-treatment of surface defects via ligands is also summarized. Furthermore, advances in engineering the ligands towards the high performance of optoelectronic devices based on perovskite NCs, including photodetector, solar cell, light emitting diode (LED), and laser, and finally to potential challenges are also discussed.
Collapse
Affiliation(s)
- Wenda Sun
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Rui Yun
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Yuling Liu
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Xiaodan Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, China
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China
| |
Collapse
|
7
|
Ryu HJ, Shin M, Park M, Lee JS. In Situ Tetraalkylammonium Ligand Engineering of Organic-Inorganic Hybrid Perovskite Nanoparticles for Enhancing Long-Term Stability and Optical Tunability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13448-13455. [PMID: 36288550 DOI: 10.1021/acs.langmuir.2c01888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Organic-inorganic hybrid perovskite nanoparticles (OIHP NPs) have attracted scientific attention owing to their efficient photoluminescence with optical tunability, which is highly advantageous for optoelectronic applications. However, the limited long-term stability of OIHP NPs has significantly hindered their practical application. Despite several synthetic strategies and encapsulation methods to stabilize OIHP NPs, complicated multi-step procedures are often required. In this study, we introduce an in situ ligand engineering method for stabilizing and controlling the optical properties of OIHP NPs using tetraalkylammonium (TAA) halides with various molecular structures at different concentrations. Our one-pot ligand engineering substantially enhanced the stability of the OIHP NPs without post-synthetic processes. Moreover, in certain cases, approximately 90% of the initial photoluminescence (PL) intensity was preserved even after a month under ambient conditions (room temperature, 20-50% relative humidity). To determine the role of ligand engineering in stabilizing the OIHP NPs, the surface binding properties of the TAA ligands were thoroughly analyzed using Raman spectroscopy. Specifically, the permanent positive charge of the TAA cations and consequent effective electrostatic interactions with the surfaces of the OIHP NPs are pivotal for preserving the initial PL intensity. Our investigation is beneficial for developing OIHP nanomaterials with improved stability and controlled photoluminescence for various optoelectronic applications, such as light-emitting devices, photosensitizers, photodetectors, photocatalysis, and solar cells.
Collapse
Affiliation(s)
- Han-Jung Ryu
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mingyeong Shin
- Department of Chemistry, Dong-A University, 37 Nakdong-daero 550beon-gil, Saha-gu, Busan 49315, Republic of Korea
- Department of Chemistry, College of Natural Science, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Myeongkee Park
- Department of Chemistry, College of Natural Science, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Jae-Seung Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|