1
|
Ullah I, Chang S, Hou W, Valle-Perez AD, Du X, Katiyar S, Piñero Cruz DM, Cunci L, Morell G, Wu X. Concentrated Chloride Electrolytes Enable High-Efficiency, Long-Cycling, and Dendrite-Free Aqueous Trivalent Antimony Batteries. Angew Chem Int Ed Engl 2025; 64:e202502279. [PMID: 40042241 DOI: 10.1002/anie.202502279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
Aqueous trivalent metal batteries are promising energy storage systems, which can leverage unique three-electron redox reactions to deliver high capacity and high energy. Among them, antimony (Sb) stands out with a high capacity (660 mAh g-1), abundant availability, and low cost. However, the severe Sb3+ hydrolysis reaction drastically hinders the development of aqueous antimony batteries. Herein, we address this issue by employing a concentrated lithium chloride electrolyte, which stabilizes reactive Sb3+ ions via forming robust antimony-chloride complexes. This approach effectively mitigates hydrolysis and achieves highly reversible Sb plating behavior, leading to high efficiency (99.7%-99.8%), long lifespan (7300 h, 10 months), and uniform spherical deposition morphology. When paired with a manganese dioxide (MnO2) cathode, the Sb‖MnO2 battery demonstrates a high capacity of 309 mAh g-1 and exceptional cycling stability of 50 000 cycles (∼70% retention). Additionally, Sb shows promise as a high-capacity cathode, which can integrate with low-potential zinc into novel dual-metal plating batteries with long cycling life (4,000 h). This work not only deepens our fundamental understanding of trivalent Sb3+ redox chemistry but also opens new opportunities to stabilize hydrolysable and high-charge-density cations for multivalent battery applications.
Collapse
Affiliation(s)
- Irfan Ullah
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR, 00925, USA
| | - Songyang Chang
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR, 00925, USA
| | - Wentao Hou
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR, 00925, USA
| | | | - Xiaoyu Du
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR, 00925, USA
| | - Swati Katiyar
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR, 00925, USA
| | - Dalice M Piñero Cruz
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR, 00925, USA
| | - Lisandro Cunci
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR, 00925, USA
| | - Gerardo Morell
- Department of Physics, University of Puerto Rico-Rio Piedras Campus, San Juan, PR, 00925, USA
| | - Xianyong Wu
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR, 00925, USA
| |
Collapse
|
2
|
Han J, Jung S, Heo SE, Choi B, Ryu S, Park S, Hong J, Yoo J. Anisotropic Ion-Guiding Hydrogel Electrolyte with High-Water Affinity for Zn Ion Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500799. [PMID: 40269564 DOI: 10.1002/smll.202500799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Aqueous zinc-ion batteries (AZIBs) are a promising alternative to lithium-ion batteries, boasting superior safety, eco-friendliness, and cost-effectiveness. Despite these advantages, performance issues such as irregular Zn deposition and cathode material dissolution remain challenging. This study introduces an intrinsically anisotropic ion-guiding hydrogel electrolyte (APHE) fabricated via a double-stabilization anisotropic freezing strategy. The synergistic effect of anisotropic structure and high water affinity of APHE effectively suppress water-induced parasitic reactions. In brief, the anisotropic structure promotes rapid Zn2+ ion diffusion, leading to the uniform Zn2+ ion flux. Additionally, abundant hydroxyl groups in APHE facilitate Zn2+ ion dissociation and adjust the solvation structure, setting it apart from an isotropic matrix. Furthermore, the improvement of ion diffusion tortuosity enhances the electrode/electrolyte kinetics, thereby improving the rate-capability and reversibility of Zn2+ ion (de)-intercalation. Thus, APHE demonstrates a thin and dense Zn deposition layer of 31.7 µm, which is less than half the thickness of IPHE (67.5 µm) after 500 cycles. This research addresses fundamental challenges in the performance of AZIBs and provides valuable insights into the design of advanced electrolytes for future energy storage systems.
Collapse
Affiliation(s)
- Juyeon Han
- School of Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sungwon Jung
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sung-Eun Heo
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Bumgyu Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seokgyu Ryu
- Department of Chemical & Biomolecular Engineering, Clarkson University, Potsdam, NY, USA
| | - Sohyeon Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jeeyoung Yoo
- School of Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
3
|
Xian J, Fu R, Liu K, Yang P. Insights into Dendrite Regulation by Polymer Hydrogels for Aqueous Batteries. ACS NANO 2025; 19:13491-13504. [PMID: 40168584 DOI: 10.1021/acsnano.5c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Aqueous batteries, renowned for their high capacity, safety, and low cost, have emerged as promising candidates for next-generation, sustainable energy storage. However, their large-scale application is hindered by challenges, such as dendrite formation and side reactions at the anode. Hydrogel electrolytes, which integrate the advantages of liquid and solid phases, exhibit superior ionic conductivity and interfacial compatibility, giving them potential to suppress dendrite evolution. This Perspective first briefly introduces the fundamentals underlying dendrite formation and the unique features of hydrogels. It then identifies the key role of water and polymer networks in inhibiting dendrite formation, highlighting their regulation of water activity, ion transport, and electrode kinetics. By elucidating the principles of hydrogels in dendrite suppression, this work aims to provide valuable insights to advance the implementation of aqueous batteries incorporating polymer hydrogels.
Collapse
Affiliation(s)
- Jinglin Xian
- The Institute of Technological Sciences, MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan 430072, China
| | - Rui Fu
- The Institute of Technological Sciences, MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan 430072, China
| | - Kang Liu
- The Institute of Technological Sciences, MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan 430072, China
| | - Peihua Yang
- The Institute of Technological Sciences, MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Mahmood A, Bai Z, Wang T, Lei Y, Wang S, Sun B, Khan H, Khan K, Sun K, Wang G. Enabling high-performance multivalent metal-ion batteries: current advances and future prospects. Chem Soc Rev 2025; 54:2369-2435. [PMID: 39887968 DOI: 10.1039/d4cs00929k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The battery market is primarily dominated by lithium technology, which faces severe challenges because of the low abundance and high cost of lithium metal. In this regard, multivalent metal-ion batteries (MVIBs) enabled by multivalent metal ions (e.g. Zn2+, Mg2+, Ca2+, Al3+, etc.) have received great attention as an alternative to traditional lithium-ion batteries (Li-ion batteries) due to the high abundance and low cost of multivalent metals, high safety and higher volumetric capacities. However, the successful application of these battery chemistries requires careful control over electrode and electrolyte chemistries due to the higher charge density and slower kinetics of multivalent metal ions, structural instability of the electrode materials, and interfacial resistance, etc. This review comprehensively explores the recent advancements in electrode and electrolyte materials as well as separators for MVIBs, highlighting the potential of MVIBs to outperform Li-ion batteries regarding cost, energy density and safety. The review first summarizes the recent progress and fundamental charge storage mechanism in several MVIB chemistries, followed by a summary of major challenges. Then, a thorough account of the recently proposed methodologies is given including progress in anode/cathode design, electrolyte modifications, transition to semi-solid- and solid-state electrolytes (SSEs), modifications in separators as well as a description of advanced characterization tools towards understanding the charge storage mechanism. The review also accounts for the recent trend of using artificial intelligence in battery technology. The review concludes with a discussion on prospects, emphasizing the importance of material innovation and sustainability. Overall, this review provides a detailed overview of the current state and future directions of MVIB technology, underscoring its significance in advancing next-generation energy storage solutions.
Collapse
Affiliation(s)
- Asif Mahmood
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, City Campus, Broadway, NSW 2007, Australia.
| | - Zhe Bai
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Tan Wang
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Yaojie Lei
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, City Campus, Broadway, NSW 2007, Australia.
| | - Shijian Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, City Campus, Broadway, NSW 2007, Australia.
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, City Campus, Broadway, NSW 2007, Australia.
| | - Hajra Khan
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, City Campus, Broadway, NSW 2007, Australia.
| | - Karim Khan
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, City Campus, Broadway, NSW 2007, Australia.
| | - Kening Sun
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, City Campus, Broadway, NSW 2007, Australia.
| |
Collapse
|
5
|
Wang Q, Liu Y, Zhang Z, Cai P, Li H, Zhou M, Wang W, Wang K, Jiang K. Activating the Intrinsic Zincophilicity of PAM Hydrogel to Stabilize the Metal-Electrolyte Dynamic Interface for Stable and Long-Life Zinc Metal Batteries. CHEMSUSCHEM 2024; 17:e202400479. [PMID: 38584125 DOI: 10.1002/cssc.202400479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
As a potential material to solve rampant dendrites and hydrogen evolution reaction (HER) problem of aqueous zinc metal batteries (AZMB), hydrogel electrolytes usually require additional additives or multi-molecular network strategies to solve existing problems of ionic conductivity, mechanical properties and interface stability. However, the intrinsic zincophilic properties of the gel itself are widely neglected leading to the addition of additional molecules and the complexity of the preparation process. In this work, we innovatively utilize the characteristics of acrylamide's high zincophilic group density, activating the intrinsic zincophilic properties of PAM gel through a simple concentration control strategy which reconstructs a novel zinc-electrolyte interface different from conventional PAM electrolyte. The activated novel gel electrolyte with intrinsic zincophilic properties has high ionic conductivity and effectively suppresses water activity, thereby inhibiting HER corrosion. Meanwhile, it induces uniform deposition of (002) crystal planes, leading to excellent deposition kinetics and long cycle life, thereby ensuring high interfacial stability. Compared with conventional PAM gel electrolytes, the activated zincophilic group-rich hydrogel maintained excellent cycling stability (1 mA/cm2, 1 mAh/cm2) over 2250 hours; The Zn//MnO₂ coin cell using novel zincophilic group -rich hydrogel still retains a high specific capacity of more than 170 mAh/g at 0.5 A/g after 1000 cycles.
Collapse
Affiliation(s)
- Qingyuan Wang
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yumeng Liu
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zidong Zhang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Cai
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haomiao Li
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Min Zhou
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Wang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kangli Wang
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kai Jiang
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
6
|
Dilwale S, Puthiyaveetil PP, Babu A, Kurungot S. Phytic Acid Customized Hydrogel Polymer Electrolyte and Prussian Blue Analogue Cathode Material for Rechargeable Zinc Metal Hydrogel Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311923. [PMID: 38616777 DOI: 10.1002/smll.202311923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/14/2024] [Indexed: 04/16/2024]
Abstract
Zinc anode deterioration in aqueous electrolytes, and Zn dendrite growth is a major concern in the operation of aqueous rechargeable Zn metal batteries (AZMBs). To tackle this, the replacement of aqueous electrolytes with a zinc hydrogel polymer electrolyte (ZHPE) is presented in this study. This method involves structural modifications of the ZHPE by phytic acid through an ultraviolet (UV) light-induced photopolymerization process. The high membrane flexibility, high ionic conductivity (0.085 S cm-1), improved zinc corrosion overpotential, and enhanced electrochemical stability value of ≈2.3 V versus Zn|Zn2+ show the great potential of ZHPE as an ideal gel electrolyte for rechargeable zinc metal hydrogel batteries (ZMHBs). This is the first time that the dominating effect of chelation of phytic acid with M2+ center over H-bonding with water is described to tune the gel electrolyte properties for battery applications. The ZHPE shows ultra-high stability over 360 h with a capacity of 0.50 mAh cm-2 with dendrite-free plating/stripping in Zn||Zn symmetric cell. The fabrication of the ZMHB with a high-voltage zinc hexacyanoferrate (ZHF) cathode shows a high-average voltage of ≈1.6 V and a comparable capacity output of 63 mAh g-1 at 0.10 A g-1 of the current rate validating the potential application of ZHPE.
Collapse
Affiliation(s)
- Swati Dilwale
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, -201002, India
| | - Priyanka Pandinhare Puthiyaveetil
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, -201002, India
| | - Athira Babu
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, -201002, India
| | - Sreekumar Kurungot
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, -201002, India
| |
Collapse
|
7
|
Li H, Chen Z, Zheng L, Wang J, Adenusi H, Passerini S, Zhang H. Electrolyte Strategies Facilitating Anion-Derived Solid-Electrolyte Interphases for Aqueous Zinc-Metal Batteries. SMALL METHODS 2024; 8:e2300554. [PMID: 37421218 DOI: 10.1002/smtd.202300554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Indexed: 07/10/2023]
Abstract
Rechargeable aqueous zinc-metal batteries (AZBs) are a promising complimentary technology to the existing lithium-ion batteries and the re-emerging lithium-metal batteries to satisfy the increasing demands on energy storage. Despite considerable progress achieved in the past years, the fundamental understanding of the solid-electrolyte interphase (SEI) formation and how its composition influences the SEI properties are limited. This review highlights the functionalities of anion-tuned SEI on the reversibility of zinc-metal anode, with a specific emphasis on new structural insights obtained through advanced characterizations and computational techniques. Recent efforts in terms of key variables that govern the interfacial behaviors to improve the long-term stability of zinc anode, i.e., Coulombic efficiency, plating morphology, dendrite formation, and side-reactions, are comprehensively reviewed. Lastly, the remaining challenges and future perspectives are presented, providing insights into the rational design of practical high-performance AZBs.
Collapse
Affiliation(s)
- Huihua Li
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Zhen Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Leilei Zheng
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jian Wang
- Helmholtz Institute Ulm (HIU), D-89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), D-76021, Karlsruhe, Germany
| | - Henry Adenusi
- Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China
- Hong Kong Quantum AI Lab, Hong Kong, P. R. China
| | - Stefano Passerini
- Helmholtz Institute Ulm (HIU), D-89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), D-76021, Karlsruhe, Germany
- Chemistry Department, Sapienza University of Rome, Rome, 00185, Italy
| | - Huang Zhang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, P. R. China
| |
Collapse
|
8
|
Li M, Wu J, Li H, Wang Y. Suppressing the Shuttle Effect of Aqueous Zinc-Iodine Batteries: Progress and Prospects. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1646. [PMID: 38612159 PMCID: PMC11012360 DOI: 10.3390/ma17071646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Aqueous zinc-iodine batteries are considered to be one of the most promising devices for future electrical energy storage due to their low cost, high safety, high theoretical specific capacity, and multivalent properties. However, the shuttle effect currently faced by zinc-iodine batteries causes the loss of cathode active material and corrosion of the zinc anodes, limiting the large-scale application of zinc-iodine batteries. In this paper, the electrochemical processes of iodine conversion and the zinc anode, as well as the induced mechanism of the shuttle effect, are introduced from the basic configuration of the aqueous zinc-iodine battery. Then, the inhibition strategy of the shuttle effect is summarized from four aspects: the design of cathode materials, electrolyte regulation, the modification of the separator, and anode protection. Finally, the current status of aqueous zinc-iodine batteries is analyzed and recommendations and perspectives are presented. This review is expected to deepen the understanding of aqueous zinc-iodide batteries and is expected to guide the design of high-performance aqueous zinc-iodide batteries.
Collapse
Affiliation(s)
- Mengyao Li
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Juan Wu
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Haoyu Li
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Yude Wang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, Yunnan University, Kunming 650504, China
| |
Collapse
|
9
|
Zhu D, Li J, Zheng Z, Ye S, Pan Y, Wu J, She F, Lai L, Zhou Z, Chen J, Li H, Wei L, Chen Y. Water and Salt Concentration-Dependent Electrochemical Performance of Hydrogel Electrolytes in Zinc-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16175-16185. [PMID: 38509690 DOI: 10.1021/acsami.3c19112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Zinc-ion batteries (ZIBs) are promising energy storage devices with safe, nonflammable electrolytes and abundant, low-cost electrode materials. Their practical applications are hampered by various water-related undesirable reactions, such as the hydrogen evolution reaction (HER), corrosion of zinc metal, and water-induced decay of cathode materials. Polymer hydrogel electrolytes were used to control these reactions. However, salt, water, and polymeric backbones intervene in polymer hydrogels, and currently, there are no systematic studies on how salt and water concentrations synergistically affect polymer hydrogels' electrochemical performance. Here, we used an in situ polymerization method to synthesize polyacrylamide (PAM) hydrogels with varied Zn(ClO4)2 (0.5 to 2.0 mol kg-1) and water (40 to 90 wt %) concentrations. Their electrochemical performances in Zn||Ti half-cells, Zn||Zn symmetrical cells, and Zn||V2O5 full cells have been comprehensively evaluated. Although the ionic conductivity of electrolytes increases with the salt concentration, a high salt concentration of 2.0 mol kg-1 with more Zn2+ solvated H2O would induce more severe HER and Zn corrosion at the electrolyte/electrode interfaces. A narrow window of the water concentration at 70-80 wt % is optimal to balance needs for achieving a high ionic conductivity and restricting water-related undesirable reactions. The chemically more active water counts roughly 64.1-73.1 wt % of the total water in electrolytes. PAM hydrogel electrolyte with 1.0 mol kg-1 Zn(ClO4)2 and 80 wt % water enables 1200 h of stable cycling in a Zn||Zn symmetric cell and 99.24% of Coulombic efficiency in a Zn||Ti half-cell. Due to the water-induced decay of V2O5, the electrolyte with 70 wt % water delivers the best performance in a Zn||V2O5 full cell, which can retain 73.7% of its initial capacity after 400 charge/discharge cycles. Our results show that achieving precise control of salt and water concentrations of hydrogel electrolytes in their optimal windows to reduce the fraction of chemically more active water while retaining high ionic conductivity is essential to enabling high-performance ZIBs.
Collapse
Affiliation(s)
- Di Zhu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Jing Li
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Zhi Zheng
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Songbo Ye
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Yuqi Pan
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Jiacheng Wu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Fangxin She
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Leo Lai
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Zihan Zhou
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Jiaxiang Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Li Wei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| |
Collapse
|
10
|
Khan Z, Kumar D, Crispin X. Does Water-in-Salt Electrolyte Subdue Issues of Zn Batteries? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300369. [PMID: 37220078 DOI: 10.1002/adma.202300369] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/12/2023] [Indexed: 05/25/2023]
Abstract
Zn-metal batteries (ZnBs) are safe and sustainable because of their operability in aqueous electrolytes, abundance of Zn, and recyclability. However, the thermodynamic instability of Zn metal in aqueous electrolytes is a major bottleneck for its commercialization. As such, Zn deposition (Zn2+ → Zn(s)) is continuously accompanied by the hydrogen evolution reaction (HER) (2H+ → H2 ) and dendritic growth that further accentuate the HER. Consequently, the local pH around the Zn electrode increases and promotes the formation of inactive and/or poorly conductive Zn passivation species (Zn + 2H2 O → Zn(OH)2 + H2 ) on the Zn. This aggravates the consumption of Zn and electrolyte and degrades the performance of ZnB. To propel HER beyond its thermodynamic potential (0 V vs standard hydrogen electrode (SHE) at pH 0), the concept of water-in-salt-electrolyte (WISE) has been employed in ZnBs. Since the publication of the first article on WISE for ZnB in 2016, this research area has progressed continuously. Here, an overview and discussion on this promising research direction for accelerating the maturity of ZnBs is provided. The review briefly describes the current issues with conventional aqueous electrolyte in ZnBs, including a historic overview and basic understanding of WISE. Furthermore, the application scenarios of WISE in ZnBs are detailed, with the description of various key mechanisms (e.g., side reactions, Zn electrodeposition, anions or cations intercalation in metal oxide or graphite, and ion transport at low temperature).
Collapse
Affiliation(s)
- Ziyauddin Khan
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| | - Divyaratan Kumar
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| | - Xavier Crispin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| |
Collapse
|
11
|
Liu X, Li X, Yang X, Lu J, Zhang X, Yuan D, Zhang Y. Influence of Water on Gel Electrolytes for Zinc-Ion Batteries. Chem Asian J 2023; 18:e202201280. [PMID: 36632721 DOI: 10.1002/asia.202201280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/13/2023]
Abstract
Gel electrolytes are being intensively explored for aqueous rechargeable zinc-ion batteries, especially towards high performance and multi-functionalities. Water plays a central role on the fundamental properties, interface reaction/interaction, and performance of the gel-type zinc electrolyte. In this review, the influence of water on the physiochemical properties of gel electrolytes is focused on. The correlation between water activity and the fundamental properties of zinc electrolytes is presented. Current approaches and challenges in manipulating water activity and the consequent influence on the electrochemical stability, transport, and interface kinetics of gel electrolytes are summarized. An outlook on approaches to tuning and investigating water activity is provided to shed light on the design of advanced gel electrolytes.
Collapse
Affiliation(s)
- Xiangjie Liu
- College of Materials Science and Engineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali RD (S), Changsha, Hunan, 410004, P. R. China
| | - Xin Li
- College of Materials Science and Engineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali RD (S), Changsha, Hunan, 410004, P. R. China
| | - Xiaotong Yang
- College of Materials Science and Engineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali RD (S), Changsha, Hunan, 410004, P. R. China
| | - Jingqi Lu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Xuan Zhang
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Du Yuan
- College of Materials Science and Engineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali RD (S), Changsha, Hunan, 410004, P. R. China
| | - Yizhou Zhang
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| |
Collapse
|
12
|
Wei W, Nan S, Wang H, Xu S, Liu X, He R. Design and preparation of sulfonated polymer membranes for Zn/MnO2 flow batteries with assistance of machine learning. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Hu P, Luo X, Hu T, Chen S, Li D, Chen Y, Li F. Ethanol Solvent Used in Constructing Ultra-Low-Temperature Zinc-Ion Capacitors with a Long Cycling Life. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5180-5190. [PMID: 36656080 DOI: 10.1021/acsami.2c19041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Zinc-ion capacitors (ZICs) gain enormous attraction for their high power density, low cost, and long life, but their poor low-temperature performance is still a challenge due to the dissatisfactory freezing point of aqueous electrolyte solution. It is difficult for them to meet the requirements in cold environments as well as the extreme low temperature and severe temperature fluctuations in aerospace environments. Herein, ethanol (EtOH) solvent with ZnCl2 is used as an electrolyte to address these issues. Benefiting from the low freezing point (-114 °C) of EtOH, the ZIC with the ZnCl2/EtOH electrolyte can be operated at an ultralow temperature of -78 °C. It also demonstrates long cycling stability over 30,000 cycles. Such an enhancement is attributed to the unique properties of [ZnCl(EtOH)5]+ that can stabilize the coordination environment of Zn2+, slow the diffusivity, and raise the nucleation overpotential, leading to uniform Zn plating/stripping and subsequently suppressing dendrite growth. Meanwhile, the lower activation energy in ZnCl2/EtOH than that in ZnSO4/H2O electrolytes endows the ZIC excellent charge transfer properties. This work provides a fascinating electrolyte and a feasible pathway for ultra-low-temperature ZICs with a long cycling life.
Collapse
Affiliation(s)
- Pengyun Hu
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan528000, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, 58 Renmin Road, Haikou570228, China
| | - Xianyou Luo
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan528000, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, 58 Renmin Road, Haikou570228, China
| | - Tianzhao Hu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang110016, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou450001, China
| | - Shaorui Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei230052, China
| | - De Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, 58 Renmin Road, Haikou570228, China
| | - Yong Chen
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan528000, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, 58 Renmin Road, Haikou570228, China
| | - Feng Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei230052, China
| |
Collapse
|