1
|
Qiu Z, Guo X, Cao S, Du M, Wang Q, Pi Y, Pang H. High-Entropy Ag-Ru-Based Electrocatalysts with Dual-Active-Center for Highly Stable Ultra-Low-Temperature Zinc-Air Batteries. Angew Chem Int Ed Engl 2025; 64:e202415216. [PMID: 39370547 DOI: 10.1002/anie.202415216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
The development of advanced bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is significant for rechargeable zinc-air batteries (ZABs). Herein, a unique dual active center alloying strategy is proposed to achieve the efficient bifunctional oxygen catalysis, and the high entropy effect is further exploited to modulate the structure and performance of the catalysts. The MOF-assisted pyrolysis-replacement-alloying method was employed to construct the CoCuFeAgRu high-entropy alloy (HEA), which are uniformly anchored in porous nitrogen-doped carbon nanosheets. Notably, the obtained HEA catalyst exhibits excellent catalytic performance for both ORR and OER, and a peak power density of 136. 53 mW cm-2 and an energy density of 987.9 mAh gZn -1, surpassing the most of the previously reported bifunctional oxygen electrocatalysts. Moreover, the assembled flexible rechargeable ZAB enables excellent performance even at the ultralow temperature of -40 °C, with an energy density of 601.6 mAh gZn -1 and remarkable cycling stability up to 1,650 hours. Combined experimental and theoretical calculation results reveal that the excellent bifunctional catalytic activity of the HEA catalyst originated from the synergistic effect of the Ag and Ru dual active centers, and the optimization of the electronic structure by alloying effect.
Collapse
Affiliation(s)
- Ziming Qiu
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, Jiangsu, P. R. China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, Jiangsu, P. R. China
| | - Shuai Cao
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, Jiangsu, P. R. China
| | - Meng Du
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, Jiangsu, P. R. China
| | - Qinchao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, Jiangsu, P. R. China
| | - Yecan Pi
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, Jiangsu, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
2
|
Su J, Wan Y, Feng L, Huang D, Kai Chu H, Zhang X, Geng X, Wang Y, Zhong R, Zou R. "One-Stone, Two-Birds": Zinc-Rich Metal-Organic Frameworks as Precursors for High-Entropy Zn-Air Battery Electrocatalysts with Hierarchical Pore Structures. Angew Chem Int Ed Engl 2025; 64:e202413826. [PMID: 39198219 DOI: 10.1002/anie.202413826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/01/2024]
Abstract
The active sites of inexpensive transition metal electrocatalysts are sparse and singular, thus high-entropy alloys composed of non-precious metals have attracted considerable attention due to their multi-component synergistic effects. However, the facile synthesis of high-entropy alloy composites remains a challenge. Herein, we report a "one-stone, two-birds" method utilizing zinc (Zn)-rich metal-organic frameworks as precursors, by virtue of the low boiling point of Zn (907 °C) and its high volatility in alloys, high-entropy alloy carbon nanocomposite with a layered pore structure was ultimately synthesized. The experimental results demonstrate that the volatilization of zinc can prevent metal agglomeration and contribute to the formation of uniformly dispersed high-entropy alloy nanoparticles at slower pyrolysis and cooling rates. Simultaneously, the volatilization of Zn plays a crucial role in creating the hierarchically porous structure. Compared to the zinc-free HEA/NC-1, the HEA/NC-5 derived from the precursor containing 0.8 Zn exhibit massive micropores and mesopores. The resulting nanocomposites represent a synergistic effect between highly dispersed metal catalytic centers and hierarchical adsorption sites, thus achieving excellent electrocatalytic oxygen reduction performance with low catalyst loading compared to commercial Pt/C. This convenient zinc-rich precursor method can be extended to the production of more high-entropy alloys and various application fields.
Collapse
Affiliation(s)
- Jianwen Su
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, 102249, Beijing, China
| | - Yinji Wan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, 102249, Beijing, China
| | - Long Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, 102249, Beijing, China
| | - Dingding Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, 102249, Beijing, China
| | - Hsing Kai Chu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, 100871, Beijing, China
| | - Xuan Zhang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, 100871, Beijing, China
| | - Xiaoye Geng
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, 100871, Beijing, China
| | - Yonggang Wang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, 100871, Beijing, China
| | - Ruiqin Zhong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, 102249, Beijing, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, 100871, Beijing, China
| |
Collapse
|
3
|
Wu Y, Liao H, Chen S, Cao J, Zeng W, Liao Y, Qing Y, Xu H, Wu Y. Carbonized wood fiber-supported S, N-codoped carbon layer-coated multinary metal sulfide nanoarchitecture for efficient oxygen evolution reaction at ampere-level current density. J Colloid Interface Sci 2025; 677:140-149. [PMID: 39083891 DOI: 10.1016/j.jcis.2024.07.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
Multinary metal sulfides (MMSs) are highly suitable candidates for the application of electrocatalysis as they offer numerous parameters for optimizing the electronic structure and catalytic sites. Herein, a stable nanoarchitecture consisting of MMSs ((NiCoCrMnFe)Sx) nanoparticles embedded in S, N-codoped carbon (SNC) layers derived from metal organic framework (MOF) and supported on carbonized wood fibers (CWF) was fabricated by directly carbonization. Benefiting from this carbon-coated configuration, along with the synergistic effects within multinary metal systems, (NiCoCrMnFe)Sx@SNC/CWF delivers an exceptionally low overpotential of 260 mV at a high current density of 1000 mA cm-2, a small Tafel slope of 48.5 mV dec-1, and robust electrocatalytic stability. Furthermore, the (NiCoCrMnFe)Sx@SNC/CWF used as the cathode of rechargeable Zn-air batteries demonstrates higher power density and remarkable durability, surpassing that of commercial RuO2. Thus, we showcase the feasibility and advantages of employing highly efficient and durable MMSs materials for low-cost and sustainable energy conversion.
Collapse
Affiliation(s)
- Ying Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Houde Liao
- College of Science and Technology, Wenzhou-kean University, Wenzhou, Zhejiang 325000, PR China
| | - Sha Chen
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Jianjie Cao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Wanjuan Zeng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yuanyuan Liao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yan Qing
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Han Xu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| |
Collapse
|
4
|
Shi Y, Hu S, Xu X, Chen J. Ni-doping optimized d-band center in bifunctional Fe 2O 3 modified by bamboo-like NCNTs as a cathode material for Zn-air batteries. Dalton Trans 2024; 53:14801-14810. [PMID: 39163381 DOI: 10.1039/d4dt01733a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
During the development of Zn-air batteries, designing an affordable, efficient and stable electrocatalyst for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) presents a great challenge. Fe2O3 exhibits ORR and OER activities, but when used as a cathode material in Zn-air batteries, its activity requires further improvement. To achieve this goal, Ni is doped into Fe2O3 hexagonal nanorods, derived from a metal-organic framework (MOF) precursor, and further modified by N-doped carbon nanotubes. In ORR, its half-wave potential achieves 0.946 and 0.716 V in alkaline and neutral electrolytes, respectively. In OER, it requires 388 mV to obtain 10 mA cm-2 in an alkaline electrolyte. As illustrated by theoretical calculation, Ni-doping raises the d-band center of Fe2O3, which enhances its adsorption towards relevant oxygen species in electrocatalysis. This improves its ORR and OER activities. Based on these merits, the Zn-air battery is assembled with an alkaline electrolyte. At 10 mA cm-2, its specific capacity and energy density reach 819.8 mA h g-1 and 960.1 W h kg-1, respectively. This battery remains stable after a long time of charge and discharge. In neutral electrolytes, its promising discharge performance is also well retained. This work develops an effective approach to improve ORR and OER activities of Fe2O3-based cathode materials in Zn-air batteries.
Collapse
Affiliation(s)
- Yang Shi
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, P.R. China.
| | - Songhan Hu
- Key Laboratory of Electromagnetic Processing of Materials, MOE, Northeastern University, Shenyang 110819, Liaoning, China
| | - Xinxin Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, P.R. China.
| | - Jin Chen
- Key Laboratory of Electromagnetic Processing of Materials, MOE, Northeastern University, Shenyang 110819, Liaoning, China
| |
Collapse
|
5
|
Nandan R, Nara H, Nam HN, Phung QM, Ngo QP, Na J, Henzie J, Yamauchi Y. Tailored Design of Mesoporous Nanospheres with High Entropic Alloy Sites for Efficient Redox Electrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402518. [PMID: 39031636 PMCID: PMC11425213 DOI: 10.1002/advs.202402518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/13/2024] [Indexed: 07/22/2024]
Abstract
High Entropy Alloys (HEAs) are a versatile material with unique properties, tailored for various applications. They enable pH-sensitive electrocatalytic transformations like hydrogen evolution reaction (HER) and hydrogen oxidation reactions (HOR) in alkaline media. Mesoporous nanostructures with high surface area are preferred for these electrochemical reactions, but designing mesoporous HEA sis challenging. To overcome this challenge, a low-temperature triblock copolymer-assisted wet-chemical approach is developed to produce mesoporous HEA nanospheres composed of PtPdRuMoNi systems with sufficient entropic mixing. Owing to active sites with inherent entropic effect, mesoporous features, and increased accessibility, optimized HEA nanospheres promote strong HER/HOR performance in alkaline medium. At 30 mV nominal overpotential, it exhibits a mass activity of ≈167 (HER) and 151 A gPt -1 (HOR), far exceeding commercial Pt-C electrocatalysts (34 and 48 A gPt -1) and many recently reported various alloys. The Mott-Schottky analysis reveals HEA nanospheres inherit high charge carrier density, positive flat band potential, and smaller charge transfer barrier, resulting in better activity and faster kinetics. This micelle-assisted synthetic enable the exploration of the compositional and configurational spaces of HEAs at relatively low temperature, while simultaneously facilitating the introduction of mesoporous nanostructures for a wide range of catalytic applications.
Collapse
Affiliation(s)
- Ravi Nandan
- Research Center for Materials NanoarchitectonicsNational Institute for Materials Science (NIMS)1‐1 NamikiTsukubaIbaraki305‐0044Japan
| | - Hiroki Nara
- Waseda Research Institute for Science and EngineeringWaseda University3‐4‐1 OkuboShinjukuTokyo169‐8555Japan
| | - Ho Ngoc Nam
- Department of Materials Process EngineeringGraduate School of EngineeringNagoya UniversityNagoya464‐8603Japan
| | - Quan Manh Phung
- Department of ChemistryGraduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8602Japan
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8601Japan
| | - Quynh Phuong Ngo
- Materials Architecturing Research CenterKorea Institute of Science and Technology (KIST)5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Jongbeom Na
- Materials Architecturing Research CenterKorea Institute of Science and Technology (KIST)5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
- KHU‐KIST Department of Converging Science and TechnologyKyung Hee UniversitySeoul02447Republic of Korea
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
| | - Joel Henzie
- Research Center for Materials NanoarchitectonicsNational Institute for Materials Science (NIMS)1‐1 NamikiTsukubaIbaraki305‐0044Japan
| | - Yusuke Yamauchi
- Research Center for Materials NanoarchitectonicsNational Institute for Materials Science (NIMS)1‐1 NamikiTsukubaIbaraki305‐0044Japan
- Department of Materials Process EngineeringGraduate School of EngineeringNagoya UniversityNagoya464‐8603Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
- Department of Plant & Environmental New ResourcesKyung Hee University1732, Deogyeong‐daero, Giheung‐guYongin‐siGyeonggi‐do17104Republic of Korea
| |
Collapse
|
6
|
Wu DH, Ul Haq M, Zhang L, Feng JJ, Yang F, Wang AJ. Noble metal-free FeCoNiMnV high entropy alloy anchored on N-doped carbon nanotubes with prominent activity and durability for oxygen reduction and zinc-air batteries. J Colloid Interface Sci 2024; 662:149-159. [PMID: 38340514 DOI: 10.1016/j.jcis.2024.02.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Efficient and stable oxygen reduction reaction (ORR) catalysts are essential for constructing reliable energy conversion and storage devices. Herein, we prepared noble metal-free FeCoNiMnV high-entropy alloy supported on nitrogen-doped carbon nanotubes (FeCoNiMnV HEA/N-CNTs) by a one-step pyrolysis at 800 °C, as certificated by a set of characterizations. The graphitization degree of the N-CHTs was optimized by tuning the pyrolysis temperature in the control groups. The resultant catalyst greatly enhanced the ORR characteristics in the alkaline media, showing the positive onset potential (Eonset) of 0.99 V and half-wave potential (E1/2) of 0.85 V. More importantly, the above FeCoNiMnV HEA/N-CNTs assembled Zn-air battery exhibited a greater open-circuit voltage (1.482 V), larger power density (185.12 mW cm-2), and outstanding cycle stability (1698 cycles, 566 h). This study provides some valuable insights on developing sustainable ORR catalysts in Zn-air batteries.
Collapse
Affiliation(s)
- Dong-Hui Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Mahmood Ul Haq
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Fa Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
7
|
Jin X, Yan J, Liu X, Zhang Q, Huang Y, Wang Y, Wang C, Wu Y. Spatial Confinement of Pt Nanoparticles in Carbon Nanotubes for Efficient and Selective H 2 Evolution from Methanol. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306893. [PMID: 38225898 DOI: 10.1002/advs.202306893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/26/2023] [Indexed: 01/17/2024]
Abstract
H2 generation from methanol-water mixtures often requires high pressure and high temperature (200-300 °C). However, CO can be easily generated and poison the catalytic system under such high temperature. Therefore, it is highly desirable to develop the efficient catalytic systems for H2 production from methanol at room temperature, even at sub-zero temperatures. Herein, carbon nanotube-supported Pt nanocomposites are designed and synthesized as high-performance nano-catalysts, via stabilization of Pt nanoparticles onto carbon nanotube (CNT), for H2 production upon methanol dehydrogenation at sub-zero temperatures. Therein, the optimal Pt/CNT nanocomposite presents the superior catalytic performance in H2 production upon methanol dehydrogenation at the expense of B2(OH)4, with the TOF of 299.51 min-130 oC. Compared with other common carriers, Pt/CNT exhibited the highest catalytic performance in H2 production, emphasizing the critical role of CNT in methanol dehydrogenation. The confinement of Pt nanoparticles by CNTs is conducive to inhibiting the aggregation of Pt nanoparticles, thereby significantly increasing its catalytic performance and stability. The kinetic study, detailed mechanistic insights, and density functional theory (DFT) calculation confirm that the breaking of O─H bond of CH3OH is the rate-controlling step for methanol dehydrogenation, and both H atoms of H2 are supplied by methanol. Interestingly, H2 is also successfully produced from methanol dehydrogenation at -10 °C, which absolutely solves the freezing problem in the H2 evolution upon water-splitting reaction.
Collapse
Affiliation(s)
- Xiaotao Jin
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, P. R. China
| | - Jiaying Yan
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, P. R. China
| | - Xiang Liu
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, P. R. China
| | - Qing Zhang
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, P. R. China
| | - Yingping Huang
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, P. R. China
| | - Yanlan Wang
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, P. R. China
- Department of chemistry and chemical engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Changlong Wang
- Institute of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yufeng Wu
- Institute of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
8
|
Raj G, Nandan R, Kumar K, Gorle DB, Mallya AB, Osman SM, Na J, Yamauchi Y, Nanda KK. High entropy alloying strategy for accomplishing quintuple-nanoparticles grafted carbon towards exceptional high-performance overall seawater splitting. MATERIALS HORIZONS 2023; 10:5032-5044. [PMID: 37649459 DOI: 10.1039/d3mh00453h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
High entropy alloys (HEAs), a novel class of material, have been explored in terms of their excellent mechanical properties. Seawater electrolysis is a step towards sustainable production of carbon-neutral fuels such as H2, O2, and industrially demanding Cl2. Herein, we report a practically viable FeCoNiMnCr HEA nanoparticles system grafted on a conductive carbon matrix for promising seawater electrolysis. The comprehensive kinetics analysis of the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and chlorine evolution reaction (CER) confirms the effectiveness of our system. As an electrocatalyst, HEAs grafted on carbon black show trifunctionality with promising kinetics, selectivity and enduring performance, towards seawater splitting. We optimize high entropy alloy decorated/grafted carbon black (HEACB) catalysts, studying their synthesis temperature to scrutinize the effect of alloy formation variation on the catalysis efficacy. During the catalysis, selectivity between two mutually competing reactions, CER and OER, in the electrochemical catalysis of seawater is controlled by the reaction media pH. We employ Mott-Schottky measurements to probe the band structure of the intrinsically induced metal-semiconductor junction in the HEACB catalyst, where the carrier density and flat band potential are optimized. The HEACB sample provides promising results towards overall seawater electrolysis with a net half-cell potential of about 1.65 V with good stability, which strongly implies its broad practical applicability.
Collapse
Affiliation(s)
- Gokul Raj
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, Karnataka, India.
| | - Ravi Nandan
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, Karnataka, India.
| | - Kanhai Kumar
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, Karnataka, India.
| | - Demudu Babu Gorle
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, Karnataka, India.
| | - Ambresh B Mallya
- Micro Nano Characterization Facility, Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore-560012, India
| | - Sameh M Osman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jongbeom Na
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yusuke Yamauchi
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Karuna Kar Nanda
- Materials Research Centre, Indian Institute of Science, Bangalore-560012, Karnataka, India.
- Institute of Physics (IOP), Bhubaneshwar-751005, India
| |
Collapse
|
9
|
Cai J, Zhang X, Wang T, Shi Y, Lin S. Synthesis of a carbon-wrapped microsphere MoO 2/Mo 2C heterojunction as an efficient electrocatalyst for the oxygen reduction reaction and the hydrogen evolution reaction. Dalton Trans 2023; 52:13991-14002. [PMID: 37740289 DOI: 10.1039/d3dt02537c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The development of non-noble metal catalysts for the optimization of conversion and storage devices is an important research topic. Hence, the microsphere MoO2/Mo2C/C heterojunction composites, which play an important role in the oxygen reduction reaction (ORR) and the hydrogen evolution reaction (HER), were synthesized using the solvothermal-sintering method. The results revealed that the as-prepared composite exhibited better ORR and HER catalytic performances than those of MoO2/Mo2C and Vulcan XC-72R (carbon black), and approaching that of commercial Pt/C. At the same time, it has a superior methanol tolerance and electrochemical stability than that of the commercial Pt/C. The excellent performance may be attributed to the synergistic effect of the MoO2/Mo2C heterostructure, highly conductive Vulcan XC-72R, and oxygen vacancies (Ov). This research offers new insights into the design and synthesis of cost-effective, environmentally friendly heterojunction composite catalysts used as a high-performance cathode material in fuel cells and water splitting.
Collapse
Affiliation(s)
- Jiannan Cai
- Fujian Polytechnic Normal University, Fuzhou 350300, China.
| | - Xiaofeng Zhang
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, China
| | - Ting Wang
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, China
| | - Yuande Shi
- Fujian Polytechnic Normal University, Fuzhou 350300, China.
| | - Shen Lin
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, China
| |
Collapse
|
10
|
Cao X, Gao Y, Wang Z, Zeng H, Song Y, Tang S, Luo L, Gong S. FeNiCrCoMn High-Entropy Alloy Nanoparticles Loaded on Carbon Nanotubes as Bifunctional Oxygen Catalysts for Rechargeable Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37384940 DOI: 10.1021/acsami.3c04120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
An efficient and stable bifunctional oxygen catalyst is necessary to complete the application of the rechargeable zinc-air battery. Herein, an economical and convenient process was adopted to successfully coat high-entropy alloy Fe12Ni23Cr10Co55-xMnx nanoparticles on carbon nanotubes (CNTs). In 0.1 M KOH solution, with a bifunctional oxygen overpotential (ΔE) of only 0.7 V, the catalyst Fe12Ni23Cr10Co30Mn25/CNT exhibits excellent bifunctional oxygen catalytic performance, exceeding most catalysts reported so far. In addition, the air electrode assembled with this catalyst exhibits high specific capacity (760 mA h g-1) and energy density (865.5 W h kg-1) in a liquid zinc-air battery, with a long-term cycle stability over 256 h. The density functional theory calculation points out that changing the atomic ratio of Co/Mn can change the adsorption energy of the oxygen intermediate (*OOH), which allows the ORR catalytic process to be accelerated in the alkaline environment, thereby increasing the ORR catalytic activity. This article has important implications for the progress of commercially available bifunctional oxygen catalysts and their applications in zinc-air batteries.
Collapse
Affiliation(s)
- Xinhui Cao
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yiting Gao
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Zihe Wang
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Huanzhi Zeng
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yifei Song
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Shanguang Tang
- Hunan Yige Pharmaceutical Co.,Ltd, Xiangtan 41110, China
| | - Liuxiong Luo
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Shen Gong
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China
- State Key Laboratory of Powder Metallurgy, Changsha 410083, China
| |
Collapse
|
11
|
Chen T, Ning F, Qi J, Feng G, Wang Y, Song J, Yang T, Liu X, Chen L, Xia D. PtFeCoNiCu high-entropy solid solution alloy as highly efficient electrocatalyst for the oxygen reduction reaction. iScience 2022; 26:105890. [PMID: 36691611 PMCID: PMC9860490 DOI: 10.1016/j.isci.2022.105890] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Searching for an efficient, durable, and low cost catalyst toward oxygen reduction reaction (ORR) is of paramount importance for the application of fuel cell technology. Herein, PtFeCoNiCu high-entropy alloy nanoparticles (PFCNC-HEA) is reported as electrocatalyst toward ORR. It shows remarkable ORR catalytic mass activity of 1.738 A mg-1 Pt at 0.90 V, which is 15.8 times higher than that of the state-of-art commercial Pt/C catalyst. It also exhibits outstanding stability with negligible voltage decay (3 mV) after 10k cycles accelerated durability test. High ORR activity is ascribed to the ligand effect caused by polymetallic elements, the optimization of the surface electronic structure, and the formation of multiple active sites on the surface. In the proton exchange membrane fuel cell setup, this cell delivers a power density of up to 1.380 W cm-2 with a cathodic Pt loading of 0.03 mgPt cm-2, demonstrating a promising catalyst design direction for highly efficient ORR.
Collapse
Affiliation(s)
- Tao Chen
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, PR China
| | - Fanghua Ning
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, PR China
| | - Jizhen Qi
- I-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Guang Feng
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, PR China
| | - Yucheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jin Song
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, PR China
| | - Tonghuan Yang
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, PR China
| | - Xi Liu
- In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Liwei Chen
- In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China,Corresponding author
| | - Dingguo Xia
- Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, PR China,Corresponding author
| |
Collapse
|