1
|
Kim S, Sabury S, Perini CAR, Hossain T, Yusuf AO, Xiao X, Li R, Graham KR, Reynolds JR, Correa-Baena JP. Enhancing Thermal Stability of Perovskite Solar Cells through Thermal Transition and Thin Film Crystallization Engineering of Polymeric Hole Transport Layers. ACS ENERGY LETTERS 2024; 9:4501-4508. [PMID: 39296968 PMCID: PMC11406513 DOI: 10.1021/acsenergylett.4c01546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024]
Abstract
Organic hole transport layers (HTLs) have been known to be susceptible to thermal stress, leading to poor long-term stability in perovskite solar cells (PSCs). We synthesized three 2,5-dialkoxy-substituted, 1,4-bis(2-thienyl)phenylene (TPT)-based conjugated polymers (CPs) linked with thiophene-based (thiophene (T) and thienothiophene (TT)) comonomers and evaluated them as HTLs in n-i-p PSCs. TPT-T (MB/C6), which has branched 2-methylbutyl and linear hexyl (MB/C6) side chains, emerged as a promising HTL candidate, enabling power conversion efficiencies (PCEs) greater than 15%. In addition, PSCs with this HTL showed an improvement in long-term stability at elevated temperatures of 65 °C when compared to those with the state-of-art HTL, 2,2',7,7'-tetrakis(N,N-p-dimethoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD). This improvement is ascribed to the lack of thermal transitions within the operational temperature range of PSCs for TPT-T (MB/C6), which is attributed to the relatively short branched side chains of this polymer. We propose that the elimination of thermal transitions below 200 °C leads to HTLs without cracking as-deposited and after conducting a stress test at 65 °C, which can serve as a new design guideline for HTL development.
Collapse
Affiliation(s)
- Sanggyun Kim
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sina Sabury
- School of Chemistry and Biochemistry, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Carlo A R Perini
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tareq Hossain
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Augustine O Yusuf
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Xiangyu Xiao
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kenneth R Graham
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - John R Reynolds
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Juan-Pablo Correa-Baena
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Huang X, Wang X, Zou Y, An M, Wang Y. The Renaissance of Poly(3-hexylthiophene) as a Promising Hole-Transporting Material Toward Efficient and Stable Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400874. [PMID: 38794876 DOI: 10.1002/smll.202400874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/14/2024] [Indexed: 05/26/2024]
Abstract
To push the commercialization of the promising photovoltaic technique of perovskite solar cells (PSCs), the three-element golden law of efficiency, stability, and cost should be followed. As the key component of PSCs, hole-transporting materials (HTMs) involving widely-used organic semiconductors such as 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD) or poly(triarylamine) (PTAA) usually suffer high-cost preparation and low operational stability. Fortunately, the studies on the classical p-type polymer poly(3-hexylthiophene) (P3HT) as an alternative HTM have recently sparked a broad interest due to its low-cost synthesis, excellent batch-to-batch purity, superior hole conductivity as well as controllable and stable film morphology. Despite this, the device efficiency still lags behind P3HT-based PSCs mainly owing to the mismatched energy level and poor interfacial contact between P3HT and the perovskite layer. Hence, in this review, the study timely summarizes the developed strategies for overcoming the corresponding issues such as interface engineering, morphology regulation, and formation of composite HTMs from which some critical clues can be extracted to provide guidance for further boosting the efficiency and stability of P3HT-based devices. Finally, in the outlook, the future research directions either from the viewpoint of material design or device engineering are outlined.
Collapse
Affiliation(s)
- Xiaozhen Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
| | - Xuran Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
| | - Yaqing Zou
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
| | - Mingwei An
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
| | - Yang Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
3
|
Liang X, Ming Y, Lee SH, Fu G, Lee SU, Kim TI, Zhang H, Park NG. Degassing 4- tert-Butylpyridine in the Spiro-MeOTAD Film Improves the Thermal Stability of Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32147-32159. [PMID: 38864112 DOI: 10.1021/acsami.4c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The organic molecular 2,2',7,7'-tetrakis(4,4'-dimethoxy-3-methyldiphenylamino)-9,9'-spirobifluorene (Spiro-MeOTAD) is known as a typical hole transport material in the development of an all-solid-state perovskite solar cell (PSC). Spiro-MeOTAD requires additives of lithium bifurflimide (LiTFSI) and 4-tert-butylpyridine (tBP) to increase the conductivity and solubility for enhancing the photovoltaic performance of PSCs. However, those additives have an adverse effect on the thermal stability. We report on the origin of instability of additive-containing Spiro-MeOTAD at 85 °C and the methodology to solve the thermal instability. We have found that the interaction of LiTFSI with the underneath perovskite surface facilitated by diffusive tBP is responsible for thermal degradation. Degasification of tBP from the Spiro-MeOTAD film is found to be the key to achieving thermally stable PSCs, where the optimal degassing process achieves 90% of the initial power conversion efficiency (PCE) at 85 °C after 1000 h.
Collapse
Affiliation(s)
- Xin Liang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Yong Ming
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sun-Ho Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Guiming Fu
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sang-Uk Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hui Zhang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Nam-Gyu Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Tian Q, Chang J, Wang J, He Q, Chen S, Yang P, Wang H, Lai J, Wu M, Zhao X, Zhong C, Li R, Huang W, Wang F, Yang Y, Qin T. Self-Polymerized Spiro-Type Interfacial Molecule toward Efficient and Stable Perovskite Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202318754. [PMID: 38407918 DOI: 10.1002/anie.202318754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
In the pursuit of highly efficient perovskite solar cells, spiro-OMeTAD has demonstrated recorded power conversion efficiencies (PCEs), however, the stability issue remains one of the bottlenecks constraining its commercial development. In this study, we successfully synthesize a novel self-polymerized spiro-type interfacial molecule, termed v-spiro. The linearly arranged molecule exhibits stronger intermolecular interactions and higher intrinsic hole mobility compared to spiro-OMeTAD. Importantly, the vinyl groups in v-spiro enable in situ polymerization, forming a polymeric protective layer on the perovskite film surface, which proves highly effective in suppressing moisture degradation and ion migration. Utilizing these advantages, poly-v-spiro-based device achieves an outstanding efficiency of 24.54 %, with an enhanced open-circuit voltage of 1.173 V and a fill factor of 81.11 %, owing to the reduced defect density, energy level alignment and efficient interfacial hole extraction. Furthermore, the operational stability of unencapsulated devices is significantly enhanced, maintaining initial efficiencies above 90 % even after 2000 hours under approximately 60 % humidity or 1250 hours under continuous AM 1.5G sunlight exposure. This work presents a comprehensive approach to achieving both high efficiency and long-term stability in PSCs through innovative interfacial design.
Collapse
Affiliation(s)
- Qiushuang Tian
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Jingxi Chang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Junbo Wang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Qingyun He
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Shaoyu Chen
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Pinghui Yang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Hongze Wang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Jingya Lai
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Mengyang Wu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Xiangru Zhao
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Chongyu Zhong
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Renzhi Li
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Wei Huang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies (OEMT), Sun Yat-sen University, Guangdong, 510275, China
| | - Fangfang Wang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Yingguo Yang
- School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Tianshi Qin
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies (OEMT), Sun Yat-sen University, Guangdong, 510275, China
| |
Collapse
|
5
|
Wang X, Wang M, Zhang Z, Wei D, Cai S, Li Y, Zhang R, Zhang L, Zhang R, Zhu C, Huang X, Gao F, Gao P, Wang Y, Huang W. De Novo Design of Spiro-Type Hole-Transporting Material: Anisotropic Regulation Toward Efficient and Stable Perovskite Solar Cells. RESEARCH (WASHINGTON, D.C.) 2024; 7:0332. [PMID: 38533182 PMCID: PMC10964223 DOI: 10.34133/research.0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
2,2',7,7'-Tetrakis(N,N-di-p-methoxyphenyl)-amine-9,9'-spirobifluorene (Spiro-OMeTAD) represents the state-of-the-art hole-transporting material (HTM) in n-i-p perovskite solar cells (PSCs). However, its susceptibility to stability issues has been a long-standing concern. In this study, we embark on a comprehensive exploration of the untapped potential within the family of spiro-type HTMs using an innovative anisotropic regulation strategy. Diverging from conventional approaches that can only modify spirobifluorene with single functional group, this approach allows us to independently tailor the two orthogonal components of the spiro-skeleton at the molecular level. The newly designed HTM, SF-MPA-MCz, features enhanced thermal stability, precise energy level alignment, superior film morphology, and optimized interfacial properties when compared to Spiro-OMeTAD, which contribute to a remarkable power conversion efficiency (PCE) of 24.53% for PSCs employing SF-MPA-MCz with substantially improved thermal stability and operational stability. Note that the optimal concentration for SF-MPA-MCz solution is only 30 mg/ml, significantly lower than Spiro-OMeTAD (>70 mg/ml), which could remarkably reduce the cost especially for large-area processing in future commercialization. This work presents a promising avenue for the versatile design of multifunctional HTMs, offering a blueprint for achieving efficient and stable PSCs.
Collapse
Affiliation(s)
- Xuran Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| | - Mingliang Wang
- College of Physics and Energy,
Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Zilong Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute,
Chinese Academy of Sciences, Xiamen 361021, China
| | - Dong Wei
- College of Physics and Energy,
Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Shidong Cai
- College of Physics and Energy,
Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Yuheng Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Rui Zhang
- Department of Physics, Chemistry and Biology (IFM),
Linköping University, Linköping, Sweden
| | - Liangliang Zhang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| | - Ruidan Zhang
- College of Physics and Energy,
Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Xiaozhen Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM),
Linköping University, Linköping, Sweden
| | - Peng Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute,
Chinese Academy of Sciences, Xiamen 361021, China
| | - Yang Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| | - Wei Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE),
Northwestern Polytechnical University, Xi’an710072, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM),
Nanjing Tech University (NanjingTech), Nanjing211800, China
| |
Collapse
|
6
|
Zhong Y, Yang J, Wang X, Liu Y, Cai Q, Tan L, Chen Y. Inhibition of Ion Migration for Highly Efficient and Stable Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302552. [PMID: 37067957 DOI: 10.1002/adma.202302552] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
In recent years, organic-inorganic halide perovskites are now emerging as the most attractive alternatives for next-generation photovoltaic devices, due to their excellent optoelectronic characteristics and low manufacturing cost. However, the resultant perovskite solar cells (PVSCs) are intrinsically unstable owing to ion migration, which severely impedes performance enhancement, even with device encapsulation. There is no doubt that the investigation of ion migration and the summarization of recent advances in inhibition strategies are necessary to develop "state-of-the-art" PVSCs with high intrinsic stability for accelerated commercialization. This review systematically elaborates on the generation and fundamental mechanisms of ion migration in PVSCs, the impact of ion migration on hysteresis, phase segregation, and operational stability, and the characterizations for ion migration in PVSCs. Then, many related works on the strategies for inhibiting ion migration toward highly efficient and stable PVSCs are summarized. Finally, the perspectives on the current obstacles and prospective strategies for inhibition of ion migration in PVSCs to boost operational stability and meet all of the requirements for commercialization success are summarized.
Collapse
Affiliation(s)
- Yang Zhong
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jia Yang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xueying Wang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yikun Liu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Qianqian Cai
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Licheng Tan
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| |
Collapse
|