1
|
Sattar S, Statheros T, Raza A, Kellner Q, Yu Y, Bhagat R, Roberts AJ, Guo Y. In Operando Optical Analysis of Electrolyte Colour Change and Its Correlation to Capacity Fade in Li-Ion Cells at Elevated Temperatures. SENSORS (BASEL, SWITZERLAND) 2024; 24:7686. [PMID: 39686223 DOI: 10.3390/s24237686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
The existing body of research on battery state of health has identified various degradation modes for the electrolyte, yet very few studies have explored the role of electrolyte colour changes as a diagnostic tool for state of health (SOH). This study investigates the impact of elevated temperatures and its correlation with electrolyte colour changes and capacity fade during cycling. Specifically, the research examines whether cycling cells at elevated temperatures induces noticeable changes in electrolyte colour and whether these changes can be linked to the SOH of the cells. The methodology employs in operando optical sensors to monitor real-time colour shifts in the electrolyte, aiming to demonstrate a qualitative relationship between electrolyte colour change, degradation, thermal ageing, and capacity fade, laying the foundations for future quantitative assessment of the relationships identified. Our research builds upon these findings by offering a novel approach that integrates optical sensing to provide real-time visual evidence of electrolyte degradation and colour change during cell operation. The results demonstrate a clear relationship between elevated temperature, electrolyte colour change, and capacity fade, leading to accelerated degradation. This approach offers a new insight over traditional in exitu battery diagnostics, as it enables continuous in operando monitoring of electrolyte colour change and has the potential to unlock a detailed understanding of the chemical reactions and electrolyte breakdown during cycling.
Collapse
Affiliation(s)
- Saud Sattar
- Centre for E-Mobility and Clean Growth, Coventry University, Coventry CV1 5FB, UK
| | - Thomas Statheros
- Centre for Future Transport and Cities, Coventry University, Coventry CV1 5FB, UK
| | - Ali Raza
- Centre for E-Mobility and Clean Growth, Coventry University, Coventry CV1 5FB, UK
| | | | - Yifei Yu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430047, China
| | - Rohit Bhagat
- Centre for E-Mobility and Clean Growth, Coventry University, Coventry CV1 5FB, UK
| | - Alexander J Roberts
- Centre for E-Mobility and Clean Growth, Coventry University, Coventry CV1 5FB, UK
| | - Yue Guo
- Centre for E-Mobility and Clean Growth, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
2
|
Qiao X, Chen T, He F, Li H, Zeng Y, Wang R, Yang H, Yang Q, Wu Z, Guo X. Solvation Effect: The Cornerstone of High-Performance Battery Design for Commercialization-Driven Sodium Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401215. [PMID: 38856003 DOI: 10.1002/smll.202401215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Indexed: 06/11/2024]
Abstract
Sodium batteries (SBs) emerge as a potential candidate for large-scale energy storage and have become a hot topic in the past few decades. In the previous researches on electrolyte, designing electrolytes with the solvation theory has been the most promising direction is to improve the electrochemical performance of batteries through solvation theory. In general, the four essential factors for the commercial application of SBs, which are cost, low temperature performance, fast charge performance and safety. The solvent structure has significant impact on commercial applications. But so far, the solvation design of electrolyte and the practical application of sodium batteries have not been comprehensively summarized. This review first clarifies the process of Na+ solvation and the strategies for adjusting Na+ solvation. It is worth noting that the relationship between solvation theory and interface theory is pointed out. The cost, low temperature, fast charging, and safety issues of solvation are systematically summarized. The importance of the de-solvation step in low temperature and fast charging application is emphasized to help select better electrolytes for specific applications. Finally, new insights and potential solutions for electrolytes solvation related to SBs are proposed to stimulate revolutionary electrolyte chemistry for next generation SBs.
Collapse
Affiliation(s)
- Xianyan Qiao
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ting Chen
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, P. R. China
| | - Fa He
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Haoyu Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yujia Zeng
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ruoyang Wang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Huan Yang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qing Yang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhenguo Wu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaodong Guo
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
3
|
Zhang Y, Hou Q, Wang S, Xu E, Zhao S, Li F, Yang Y, Wei M. Metal-Acid Interface Engineering in Pd-WO x Bifunctional Catalysts for the Hydroalkylation Tandem Reaction of Benzene. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37418596 DOI: 10.1021/acsami.3c05799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
The hydroalkylation tandem reaction of benzene to cyclohexylbenzene (CHB) provides an atom economy route for conversion and utilization of benzene; yet, it presents significant challenges in activity and selectivity control. In this work, we report a metal-support synergistic catalyst prepared via calcination of W-precursor-containing montmorillonite (MMT) followed by Pd loading (denoted as Pd-mWOx/MMT, m = 5, 15, and 25 wt %), which shows excellent catalytic performance for hydroalkylation of benzene. A combination study (X-ray diffraction (XRD), hydrogen-temperature programmed reduction (H2-TPR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis, Raman, and density functional theory (DFT) calculations) confirms the formation of interfacial sites Pd-(WOx)-H, whose concentration is dependent on the interaction between Pd and WOx. The optimized catalyst (Pd-15WOx/MMT) exhibits a CHB yield of up to 45.1% under a relatively low hydrogen pressure, which stands at the highest level among state-of-the-art catalysts. Investigations on the structure-property correlation based on in situ FT-IR and control experiments further verify that the Pd-(WOx)-H structure serves as the dual-active site: the interfacial Pd site accelerates benzene hydrogenation to cyclohexene (CHE), while the interfacial Bronsted (B) acid site in Pd-(WOx)-H boosts the alkylation of benzene and CHE to CHB. This study offers a new strategy for the design and preparation of metal-acid bifunctional catalysts, which shows potential application in the hydroalkylation reaction of benzene.
Collapse
Affiliation(s)
- Yuanjing Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Quandong Hou
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Si Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Enze Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shiquan Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
4
|
Song Y, Zhang M, Fan G, Yang L, Li F. Combining a Supported Ru Catalyst with HBeta Zeolite to Construct a High-Performance Bifunctional Catalyst for One-Step Cascade Transformation of Benzene to Cyclohexylbenzene. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yihui Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guoli Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lan Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Xu J. Critical Review on cathode-electrolyte Interphase Toward High-Voltage Cathodes for Li-Ion Batteries. NANO-MICRO LETTERS 2022; 14:166. [PMID: 35974213 PMCID: PMC9381680 DOI: 10.1007/s40820-022-00917-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/14/2022] [Indexed: 05/29/2023]
Abstract
The thermal stability window of current commercial carbonate-based electrolytes is no longer sufficient to meet the ever-increasing cathode working voltage requirements of high energy density lithium-ion batteries. It is crucial to construct a robust cathode-electrolyte interphase (CEI) for high-voltage cathode electrodes to separate the electrolytes from the active cathode materials and thereby suppress the side reactions. Herein, this review presents a brief historic evolution of the mechanism of CEI formation and compositions, the state-of-art characterizations and modeling associated with CEI, and how to construct robust CEI from a practical electrolyte design perspective. The focus on electrolyte design is categorized into three parts: CEI-forming additives, anti-oxidation solvents, and lithium salts. Moreover, practical considerations for electrolyte design applications are proposed. This review will shed light on the future electrolyte design which enables aggressive high-voltage cathodes.
Collapse
Affiliation(s)
- Jijian Xu
- Department of Chemical and Biomolecular Engineering, University of Maryland College Park, College Park, MD, 20742, USA.
| |
Collapse
|
6
|
Zhang Y, Yang Y, Hou Q, Xu E, Wang L, Li F, Wei M. Metal-Acid Bifunctional Catalysts toward Tandem Reaction: One-Step Hydroalkylation of Benzene to Cyclohexylbenzene. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31998-32008. [PMID: 35793492 DOI: 10.1021/acsami.2c07074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The one-step hydroalkylation of benzene to cyclohexylbenzene (CHB) is a technically challenging and economically interesting reaction with great industrial importance, where bifunctional catalysts play a crucial role in such a tandem reaction. In this work, we report H3PW12O40 (HPW) modified Ni nanoparticles (NPs) supported on mixed metal oxides (Ni/MMOs), which are featured by HPW species localized on the surface of Ni NPs (denoted as HPW-Ni/MMOs). The optimal catalyst (0.3HPW-Ni/MMOs) exhibits a satisfactory catalytic performance toward benzene hydroalkylation to CHB with a CHB yield of up to 41.2%, which is the highest standard among previously reported catalysts to date. A combination investigation based on HR-TEM, XPS, XANES, and in situ FT-IR verified the electron transfer from the W atom to the adjacent Ni atom, which facilitated the formation and desorption of cyclohexene (CHE) from Ni followed by the alkylation reaction of benzene and CHE at the interfacial Brønsted (B) acid sites of HPW, accounting for the significantly enhanced catalytic behavior. It is proposed that the HPW-Ni interface structure in xHPW-Ni/MMOs samples provides unique adsorption sites for benzene and CHE with a moderate adsorption strength, which serve as the intrinsic active center for this reaction: the Ni site promotes the hydrogenation of benzene to CHE, while the B acid site in HPW facilitates the alkylation of CHE and benzene to produce CHB. This work provides a fundamental understanding of the metal-acid synergistic catalysis toward the hydroalkylation reaction, which can be extended to the design and preparation of high-performance catalysts used in tandem reactions.
Collapse
Affiliation(s)
- Yuanjing Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Quandong Hou
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Enze Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Lei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|