1
|
Xie W, Fu Q, Yang LZ, Yan L, Zhang J, Zhao X. Methane Storage and Purification of Natural Gas in Metal-Organic Frameworks. CHEMSUSCHEM 2025; 18:e202401382. [PMID: 39196965 DOI: 10.1002/cssc.202401382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 08/30/2024]
Abstract
Natural gas, primarily composed of methane (CH4), represent an excellent choice for a potentially sustainable renewable energy transition. However, the process of compressing and liquefying CH4 for transport and storage typically results in significant energy losses. In addition, in order to optimize its efficacy as a fuel, the CH4 content of natural gas needs to be increased to a level of at least 97 % to ensure its quality and efficiency in various applications. Metal-organic frameworks (MOFs) represent a novel category of porous materials that possess exceptional capability in modifying pore size and chemical environment, making them ideally suited for the storage of CH4 and the adsorption of propane (C3H8), ethane (C2H6), carbon dioxide (CO2), nitrogen (N2), and hydrogen sulfide (H2S) to facilitate the purification process of CH4 from natural gas. In this paper, we systematically summarize the mechanism by which MOF materials facilitate the storage of CH4 and the purification of CH4 from natural gas, leveraging the structural characteristics inherent to MOF materials. The focus of further research should also be directed towards the investigation of CH4 storage by flexible MOFs, the resolution of the trade-off dilemma, and the commercial application of MOFs.
Collapse
Affiliation(s)
- Wenpeng Xie
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Qiuju Fu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ling-Zhi Yang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Liting Yan
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jun Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xuebo Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
2
|
Fan Q, Yao J, Zhao S, Wu X, Huang J, Luo H, Xia Q. Construction of Multiple Nonpolar SF 6 Nano-Traps by Highly Stable Pyrazole-Based MOFs for SF 6 Recovery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409215. [PMID: 39777855 DOI: 10.1002/smll.202409215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Sulfur hexafluoride (SF6), widely used in electric power systems, is one of the most potent greenhouse gases. Efficient separation of SF6/N2 by adsorptive separation technology based on porous materials is of great significance in the industry yet remains a daunting challenge. Herein, a novel strategy is introduced to construct unique pore channels with multiple SF6 nano-traps by precisely selecting bipyrazole ligands to design the nonpolar surface of microporous metal-organic frameworks (MOFs), which significantly enhances the material's affinity for SF6. A series of ultra-stable bipyrazole-based MOFs, M(BPZ) (M═Co, Ni, Zn), are synthesized and investigated. Among these three materials, Co(BPZ) and Zn(BPZ) show excellent SF6 uptakes of 2.47 and 2.39 mmol g-1 at 298 K and 0.1 bar while Co(BPZ) exhibits the highest SF6/N2 (10/90, v/v) IAST selectivity of 748. Breakthrough experiments reveal that SF6/N2 mixtures can be efficiently separated by Co(BPZ) with a high SF6 (≥99.5 %) productivity of 46.1 L kg-1. Theoretical calculations suggest that SF6 preferably adsorbs in the channels through multiple S-F···π (pyrazole rings) van der Waals interactions. This work provides a straightforward approach for exploring adsorbents in efficient SF6/N2 separation.
Collapse
Affiliation(s)
- Qichen Fan
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jinze Yao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Siyao Zhao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xingbei Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jiajin Huang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Haoyuan Luo
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Qibin Xia
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
3
|
Guan Y, Huang X, Xu F, Wang W, Li H, Gong L, Zhao Y, Guo S, Liang H, Qiao Z. Data-Driven and Machine Learning to Screen Metal-Organic Frameworks for the Efficient Separation of Methane. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1074. [PMID: 38998680 PMCID: PMC11243175 DOI: 10.3390/nano14131074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
With the rapid growth of the economy, people are increasingly reliant on energy sources. However, in recent years, the energy crisis has gradually intensified. As a clean energy source, methane has garnered widespread attention for its development and utilization. This study employed both large-scale computational screening and machine learning to investigate the adsorption and diffusion properties of thousands of metal-organic frameworks (MOFs) in six gas binary mixtures of CH4 (H2/CH4, N2/CH4, O2/CH4, CO2/CH4, H2S/CH4, He/CH4) for methane purification. Firstly, a univariate analysis was conducted to discuss the relationships between the performance indicators of adsorbents and their characteristic descriptors. Subsequently, four machine learning methods were utilized to predict the diffusivity/selectivity of gas, with the light gradient boosting machine (LGBM) algorithm emerging as the optimal one, yielding R2 values of 0.954 for the diffusivity and 0.931 for the selectivity. Furthermore, the LGBM algorithm was combined with the SHapley Additive exPlanation (SHAP) technique to quantitatively analyze the relative importance of each MOF descriptor, revealing that the pore limiting diameter (PLD) was the most critical structural descriptor affecting molecular diffusivity. Finally, for each system of CH4 mixture, three high-performance MOFs were identified, and the commonalities among high-performance MOFs were analyzed, leading to the proposals of three design principles involving changes only to the metal centers, organic linkers, or topological structures. Thus, this work reveals microscopic insights into the separation mechanisms of CH4 from different binary mixtures in MOFs.
Collapse
Affiliation(s)
- Yafang Guan
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaoshan Huang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Fangyi Xu
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wenfei Wang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Huilin Li
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lingtao Gong
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yue Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing 100191, China
| | - Shuya Guo
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hong Liang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
4
|
Zhao YL, Zhang X, Li MZ, Li JR. Non-CO 2 greenhouse gas separation using advanced porous materials. Chem Soc Rev 2024; 53:2056-2098. [PMID: 38214051 DOI: 10.1039/d3cs00285c] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Global warming has become a growing concern over decades, prompting numerous research endeavours to reduce the carbon dioxide (CO2) emission, the major greenhouse gas (GHG). However, the contribution of other non-CO2 GHGs including methane (CH4), nitrous oxide (N2O), fluorocarbons, perfluorinated gases, etc. should not be overlooked, due to their high global warming potential and environmental hazards. In order to reduce the emission of non-CO2 GHGs, advanced separation technologies with high efficiency and low energy consumption such as adsorptive separation or membrane separation are highly desirable. Advanced porous materials (APMs) including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), porous organic polymers (POPs), etc. have been developed to boost the adsorptive and membrane separation, due to their tunable pore structure and surface functionality. This review summarizes the progress of APM adsorbents and membranes for non-CO2 GHG separation. The material design and fabrication strategies, along with the molecular-level separation mechanisms are discussed. Besides, the state-of-the-art separation performance and challenges of various APM materials towards each type of non-CO2 GHG are analyzed, offering insightful guidance for future research. Moreover, practical industrial challenges and opportunities from the aspect of engineering are also discussed, to facilitate the industrial implementation of APMs for non-CO2 GHG separation.
Collapse
Affiliation(s)
- Yan-Long Zhao
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Mu-Zi Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
5
|
Zhang P, Ma S, Zhang Y, He C, Hu T. Enhancing CO 2/N 2 and CH 4/N 2 separation performance by salt-modified aluminum-based metal-organic frameworks. Dalton Trans 2024. [PMID: 38247311 DOI: 10.1039/d3dt03993e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The energy-saving separation of CO2/N2 and CH4/N2 in the energy industry facilitates the reduction of greenhouse gas emissions and replenishes energy resources, but is a challenging separation process. The trade-off between adsorption capacity and selectivity of the adsorbents is one of the key bottlenecks in adsorption separation technologies' large-scale application in the above separation task. Herein, we introduced a series of fluoroborate or fluorosilicate salts (Cu(BF4)2, Zn(BF4)2 and ZnSiF6) into the open coordination nitrogen sites of aluminum-based metal-organic frameworks (MOF-253) to create multiple binding sites to simultaneously enhance the adsorption capacity and selectivity for the target gas. By the synergistic adsorption effect of metal ions (Cu2+ or Zn2+) and fluorinated anions (BF4- or (SiF6)2-), the single-component adsorption capacity and selectivity of salt-modified MOF-253 (MOF-253@Cu(BF4)2, MOF-253@Zn(BF4)2 and MOF-253@ZnSiF6) for CO2 and CH4 were effectively improved when compared to pristine MOF-253 at 298 K and 1 bar. In addition, the salt-modified MOF-253 has a moderate adsorption heat (<30 kJ mol-1) which could be rapidly regenerated at low energy by evacuation desorption. As confirmed by the ambient breakthrough experiments of MOF-253 and MOF-253@ZnSiF6, the real separation performance for both CO2/N2 (1/4) and CH4/N2 (1/4) was obviously improved. This work provides a feasible post-modification strategy on uncoordinated sites of the framework to improve adsorption separation performance and promote the development of ideal adsorbents with a view to realizing their application in the energy industry.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, P. R. China.
| | - Sai Ma
- Department of Chemistry, College of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, P. R. China.
| | - Yujuan Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, P. R. China.
| | - Chaohui He
- Department of Chemistry, College of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, P. R. China.
| | - Tuoping Hu
- Department of Chemistry, College of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, P. R. China.
| |
Collapse
|
6
|
Zhen G, Liu Y, Zhou Y, Ji Z, Li H, Zou S, Zhang W, Li Y, Liu Y, Chen C, Wu M. Water-Stable Microporous Bipyrazole-Based Framework for Efficient Separation of MTO Products. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1179-1186. [PMID: 38157244 DOI: 10.1021/acsami.3c16968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Recently, methanol-to-olefins (MTO) technology has been widely used. The development of new adsorbents to separate MTO products and obtain high-purity ethylene (C2H4) and propylene (C3H6) has become an urgent task. Herein, an exceptionally highly water-stable metal-organic framework (MOF), [Cu3(OH)2(Me2BPZ)2]·(solvent)x (1) (H2Me2BPZ = 3,3'-dimethyl-1H,1'H-4,4'-bipyrazole) with hexagonal pores, has been elaborately designed and constructed. After being soaked in water for 7 days, it still maintains its structure, and the uptake of N2 at 77 K is unchanged. The adsorption capacity of C3H6 can reach 138 cm3 g-1, while the uptake of C2H4 is only 52 cm3 g-1 at 298 K and 1 bar. The dynamic breakthrough experiments show that the mixture of C3H6/C2H4 (50/50, v/v) can be efficiently separated in one step. High-purity C2H4 and C3H6 can be obtained through an adsorption and desorption cycle and the yields of C2H4 (purity ≥ 99.95%) and C3H6 (purity ≥ 99%) are 84 and 48 L kg-1, respectively. Surprisingly, when the flow rate is increased, the separation performance has no obvious change. Additionally, humidity has no effect on the separation performance. Finally, theoretical simulations indicate that there are stronger interactions between the C3H6 molecule and the framework, which are beneficial to capturing C3H6 over C2H4.
Collapse
Affiliation(s)
- Guoli Zhen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P.R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Yongyao Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Yunzhe Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Zhenyu Ji
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Hengbo Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Shuixiang Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Wenjing Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Yashuang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Yuanzheng Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Cheng Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Mingyan Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
7
|
Shang M, Peng X, Zhang J, Liu X, Yuan Z, Zhao X, Liu S, Yu S, Yi X, Filatov S. Sodium Alginate-Based Carbon Aerogel-Supported ZIF-8-Derived Porous Carbon as an Effective Adsorbent for Methane Gas. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36912820 DOI: 10.1021/acsami.2c19929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Adsorption natural gas (ANG) is a technology in which natural gas is stored on the surface of porous materials at relatively low pressures, which are promising candidates for adsorption of natural gas. Adsorbent materials with a large surface area and porous structure plays a significant role in the ANG technology, which holds promise in increasing the storage density for natural gas while decreasing the operating pressure. Here, we demonstrate a facile synthetic method for rational construction of a sodium alginate (SA)/ZIF-8 composite carbon aerogel (AZSCA) by incorporating ZIF-8 particles into SA aerogel through a directional freeze-drying method followed by the carbonization process. The structure characterization shows that AZSCA has a hierarchical porous structure, in which the micropores originated from MOF while the mesopores are derived from the three-dimensional network of the aerogel. The experimental results show that AZSCA achieved high methane adsorption of 181 cm3·g-1 at 65 bar and 298 K, along with higher isosteric heat of adsorption (Qst) throughout the adsorption range. Thus, the combination of MOF powders with aerogel can find potential applications in other gas adsorption.
Collapse
Affiliation(s)
- Mengge Shang
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Xiaoqian Peng
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Jing Zhang
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Xiaochan Liu
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Zhipeng Yuan
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Xinfu Zhao
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Sijia Liu
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Shimo Yu
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Xibin Yi
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Serguei Filatov
- Laboratory of Hydrogen Energy, Institute of Heat and Mass Transfer of the National Academy of Sciences of Belarus, Minsk 220072, Belarus
| |
Collapse
|
8
|
Jiang Y, Wang L, Yan T, Hu J, Sun W, Krishna R, Wang D, Gu Z, Liu D, Cui X, Xing H, Zhang Y. Insights into the thermodynamic-kinetic synergistic separation of propyne/propylene in anion pillared cage MOFs with entropy-enthalpy balanced adsorption sites. Chem Sci 2023; 14:298-309. [PMID: 36687342 PMCID: PMC9811657 DOI: 10.1039/d2sc05742e] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Propyne/propylene (C3H4/C3H6) separation is an important industrial process yet challenged by the trade-off of selectivity and capacity due to the molecular similarity. Herein, record C3H4/C3H6 separation performance is achieved by fine tuning the pore structure in anion pillared MOFs. SIFSIX-Cu-TPA (ZNU-2-Si) displays a benchmark C3H4 capacity (106/188 cm3 g-1 at 0.01/1 bar and 298 K), excellent C3H4/C3H6 IAST selectivity (14.6-19.3) and kinetic selectivity, and record high C3H4/C3H6 (10/90) separation potential (36.2 mol kg-1). The practical C3H4/C3H6 separation performance is fully demonstrated by breakthroughs under various conditions. 37.8 and 52.9 mol kg-1 of polymer grade C3H6 can be produced from 10/90 and 1/99 C3H4/C3H6 mixtures. 4.7 mol kg-1 of >99% purity C3H4 can be recovered by a stepped desorption process. Based on the in situ single crystal analysis and DFT calculation, an unprecedented entropy-enthalpy balanced adsorption pathway is discovered. MD simulation further confirmed the thermodynamic-kinetic synergistic separation of C3H4/C3H6 in ZNU-2-Si.
Collapse
Affiliation(s)
- Yunjia Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Lingyao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Tongan Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology Beijing 100029 China
| | - Jianbo Hu
- Department of Chemistry, Zhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| | - Wanqi Sun
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam Netherlands
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University Jiangsu 225009 China
| | - Dahuan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology Beijing 100029 China
| | - Xili Cui
- Department of Chemistry, Zhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| | - Huabin Xing
- Department of Chemistry, Zhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| | - Yuanbin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
9
|
Theoretical studies of metal-organic frameworks: Calculation methods and applications in catalysis, gas separation, and energy storage. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Cui X, Ye D, Wei J, Du X, Wang P, Li J. Controlled Thermal Release of L-Menthol with Cellulose-Acetate-Fiber-Shelled Metal-Organic Framework. Molecules 2022; 27:6013. [PMID: 36144758 PMCID: PMC9502463 DOI: 10.3390/molecules27186013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Fragrances have been widely used in many customer products to improve the sensory quality and cover flavor defects. The key to the successful application of fragrance is to realize controlled fragrance release, which relies on the use of an appropriate carrier for fragrance. An ideal fragrance carrier helps to achieve the stable storage and controlled release of fragrance. In this work, a novel composite fragrance carrier with MIL-101 (Cr) as the fragrance host and cellulose acetate fiber (CAF) as the protective shell was developed. The encapsulation effect of MIL-101 (Cr) and the protective function of the CAF shell significantly improved the storage stability of L-menthol (LM). Only 5 wt % of LM was lost after 40 days of storage at room temperature. Encapsulated LM could also be effectively released upon heating due to the thermal responsiveness of CAF. In addition, the composite carrier was highly stable with neglectable Cr leaching under different conditions. The results of this work showed that the developed composite carrier could be a promising carrier for the thermally triggered release of fragrance.
Collapse
Affiliation(s)
- Xinjiao Cui
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Donghao Ye
- Wuhan Marine Electric Propulsion Research Institute, Wuhan 430064, China
| | - Jiankun Wei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaodi Du
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Pengzhao Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Junsheng Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
11
|
Chen Y, Wang Y, Wang Y, Xiong Q, Yang J, Li L, Li J, Mu B. Improving CH
4
uptake and CH
4
/N
2
separation in pillar‐layered MOFs using a regulating strategy of interlayer channels. AIChE J 2022. [DOI: 10.1002/aic.17819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yang Chen
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization Taiyuan University of Technology Taiyuan Shanxi P. R. China
| | - Yi Wang
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization Taiyuan University of Technology Taiyuan Shanxi P. R. China
| | - Yong Wang
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization Taiyuan University of Technology Taiyuan Shanxi P. R. China
| | - Qizhao Xiong
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization Taiyuan University of Technology Taiyuan Shanxi P. R. China
| | - Jiangfeng Yang
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization Taiyuan University of Technology Taiyuan Shanxi P. R. China
| | - Libo Li
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization Taiyuan University of Technology Taiyuan Shanxi P. R. China
| | - Jinping Li
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization Taiyuan University of Technology Taiyuan Shanxi P. R. China
| | - Bin Mu
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy Arizona State University Tempe Arizona United States
| |
Collapse
|
12
|
Chang M, Yan T, Wei Y, Wang JX, Liu D, Chen JF. Enhancing CH 4 Capture from Coalbed Methane through Tuning van der Waals Affinity within Isoreticular Al-Based Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25374-25384. [PMID: 35623040 DOI: 10.1021/acsami.2c03619] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Efficient separation of the CH4/N2 mixture is of great significance for coalbed methane purification. It is an effective strategy to separate this mixture by tuning the van der Waals interaction due to the nonpolar properties of CH4 and N2 molecules. Herein, we prepared several isoreticular Al-based metal-organic frameworks (MOFs) with different ligand sizes and polarities because of their high structural stability and low cost/toxicity feature of Al metal. Adsorption experiments indicated that the CH4 uptake, Qst of CH4, and CH4/N2 selectivity are in the order of Al-FUM-Me (27.19 cm3(STP) g-1, 24.06 kJ mol-1 and 8.6) > Al-FUM (20.44 cm3(STP) g-1, 20.60 kJ mol-1 and 5.1) > Al-BDC (15.98 cm3(STP) g-1, 18.81 kJ mol-1 and 3.4) > Al-NDC (10.86 cm3(STP) g-1, 14.89 kJ mol-1 and 3.1) > Al-BPDC (5.90 cm3(STP) g-1, 11.75 kJ mol-1 and 2.2), confirming the synergetic effects of pore sizes and pore surface polarities. Exhilaratingly, the ideal adsorbed solution theory selectivity of Al-FUM-Me is higher than those of all zeolites, carbon materials, and most water-stable MOF materials (except Al-CDC and Co3(C4O4)2(OH)2), which is comparable to MIL-160. Breakthrough results demonstrate its excellent separation performance for the CH4/N2 mixture with good regenerability. The separation mechanism of Al-FUM-Me for the CH4/N2 mixture was elucidated by theoretical calculations, showing that the stronger affinity of CH4 can be attributed to its relatively shorter interaction distance with adsorption binding sites. Therefore, this work not only offers a promising candidate for CH4/N2 separation but also provides valuable guidance for the design of high-performance adsorbents.
Collapse
Affiliation(s)
- Miao Chang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tongan Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yan Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dahuan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian-Feng Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
13
|
Duan HY, Li XY, Zhang CX, He C. A novel trigonal bipyramidal cage-based Zn( ii)-MOF featuring two types of trinuclear clusters with high gas sorption properties. CrystEngComm 2022. [DOI: 10.1039/d2ce01399a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique trigonal bipyramidal cage-based Zn(ii)-MOF built from a linear trinuclear pin-wheel cluster and a triangular trinuclear cluster was prepared and shows a moderate gas adsorption amounts and high selectivities towards C2Hn/CH4 and C2H2/CO2.
Collapse
Affiliation(s)
- Hai-Yu Duan
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Xiu-Yuan Li
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Chen-Xu Zhang
- Department of Medical Equipment and Metrology, School of Biomedical Engineering, Air Force Medical University, Xi'an, 710032, P. R. China
| | - Chaozheng He
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, P. R. China
| |
Collapse
|