1
|
Wang L, Jiang S, Zhou J, Gholipourmalekabadi M, Cao Y, Lin K, Zhuang Y, Yuan C. From hard tissues to beyond: Progress and challenges of strontium-containing biomaterials in regenerative medicine applications. Bioact Mater 2025; 49:85-120. [PMID: 40124596 PMCID: PMC11928986 DOI: 10.1016/j.bioactmat.2025.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Tissue engineering and regenerative medicine have emerged as crucial disciplines focused on the development of new tissues and organs to overcome the limitations of traditional treatments for tissue damage caused by accidents, diseases, or aging. Strontium ion (Sr2+) has garnered significant attention for its multifaceted role in promoting regeneration medicine and therapy, especially in bone tissue regeneration. Recently, numerous studies further confirm that Sr2+ also plays a critical in soft tissue regeneration. This review firstly summarizes the influence of Sr2+ on critical biological processes such as osteogenesis, angiogenesis, immune modulation, matrix synthesis, mineralization, and antioxidative defence mechanisms. Then details the classification, properties, advantages, and limitations of Sr-containing biomaterials (SrBMs). Additionally, this review extends to the current applications of SrBMs in regenerative medicine for diverse tissues, including bone, cartilage, skeletal muscle, dental pulp, cardiac tissue, skin, hair follicles, etc. Moreover, the review addresses the challenges associated with current SrBMs and provides insights for their future designing and applications in regenerative medicine.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Shengjie Jiang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Jialiang Zhou
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Yuan Cao
- Colorado College, 819 N Tejon Street Box 56, Colorado Springs, 80903, Colorado, USA
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Yu Zhuang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| |
Collapse
|
2
|
Zuo K, Li A, Si T, Lei W, Liu Y, Zhang L, Zhang T, Xiao G, Lu Y, Li N. Structural optimization of Sr/Zn-phosphate conversion coatings triggered by ions preloading on micro/nanostructured titanium surfaces for bacterial infection control and enhanced osteogenesis. J Nanobiotechnology 2025; 23:361. [PMID: 40390015 PMCID: PMC12087176 DOI: 10.1186/s12951-025-03443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 05/05/2025] [Indexed: 05/21/2025] Open
Abstract
Phosphate conversion coatings on metallic implants can synergistically integrate functional components and structural regulation, offering excellent biocompatibility and osteogenic activity. However, the passive oxide layer on the titanium (Ti) surface impedes the following chemical reactivity, adversely affecting the microstructure and properties of phosphate coatings. This study proposes a strategy for achieving structural optimization and properties enhancement of strontium-zinc phosphate (SrZnP) conversion coatings on Ti via regulating interface chemical reaction between coatings and Ti substrates. The results indicated that Sr2+ and Zn2+ ions-preloading (IPL) treatment enhanced the interfacial reactivity, which can further achieve crystal refinement and uniform crystal size in nucleation. In contrast, microstructural modifications on Ti substrates induced by acid etching, sandblasting, and alkali etching had minimal effects on the phase composition and crystal morphology (irregular cubic) of the SrZnP coatings. The coatings on IPL-Ti exhibited better mechanical properties and corrosion resistance. Besides, the coatings with optimized structures and surface characteristics elicited bacterial growth inhibition rates of 91.09% and 84.04% against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. Meanwhile, the crystal-refined coatings further significantly enhanced the adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells (BMSCs), proving anticipated osteogenic activity. Overall, the ions preloading strategy on variable micro/nanostructured Ti substrates facilitates the potential application of Sr/Zn-phosphate conversion coatings for repairing infected bone defects.
Collapse
Affiliation(s)
- Kangqing Zuo
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, 250021, Shandong Province, P. R. China
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, Shandong Province, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, Shandong Province, P. R. China
| | - Aonan Li
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, 250021, Shandong Province, P. R. China
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, Shandong Province, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, Shandong Province, P. R. China
| | - Taoning Si
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, Shandong Province, P. R. China
| | - Weiyi Lei
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, Shandong Province, P. R. China
| | - Yusheng Liu
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, Shandong Province, P. R. China
| | - Linbo Zhang
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, Shandong Province, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, Shandong Province, P. R. China
| | - Taixing Zhang
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, Shandong Province, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, Shandong Province, P. R. China
| | - Guiyong Xiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji'nan, 250061, Shandong Province, P. R. China.
- School of Materials Science and Engineering, Shandong University, Ji'nan, 250061, Shandong Province, P. R. China.
| | - Yupeng Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji'nan, 250061, Shandong Province, P. R. China
- School of Materials Science and Engineering, Shandong University, Ji'nan, 250061, Shandong Province, P. R. China
| | - Ningbo Li
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, 250021, Shandong Province, P. R. China.
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, Shandong Province, P. R. China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, Shandong Province, P. R. China.
| |
Collapse
|
3
|
Akobundu UU, Ifijen IH, Duru P, Igboanugo JC, Ekanem I, Fagbolade M, Ajayi AS, George M, Atoe B, Matthews JT. Exploring the role of strontium-based nanoparticles in modulating bone regeneration and antimicrobial resistance: a public health perspective. RSC Adv 2025; 15:10902-10957. [PMID: 40196828 PMCID: PMC11974500 DOI: 10.1039/d5ra00308c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/20/2025] [Indexed: 04/09/2025] Open
Abstract
Strontium-based nanoparticles (SrNPs) have emerged as a versatile and promising class of nanomaterials with a wide range of potential applications in healthcare, particularly in the fields of bone regeneration and combating antimicrobial resistance (AMR). Recent research has highlighted the unique properties of SrNPs, including their ability to promote osteogenesis, enhance bone healing, and exhibit strong antimicrobial activity against multidrug-resistant pathogens. These attributes position SrNPs as innovative therapeutic agents with the potential to address challenges such as osteoporosis, bone infections, and the growing global AMR crisis. This comprehensive review critically examines the dual functional potential of SrNPs by analyzing their synthesis methods, physicochemical properties, biological interactions, and translational applications in orthopedic and antimicrobial therapies. Specifically, the review emphasizes SrNPs' ability to enhance bone density, accelerate fracture healing, and reduce the economic burden associated with prolonged treatment and rehabilitation for bone-related diseases. Furthermore, their novel application as antimicrobial agents is explored, highlighting their ability to target bacterial metabolic pathways and combat the rise of antibiotic resistance. The review focuses on the synthesis methods used for SrNPs, particularly co-precipitation, hydrothermal synthesis, and sol-gel techniques. Each method is explored for its ability to produce SrNPs with controlled size, shape, and functionality, while addressing their scalability, cost-effectiveness, and environmental impact. Additionally, the toxicological risks associated with SrNPs are also explored, emphasizing the need for comprehensive preclinical and clinical evaluations to ensure safety for humans and ecosystems. The regulatory and ethical landscape of SrNPs highlights the need for global safety protocols, equitable access, and international cooperation to ensure ethical nanotechnology use. Environmental fate studies address bioaccumulation risks and ecological concerns. This review identifies opportunities and challenges in advancing bone regenerative medicine and combating AMR while emphasizing sustainable and ethical SrNP development for researchers, policymakers, and stakeholders.
Collapse
Affiliation(s)
| | - Ikhazuagbe H Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria Iyanomo Benin City Nigeria
| | - Prince Duru
- Emergency Medicine Department, University of Tennessee Medical Center 1924 Alcoa Hwy Knoxville TN 37920 USA
| | - Juliet C Igboanugo
- Department of Health, Human Performance and Recreation, University of Arkansas 155 Stadium Drive Fayetteville AR 72701 USA
| | - Innocent Ekanem
- College of Engineering Technology and SHEQ Specialist-Rocjhester Gas and Electric (RG&E), Rochester Institute of Technology (RIT) Rochester NY USA
| | - Moshood Fagbolade
- Department of Biological Sciences, Mississippi State University 295 Lee Boulevard Mississippi State MS 39762 USA
| | | | - Mayowa George
- Biological and Agricultural Engineering, Kansas State University 1016 Seaton Hall Manhattan KS 66506 USA
| | - Best Atoe
- Atoe Specialist Medical Centre Limited 54, Atoe Street, Off Adolor College Road, Ugbowo Benin City Edo State Nigeria
| | - John Tsado Matthews
- Department of Chemistry, Ibrahim Badamasi Babangida University Lapai Niger State Nigeria
| |
Collapse
|
4
|
Malheiros S, Borges MHR, Rangel EC, Fortulan CA, da Cruz NC, Barao VAR, Nagay BE. Zinc-Doped Antibacterial Coating as a Single Approach to Unlock Multifunctional and Highly Resistant Titanium Implant Surfaces. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18022-18045. [PMID: 40098312 PMCID: PMC11955950 DOI: 10.1021/acsami.4c21875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
Failures of dental and orthopedic implants due to microbial colonization, corrosion, and insufficient osseointegration remain persistent clinical challenges. Current implant surface coatings often lack the mechanical robustness needed for long-term success. Therefore, this study developed zinc (Zn)-doped coatings on titanium implants via plasma electrolytic oxidation (PEO), achieving 11 at % Zn incorporation primarily as zinc oxide (ZnO). The Zn-doped coatings were primarily composed of zinc, calcium, phosphorus, and oxygen, displaying moderate roughness (∼1 μm), hydrophilic behavior, and high crystallinity with anatase and rutile phases. Tribological tests demonstrated over a 50% reduction in mass loss, while electrochemical tests confirmed significantly enhanced corrosion resistance of Zn-doped coating with higher open circuit potential values, larger Nyquist plot semicircles, and higher impedance values at low frequencies compared to controls (p < 0.05). The Zn-doped coatings also showed superior antimicrobial efficacy, reducing Streptococcus sanguinis viability, completely inhibiting Escherichia coli growth, and reducing biofilm biomass by over 60%, which may be related to the sustained Zn release (∼6 μg/cm2) over 7 days. Enhanced bioactivity was evidenced by greater protein adsorption, increased hydroxyapatite formation, and improved preosteoblastic cell metabolism and morphology. Ex vivo analyses confirmed coating mechanical stability, without morphological or chemical impairment, during implant insertion and removal from bovine rib bone, with increased implant stability quotient (ISQ) values, indicating benefits in poor bone quality. These findings highlight the significant promise of Zn-doped plasma electrolytic oxidation coatings for advancing dental and orthopedic implant technology, offering enhanced longevity, antimicrobial defense, and improved bioactivity to optimize clinical outcomes.
Collapse
Affiliation(s)
- Samuel
S. Malheiros
- Department
of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Maria Helena R. Borges
- Department
of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Elidiane C. Rangel
- Laboratory
of Technological Plasmas, Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março,
511, Sorocaba, São
Paulo 18087-180, Brazil
| | - Carlos A Fortulan
- Department
of Mechanical Engineering, University of
São Paulo (USP), Trabalhador São Carlense, 400, São
Carlos, São Paulo 13566-590, Brazil
| | - Nilson C. da Cruz
- Laboratory
of Technological Plasmas, Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março,
511, Sorocaba, São
Paulo 18087-180, Brazil
| | - Valentim A. R. Barao
- Department
of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna E. Nagay
- Department
of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
5
|
Dong Y, Hu Y, Hu X, Wang L, Shen X, Tian H, Li M, Luo Z, Cai C. Synthetic nanointerfacial bioengineering of Ti implants: on-demand regulation of implant-bone interactions for enhancing osseointegration. MATERIALS HORIZONS 2025; 12:694-718. [PMID: 39480512 DOI: 10.1039/d4mh01237b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Titanium and its alloys are the most commonly used biometals for developing orthopedic implants to treat various forms of bone fractures and defects, but their clinical performance is still challenged by the unfavorable mechanical and biological interactions at the implant-tissue interface, which substantially impede bone healing at the defects and reduce the quality of regenerated bones. Moreover, the impaired osteogenesis capacity of patients under certain pathological conditions such as diabetes and osteoporosis may further impair the osseointegration of Ti-based implants and increase the risk of treatment failure. To address these issues, various modification strategies have been developed to regulate the implant-bone interactions for improving bone growth and remodeling in situ. In this review, we provide a comprehensive analysis on the state-of-the-art synthetic nanointerfacial bioengineering strategies for designing Ti-based biofunctional orthopedic implants, with special emphasis on the contributions to (1) promotion of new bone formation and binding at the implant-bone interface, (2) bacterial elimination for preventing peri-implant infection and (3) overcoming osseointegration resistance induced by degenerative bone diseases. Furthermore, a perspective is included to discuss the challenges and potential opportunities for the interfacial engineering of Ti implants in a translational perspective. Overall, it is envisioned that the insights in this review may guide future research in the area of biometallic orthopedic implants for improving bone repair with enhanced efficacy and safety.
Collapse
Affiliation(s)
- Yilong Dong
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Xinqiang Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Lingshuang Wang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Xinkun Shen
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| | - Hao Tian
- Kairui Stomatological Hospital, Chengdu 610211, China
| | - Menghuan Li
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Zhong Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Chunyuan Cai
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| |
Collapse
|
6
|
Villegas M, Bayat F, Kramer T, Schwarz E, Wilson D, Hosseinidoust Z, Didar TF. Emerging Strategies to Prevent Bacterial Infections on Titanium-Based Implants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404351. [PMID: 39161205 DOI: 10.1002/smll.202404351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Titanium and titanium alloys remain the gold standard for dental and orthopedic implants. These materials are heavily used because of their bioinert nature, robust mechanical properties, and seamless integration with bone. However, implant-associated infections (IAIs) remain one of the leading causes of implant failure. Eradicating an IAI can be difficult since bacteria can form biofilms on the medical implant, protecting the bacterial cells against systemic antibiotics and the host's immune system. If the infection is not treated promptly and aggressively, device failure is inevitable, leading to costly multi-step revision surgeries. To circumvent this dire situation, scientists and engineers continue to develop novel strategies to protect the surface of medical implants from bacteria. In this review, details on emerging strategies to prevent infection in titanium implants are reported. These strategies include anti-adhesion properties provided by polymers, superhydrophobic, superhydrophilic, and liquid-infused surface coatings, as well as strategies and coatings employed to lyse the bacteria. Additionally, commercially available technologies and those under preclinical trials are examined while discussing current and future trends.
Collapse
Affiliation(s)
- Martin Villegas
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Fereshteh Bayat
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Taylor Kramer
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Elise Schwarz
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - David Wilson
- Division of Orthopedic Surgery, Halifax Infirmary, Halifax, NS, B3H3A6, Canada
| | - Zeinab Hosseinidoust
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| |
Collapse
|
7
|
Zhou R, Liu Y, Li M, Cao J, Cheng J, Wei D, Li B, Wang Y, Jia D, Jiang B, Valiev RZ, Zhou Y. Electrical Responsive Coating with a Multilayered TiO 2-SnO 2-RuO 2 Heterostructure on Ti for Controlling Antibacterial Ability and Improving Osseointegration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39064-39078. [PMID: 39028896 DOI: 10.1021/acsami.4c07114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The bacterial infection and poor osseointegration of Ti implants could significantly compromise their applications in bone repair and replacement. Based on the carrier separation ability of the heterojunction and the redox reaction of pseudocapacitive metal oxides, we report an electrically responsive TiO2-SnO2-RuO2 coating with a multilayered heterostructure on a Ti implant. Owing to the band gap structure of the TiO2-SnO2-RuO2 coating, electron carriers are easily enriched at the coating surface, enabling a response to the endogenous electrical stimulation of the bone. With the formation of SnO2-RuO2 pseudocapacitance on the modified surface, the postcharging mode can significantly change the surface chemical state of the coating due to the redox reaction, enhancing the antibacterial ability and osteogenesis-related gene expression of the human bone marrow mesenchymal stem cells. Owing to the attraction for Ca2+, only the negatively postcharged SnO2@RuO2 can promote apatite deposition. The in vivo experiment reveals that the S-SnO2@RuO2-NP could effectively kill the bacteria colonized on the surface and promote osseointegration with the synostosis bonding interface. Thus, negatively charging the electrically responsive coating of TiO2-SnO2-RuO2 is a good strategy to endow modified Ti implants with excellent antibacterial ability and osseointegration.
Collapse
Affiliation(s)
- Rui Zhou
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yifei Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ming Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, PR China
| | - Jianyun Cao
- Key Laboratory of LCR Materials and Devices of Yunnan Province, School of Materials and Energy, Yunnan University, Kunming 650500, PR China
| | - Jiahui Cheng
- The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an 710004, PR China
| | - Daqing Wei
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Baoqiang Li
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Yaming Wang
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Dechang Jia
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Bailing Jiang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Ruslan Z Valiev
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Institute of Physics of Advanced Materials, Ufa University of Science and Technology, Ufa 450076, Russia
| | - Yu Zhou
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| |
Collapse
|
8
|
Li YB, Zhang HQ, Lu YP, Yang XJ, Wang GD, Wang YY, Tang KL, Huang SY, Xiao GY. Construction of Magnesium Phosphate Chemical Conversion Coatings with Different Microstructures on Titanium to Enhance Osteogenesis and Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21672-21688. [PMID: 38637290 DOI: 10.1021/acsami.4c03024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Titanium (Ti) and its alloys are widely used as hard tissue substitutes in dentistry and orthopedics, but their low bioactivity leads to undesirable osseointegration defects in the early osteogenic phase. Surface modification is an important approach to overcome these problems. In the present study, novel magnesium phosphate (MgP) coatings with controllable structures were fabricated on the surface of Ti using the phosphate chemical conversion (PCC) method. The effects of the microstructure on the physicochemical and biological properties of the coatings on Ti were researched. The results indicated that accelerators in PCC solution were important factors affecting the microstructure and properties of the MgP coatings. In addition, the coated Ti exhibited excellent hydrophilicity, high bonding strength, and good corrosion resistance. Moreover, the biological results showed that the MgP coatings could improve the spread, proliferation, and osteogenic differentiation of mouse osteoblast cells (MC3T3-E1) and vascular differentiation of human umbilical vein endothelial cells (HUVECs), indicating that the coated Ti samples had a great effect on promoting osteogenesis and angiogenesis. Overall, this study provided a new research idea for the surface modification of conventional Ti to enhance osteogenesis and angiogenesis in different bone types for potential biomedical applications.
Collapse
Affiliation(s)
- Yi-Bo Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Huan-Qing Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Yu-Peng Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Xiao-Juan Yang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Guan-Duo Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Yu-Ying Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Kang-le Tang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Sheng-Yun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Gui-Yong Xiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
9
|
Shen Z, Xu Y, Qian XN, Zhou YH, Zhou Y, Zhou JY, Liu Y, Zhang SM, Qiu J. Enhanced osteogenic and antibacterial properties of titanium implant surface modified with Zn-incorporated nanowires: Preclinical in vitro and in vivo investigations. Clin Oral Implants Res 2024; 35:427-442. [PMID: 38314615 DOI: 10.1111/clr.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
OBJECTIVE This study aimed to synthesize zinc-incorporated nanowires structure modified titanium implant surface (Zn-NW-Ti) and explore its superior osteogenic and antibacterial properties in vitro and in vivo. MATERIALS AND METHODS Zn-NW-Ti was synthesized via displacement reactions between zinc sulfate solutions and the titanium (Ti) surface, which was pretreated by hydrofluoric acid etching and hyperthermal alkalinization. The physicochemical properties of the Zn-NW-Ti surface were examined. Moreover, the biological effects of Zn-NW-Ti on MC3T3-E1 cells and its antibacterial property against oral pathogenic bacteria (Staphylococcus aureus, Porphyromonas gingivalis, and Actinobacillus actinomycetemcomitans) compared with sandblasted and acid-etched Ti (SLA-Ti) and nanowires modified Ti (NW-Ti) surface were assessed. Zn-NW-Ti and SLA-Ti modified implants were inserted into the anterior extraction socket of the rabbit mandible with or without exposure to the mixed bacterial solution (S. aureus, P. gingivalis, and A. actinomycetemcomitans) to investigate the osteointegration and antibacterial performance via radiographic and histomorphometric analysis. RESULTS The Zn-NW-Ti surface was successfully prepared. The resultant titanium surface appeared as a nanowires structure with hydrophilicity, from which zinc ions were released in an effective concentration range. The Zn-NW-Ti surface performed better in facilitating the adhesion, proliferation, and differentiation of MC3T3-E1 cells while inhibiting the colonization of bacteria compared with SLA-Ti and NW-Ti surface. The Zn-NW-Ti implant exhibited enhanced osseointegration in vivo, which was attributed to increased osteogenic activity and reduced bacterial-induced inflammation compared with the SLA-Ti implant. CONCLUSIONS The Zn-incorporated nanowires structure modified titanium implant surface exhibited improvements in osteogenic and antibacterial properties, which optimized osteointegration in comparison with SLA titanium implant surface.
Collapse
Affiliation(s)
- Zhe Shen
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yan Xu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xin-Na Qian
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Yi-Heng Zhou
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - You Zhou
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Jie-Yi Zhou
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Yao Liu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Song-Mei Zhang
- Department of Comprehensive Care, Tufts University School of Dental Medicine Boston, Massachusetts, USA
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
10
|
Siva Prasad P, Byram PK, Hazra C, Chakravorty N, Sen R, Das S, Das K. Biosurfactant-Assisted Cu Doping of Brushite Coatings: Enhancing Structural, Electrochemical, and Biofunctional Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10601-10622. [PMID: 38376231 DOI: 10.1021/acsami.3c15471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Stainless steel (316L SS) has been widely used in orthopedic, cardiovascular stents, and other biomedical implant applications due to its strength, corrosion resistance, and biocompatibility. To address the weak interaction between steel implants and tissues, it is a widely adopted strategy to enhance implant performance through the application of bioactive coatings. In this study, Cu-doped brushite coatings were deposited successfully through pulse electrodeposition on steel substrates facilitated with a biosurfactant (BS) (i.e., surfactin). Further, the combined effect of various concentrations of Cu ions and BS on the structural, electrochemical, and biological properties was studied. The X-ray diffraction (XRD) confirms brushite composition with Cu substitution causing lattice contraction and a reduced crystallite size. The scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) studies reveal the morphological changes of the coatings with the incorporation of Cu, which is confirmed by X-ray photoelectron spectroscopy (XPS) and elemental mapping. The Fourier transform infrared (FTIR) and Raman spectroscopy confirm the brushite and Cu doping in the coatings, respectively. Increased surface roughness and mechanical properties of Cu-doped coatings were analyzed by using atomic force microscopic (AFM) and nanohardness tests, respectively. Electrochemical assessments demonstrate corrosion resistance enhancement in Cu-doped coatings, which is further improved with the addition of biosurfactants. In vitro biomineralization studies show the Cu-doped coating's potential for osseointegration, with added stability. The cytocompatibility of the coatings was analyzed using live/dead and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays; cell adhesion, proliferation, and migration studies were evaluated using SEM. Antibacterial assays highlight significant improvement in the antibacterial properties of Cu-doped coatings with BS. Thus, the developed Cu-doped brushite coatings with BS demonstrate their potential in the realm of biomedical implant technologies, paving the way for further exploration.
Collapse
Affiliation(s)
- Pakanati Siva Prasad
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Prasanna Kumar Byram
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Chinmay Hazra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Siddhartha Das
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Karabi Das
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
11
|
Wen X, Wang J, Pei X, Zhang X. Zinc-based biomaterials for bone repair and regeneration: mechanism and applications. J Mater Chem B 2023; 11:11405-11425. [PMID: 38010166 DOI: 10.1039/d3tb01874a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Zinc (Zn) is one of the most important trace elements in the human body and plays a key role in various physiological processes, especially in bone metabolism. Zn-containing materials have been reported to enhance bone repair through promoting cell proliferation, osteogenic activity, angiogenesis, and inhibiting osteoclast differentiation. Therefore, Zn-based biomaterials are potential substitutes for traditional bone grafts. In this review, the specific mechanisms of bone formation promotion by Zn-based biomaterials were discussed, and recent developments in their application in bone tissue engineering were summarized. Moreover, the challenges and perspectives of Zn-based biomaterials were concluded, revealing their attractive potential and development directions in the future.
Collapse
Affiliation(s)
- Xinyu Wen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
12
|
Deng L, Huang L, Pan H, Zhang Q, Que Y, Fan C, Chang J, Ni S, Yang C. 3D printed strontium-zinc-phosphate bioceramic scaffolds with multiple biological functions for bone tissue regeneration. J Mater Chem B 2023; 11:5469-5482. [PMID: 36723376 DOI: 10.1039/d2tb02614g] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Calcium phosphate (CaP) bioceramics are broadly employed for bone regeneration due to their excellent biocompatibility and osteoconductivity. However, they are not capable of repairing healing-impaired bone defects such as defects with conditions of ischemia or infection due to restricted bioactivities. In this study, we synthesized single-phased strontium-zinc-phosphate (SZP, SrZn2(PO4)2) bioceramics via a solution combustion method and further fabricated SZP scaffolds using a three-dimensional (3D) printing technique. Compared to 3D printed β-tricalcium phosphate (β-TCP) scaffolds, the 3D printed SZP scaffolds presented comparable porosity, compressive strength, and Young's modulus, but increased ability of osteogenesis, angiogenesis, immunomodulation and anti-bacterial activity. Specifically, 3D printed SZP scaffolds not only led to significantly higher osteogenic differentiation of MC3T3-E1 cells and pro-angiogenesis of human umbilical vein endothelial cells (HUVECs) directly or through macrophage-mediated immunomodulation, but also inhibited the growth of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The in vivo study of the rat cranial bone defect model further confirmed better vascularized bone regeneration in 3D-printed SZP scaffolds. These findings indicate that the proposed 3D-printed SZP scaffolds might be a versatile candidate for bone tissue engineering.
Collapse
Affiliation(s)
- Li Deng
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| | - Lingwei Huang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Pan
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qi Zhang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yumei Que
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chen Fan
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jiang Chang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Siyu Ni
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China.
| | - Chen Yang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
13
|
Li YB, Lu YP, Du CM, Zuo KQ, Wang YY, Tang KL, Xiao GY. Effect of Reaction Temperature on the Microstructure and Properties of Magnesium Phosphate Chemical Conversion Coatings on Titanium. Molecules 2023; 28:molecules28114495. [PMID: 37298972 DOI: 10.3390/molecules28114495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Magnesium phosphate (MgP) has garnered growing interest in hard tissue replacement processes due to having similar biological characteristics to calcium phosphate (CaP). In this study, an MgP coating with the newberyite (MgHPO4·3H2O) was prepared on the surface of pure titanium (Ti) using the phosphate chemical conversion (PCC) method. The influence of reaction temperature on the phase composition, microstructure, and properties of coatings was systematically researched with the use of an X-ray diffractometer (XRD), a scanning electron microscope (SEM), a laser scanning confocal microscope (LSCM), a contact angle goniometer, and a tensile testing machine. The formation mechanism of MgP coating on Ti was also explored. In addition, the corrosion resistance of the coatings on Ti was researched by assessing the electrochemical behavior in 0.9% NaCl solution using an electrochemical workstation. The results showed that temperature did not obviously affect the phase composition of the MgP coatings, but affected the growth and nucleation of newberyite crystals. In addition, an increase in reaction temperature had a great impact on properties including surface roughness, thickness, bonding strength, and corrosion resistance. Higher reaction temperatures resulted in more continuous MgP, larger grain size, higher density, and better corrosion resistance.
Collapse
Affiliation(s)
- Yi-Bo Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Yu-Peng Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Chun-Miao Du
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Kang-Qing Zuo
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Yu-Ying Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Kang-Le Tang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Gui-Yong Xiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
14
|
Ding Y, Ma R, Liu G, Li X, Xu K, Liu P, Cai K. Fabrication of a New Hyaluronic Acid/Gelatin Nanocomposite Hydrogel Coating on Titanium-Based Implants for Treating Biofilm Infection and Excessive Inflammatory Response. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13783-13801. [PMID: 36877588 DOI: 10.1021/acsami.2c23320] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Persistent inflammation caused by implant-associated biofilm infections has emerged as a significant clinical issue. While many methods have been developed to give implants great anti-biofilm benefits, the post-inflammatory microenvironment is frequently disregarded. Oxidative stress (OS) due to excessive reactive oxygen species (ROS) is considered to be one of the specific physiological signals of the inflammation microenvironment. Herein, ZIF-90-Bi-CeO2 nanoparticles (NPs) were incorporated into a Schiff-base chemically crosslinked hydrogel composed of aldehyde-based hyaluronic acid and gelatin. Through chemical crosslinking between polydopamine and gelatin, the hydrogel coating adhered to the Ti substrate. The modified Ti substrate gained multimodal antibacterial and anti-biofilm functions, which were attributed to the photothermal effect of Bi NPs, and the release of Zn ions and CeO2 NPs. Notably, CeO2 NPs endowed the system with dual-enzyme (SOD- and CAT-like) catalytic activities. In a rat implant-associated infection (IAI) model, the dual-functional hydrogel had a biofilm-removal ability and regulated OS and inflammatory responses to facilitate osseointegration. The photothermal therapy combined with a host inflammation-microenvironment regulation strategy might provide a novel treatment for biofilm infection and the accompanying excessive inflammation.
Collapse
Affiliation(s)
- Yao Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ruichen Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Genhua Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
15
|
Dong J, Wang W, Zhou W, Zhang S, Li M, Li N, Pan G, Zhang X, Bai J, Zhu C. Immunomodulatory biomaterials for implant-associated infections: from conventional to advanced therapeutic strategies. Biomater Res 2022; 26:72. [PMID: 36471454 PMCID: PMC9721013 DOI: 10.1186/s40824-022-00326-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/19/2022] [Indexed: 12/11/2022] Open
Abstract
Implant-associated infection (IAI) is increasingly emerging as a serious threat with the massive application of biomaterials. Bacteria attached to the surface of implants are often difficult to remove and exhibit high resistance to bactericides. In the quest for novel antimicrobial strategies, conventional antimicrobial materials often fail to exert their function because they tend to focus on direct bactericidal activity while neglecting the modulation of immune systems. The inflammatory response induced by host immune cells was thought to be a detrimental force impeding wound healing. However, the immune system has recently received increasing attention as a vital player in the host's defense against infection. Anti-infective strategies based on the modulation of host immune defenses are emerging as a field of interest. This review explains the importance of the immune system in combating infections and describes current advanced immune-enhanced anti-infection strategies. First, the characteristics of traditional/conventional implant biomaterials and the reasons for the difficulty of bacterial clearance in IAI were reviewed. Second, the importance of immune cells in the battle against bacteria is elucidated. Then, we discuss how to design biomaterials that activate the defense function of immune cells to enhance the antimicrobial potential. Based on the key premise of restoring proper host-protective immunity, varying advanced immune-enhanced antimicrobial strategies were discussed. Finally, current issues and perspectives in this field were offered. This review will provide scientific guidance to enhance the development of advanced anti-infective biomaterials.
Collapse
Affiliation(s)
- Jiale Dong
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Wenzhi Wang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Wei Zhou
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Siming Zhang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Meng Li
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China ,grid.263761.70000 0001 0198 0694Medical College, Soochow University, 215006 Suzhou, Jiangsu P. R. China
| | - Ning Li
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Guoqing Pan
- grid.440785.a0000 0001 0743 511XInstitute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Xianzuo Zhang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Jiaxiang Bai
- grid.263761.70000 0001 0198 0694Medical College, Soochow University, 215006 Suzhou, Jiangsu P. R. China
| | - Chen Zhu
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| |
Collapse
|
16
|
Wu Y, Zhang S, Sun L, Lu Y, Jiang Y, Xiao G. Strontium doping stimulates the phase composition and evolution of β-tricalcium phosphate prepared by wet chemical method. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Pandey LM. Design of Biocompatible and Self-antibacterial Titanium Surfaces for Biomedical Applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Recent Progress on Bioinspired Antibacterial Surfaces for Biomedical Application. Biomimetics (Basel) 2022; 7:biomimetics7030088. [PMID: 35892358 PMCID: PMC9326651 DOI: 10.3390/biomimetics7030088] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022] Open
Abstract
Surface bacterial fouling has become an urgent global challenge that calls for resilient solutions. Despite the effectiveness in combating bacterial invasion, antibiotics are susceptible to causing microbial antibiotic resistance that threatens human health and compromises the medication efficacy. In nature, many organisms have evolved a myriad of surfaces with specific physicochemical properties to combat bacteria in diverse environments, providing important inspirations for implementing bioinspired approaches. This review highlights representative natural antibacterial surfaces and discusses their corresponding mechanisms, including repelling adherent bacteria through tailoring surface wettability and mechanically killing bacteria via engineering surface textures. Following this, we present the recent progress in bioinspired active and passive antibacterial strategies. Finally, the biomedical applications and the prospects of these antibacterial surfaces are discussed.
Collapse
|
19
|
Wei H, Song X, Liu P, Liu X, Yan X, Yu L. Antimicrobial coating strategy to prevent orthopaedic device-related infections: recent advances and future perspectives. BIOMATERIALS ADVANCES 2022; 135:212739. [PMID: 35929213 DOI: 10.1016/j.bioadv.2022.212739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/15/2023]
Abstract
The rapid development of multidrug-resistant (MDR) bacteria and biofilm-related infections (BRIs) has urgently called for new strategies to combat severe orthopaedic device-related infections (ODRIs). Antimicrobial coating has emerged as a promising strategy in halting the incidence of ODRIs and treating ODRIs in long term. With the advancement of material science and biotechnology, numerous antimicrobial coatings have been reported in literature, showing superior antimicrobial and osteogenic functions. This review has specifically discussed the currently developed antimicrobial coatings in the perspective of drug release from the coating system, focusing on their realization of controlled and on demand antimicrobial agents release, as well as multi-functionality. Acknowledging the multidisciplinary nature of antimicrobial coating, the conceptual design, the deposition method and the therapeutic effect of the antimicrobial coatings have been described in detail and discussed critically. Particularly, the challenges and opportunities on the way toward the clinical translation of antimicrobial coatings have been highlighted.
Collapse
Affiliation(s)
- Huichao Wei
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Pengyan Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaohu Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|