1
|
Zuo X, Tan Y, Chen YY, Yu LP, Li CC, Zeng JL. Preparation and properties of erythritol form-stable phase change materials supported by composite aerogels derived from cellulose and silica. Int J Biol Macromol 2025; 310:143177. [PMID: 40246104 DOI: 10.1016/j.ijbiomac.2025.143177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/24/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Modification of cellulose aerogels (CAs) with silica can obtain novel renewable and biodegradable aerogels as promising supporting materials for form-stable phase change materials (fs-PCMs). Herein, silica-decorated CAs (SCAs) and erythritol (ET) crystal seeds incorporated SCAs (ESCAs) were prepared, and the ESCAs were further pyrolyzed to prepare carbonized SCAs (CSCAs). The prepared aerogels were then adsorbed with ET to obtain fs-PCMs. The SCAs and ESCAs possessed hierarchical pores and high specific surface areas, which were in favor of their adsorption of ET, and the doping of silica was beneficial for suppressing the supercooling of the fs-PCMs. Moreover, The ET crystal seeds in the ESCAs could further improve the latent heat storage property and effectively suppress the supercooling of the fs-PCMs. The highest melting enthalpy (ΔHm) of ESCA-ET fs-PCMs could attain 288.1 J/g, corresponding to an ET loading of 91.4 %. On the other hand, the CSCAs were composed of amorphous carbon and silica. The amorphous carbon and the porous structure of the CSCAs endowed the obtained fs-PCMs a ΔHm of 254.3 J/g, corresponding to an ET loading of 80.6 %, with a high photothermal conversion efficiency of 68.8 % and a greatly suppressed supercooling of 21.7 °C.
Collapse
Affiliation(s)
- Xue Zuo
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation and Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Pharmaceutical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Ye Tan
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation and Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Pharmaceutical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China.
| | - Yu-Yang Chen
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation and Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Pharmaceutical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Lin-Ping Yu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation and Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Pharmaceutical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Chuan-Chang Li
- School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Ju-Lan Zeng
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation and Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Pharmaceutical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China.
| |
Collapse
|
2
|
Baniasadi H, Farzan A, McCord MRY, Silva PES, Abdi B, Paganelli Z, Vapaavuori J, Tehrani A, Niskanen J. Photocurable cellulose-based composites with PEGylated graphene oxide for leakage-free thermal energy storage and photothermal applications. Int J Biol Macromol 2025; 310:143399. [PMID: 40268037 DOI: 10.1016/j.ijbiomac.2025.143399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/31/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
The development of efficient, reliable, and sustainable energy storage technologies is essential for addressing the growing global demand for clean energy solutions. This study presents a novel approach for enhancing thermal energy storage and photothermal energy conversion through the fabrication of photocurable cellulose-based composites. Methylcellulose (MC) was chemically modified via allyl chloride grafting to improve water resistance and mechanical stability while enabling photocuring. Polyethylene glycol (PEG) was incorporated as a phase change material (PCM) alongside PEGylated graphene oxide (GO) to enhance thermal conductivity and photothermal performance. The resulting porous composite foams, produced via freeze-drying, demonstrated remarkable structural integrity, thermal stability, and leakage-free PCM containment. The optimized composite with 9 wt% PEGylated GO exhibited a porosity of 75 %, a bulk density of 177 kg/m3, and a compressive strength of 4.53 MPa. Additionally, the thermal conductivity increased to 0.82 W/m·K-significantly higher than the control sample without PEGylated GO. Thermal cycling tests confirmed a latent heat enthalpy of 91 J/g, which remained stable after 100 heating-cooling cycles. The composites also exhibited excellent photothermal performance under simulated sunlight, making them promising candidates for renewable energy applications such as solar thermal energy harvesting, passive heat management in electronics, and energy-efficient building materials. This work contributes to the advancement of sustainable materials for thermal energy storage while supporting the development of clean and efficient energy systems in line with global energy transition goals.
Collapse
Affiliation(s)
- Hossein Baniasadi
- Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Espoo, Finland.
| | - Afsoon Farzan
- Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Maryam Roza Yazdani McCord
- Department of Mechanical Engineering, School of Engineering, Aalto University, P.O. Box 14400, 00076 Aalto, Finland
| | - Pedro E S Silva
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo 02150, Finland
| | - Babak Abdi
- School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Zoe Paganelli
- Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Jaana Vapaavuori
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo 02150, Finland
| | - Ali Tehrani
- School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Jukka Niskanen
- Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
3
|
Feng X, Zhang X, Yan W, Chen K, Guo X, Huang Y, Zhang J, Chen D. Fluorine-free, superhydrophobic self-healing and UV-blocking cotton fabric for oil/water separation. Int J Biol Macromol 2024; 283:137718. [PMID: 39551286 DOI: 10.1016/j.ijbiomac.2024.137718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
The discharge of oily wastewater not only pollutes waters but also deteriorates our living environment. Superhydrophobic cotton fabric is considered as an important remedy material for oily wastewater cleanup due to outstanding advantages including low cost, high porosity and switchable wettability. However, the existing superhydrophobic fabrics cannot exhibit durable superhydrophobicity during real-life applications due to poor interaction between the coatings and fabric substrates. To address this issue, one-step strategy is proposed to fabricate superhydrophobic cotton fabric by immersion in a octa-[2-(carboxyl methyl thio) ethyl]-polyhedral oligomeric silsesquioxane/cerium dioxide/polydimethylsiloxane (POSS/CeO2/PDMS) coating. As expected, the finished cotton fabric exhibits robust superhydrophobic resistance to mechanical abrasion and chemical corrosions. Notably, the finished cotton fabric shows thermal self-healing superhydrophobicity even if undergone repetitive abrasion cycles and air plasma etching. It is proposed that the rising temperature accelerates the rotations of PDMS chains and the migrations of MAPOSS and CeO2, contributing superhydrophobic self-healing of the damaged cotton fabric. Meanwhile, the superhydrophobic fabric displays high oil/water separation efficiency even in strong acid and alkali environments. Additionally, the POSS/CeO2/PDMS coating improves mechanical, thermal and UV-blocking properties of the finished cotton fabric. This work will pave a way to exploitation and applications of novel multifunctional textiles.
Collapse
Affiliation(s)
- Xiang Feng
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Xiaoyuan Zhang
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Weixia Yan
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Kailong Chen
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Xin Guo
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China
| | - Yuanfen Huang
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Jinfeng Zhang
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China
| | - Dongzhi Chen
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China; State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China.
| |
Collapse
|
4
|
Abid MZ, Rafiq K, Rauf A, Hussain E. Unveiling the potential of MXene-fabricated catalysts: an effective approach for H 2 generation from water splitting. NANOSCALE ADVANCES 2024:d4na00754a. [PMID: 39484151 PMCID: PMC11523837 DOI: 10.1039/d4na00754a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Hydrogen has enough potential and can be successfully used as an alternative to the conventional fuel. It can be successfully produced from water that is not only a sustainable source but exists everywhere on earth. Additionally, its combustion releases water that is quite safe and environment friendly. The current project was designed to generate hydrogen from catalytic water splitting on TiO2@Ti3C2T x catalysts. To obtain the required catalytic characteristics, titania was engineered on Ti3C2T x surfaces in situ using an ethanol-assisted solvothermal approach. After careful recovery, the catalysts were characterized and assessed for the photoreaction. All photoreactions were performed in a quartz reactor (150 mL), where hydrogen evolution activities were monitored on GC-TCD (Shimadzu-JP). The comparative activities indicated that TiO2@C and TiO2@Ti3C2T x catalysts deliver 9.37 and 18.57 mmol g-1 h-1 of hydrogen, respectively. The higher activities of TiO2@Ti3C2T x were attributed to the existence of higher active sites (charge trapping centres) on the multilayer MXene that progressively promote and facilitate redox reactions. Reason is that existence of titania on MXene interfaces develops heterojunctions that rectify the charge transfer; hence reduce the charge recombination (i.e., back reaction). On the basis of encouraging activities, it has been concluded that the aforementioned approach holds promise to replace the costly and conventional hydrogen generation technologies.
Collapse
Affiliation(s)
- Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur 63100 Pakistan
| | - Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur 63100 Pakistan
| | - Abdul Rauf
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur 63100 Pakistan
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur 63100 Pakistan
| |
Collapse
|
5
|
Zhou J, Yu J, Zhou M, Wang X. Anisotropic MXene@polydopamine- and Dialdehyde Carboxymethyl Cellulose-Modified Collagen Aerogel Supported Form-Stable Phase Change Composites for Light-To-Heat Conversion and Energy Storage. Biomacromolecules 2024; 25:6451-6464. [PMID: 39268634 DOI: 10.1021/acs.biomac.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
As a renewable alternative heat source, the inherently intermittent feature of solar energy needs to be coordinated by reliable energy conversion and storage systems for utilizing the most abundant solar energy. Phase change materials (PCMs) are supposed to be advanced mediums for storing a great deal of heat generated by solar light. However, PCMs cannot effectively absorb and utilize solar energy due to leakage, low photothermal conversion efficiency, and poor thermal conductivity. Herein, we developed a collagen-based aerogel modified by dialdehyde carboxymethyl cellulose and polydopamine-modified two-dimensional transition-metal carbide/nitride (MXene@PDA) through bidirectional freeze-drying technology for supporting PCMs, which exhibited anisotropy in structure and properties. In particular, the thermal conductivity of the aerogel was 0.0871 W/(m·K) in the axial direction and 0.0504 W/(m·K) in the radial direction, demonstrating its anisotropic thermal insulation performance. Moreover, the final aerogel composite PCMs had been obtained via impregnating the obtained aerogel supporting matrix into polyethylene glycol (PEG) and hydrophobic treatment of polydimethylsiloxane, which exhibited outstanding solar-thermal conversion ability, good thermal storage capacity, advanced leakage-proof property, and antifouling performance. The loading rate of PEG was as high as 92.2%, and the melting enthalpy was 132.6 J/g. Most importantly, the water contact angle was evaluated to be 156.8°, indicating its superior antifouling performance. This material has intensive application prospects in the fields of solar energy collection, conversion, and storage.
Collapse
Affiliation(s)
- Jianhua Zhou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology), Xi'an 710021, China
| | - Jiarui Yu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology), Xi'an 710021, China
| | - Mengyuan Zhou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology), Xi'an 710021, China
| | - Xing Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology), Xi'an 710021, China
| |
Collapse
|
6
|
Suchorowiec K, Paprota N, Pielichowska K. Aerogels for Phase-Change Materials in Functional and Multifunctional Composites: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4405. [PMID: 39274794 PMCID: PMC11396527 DOI: 10.3390/ma17174405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024]
Abstract
Phase-change materials (PCMs) have gained more attention during the last few decades. As the main function of these materials is to store and release energy in the form of latent heat during phase transitions, they perfectly fulfill the direction of modern research focused on energy-related topics. Although they have basic energy-related properties, recent research shows a need to upgrade those materials in terms of improving their common drawbacks like shape stability, leakage, and poor conductivity. The research related to PCM-based composites leads to imparting some additional functional properties such as different types of conversion abilities or extra performance such as shape memory and thermal protection. Together with a new emerging material group-aerogels (AGs), extra-light and highly porous matrices-PCMs could become functional and multifunctional materials. AG-PCM composites could be implemented in a large variety of applications in different sectors like energy, buildings, medical, defense, space technologies, and more. This study aims to help summarize current trends, methods, and works on PCM-aerogel composites in terms of developing new functional materials, especially for energy conversion purposes but also for improved conductivity, mechanical properties, and flame retardancy.
Collapse
Affiliation(s)
- Katarzyna Suchorowiec
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Natalia Paprota
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Kinga Pielichowska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
7
|
Xia S, Liu D, Jiang K, Cao M, Lou Z, Cheng R, Yi J, Yin A, Jiang Y, Cheng K, Weng W, Shi B, Tang B. Photothermal driven BMSCs osteogenesis and M2 macrophage polarization on polydopamine-coated Ti 3C 2 nanosheets/poly(vinylidene fluoride trifluoroethylene) nanocomposite coatings. Mater Today Bio 2024; 27:101156. [PMID: 39081463 PMCID: PMC11287002 DOI: 10.1016/j.mtbio.2024.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
Mild thermal stimulation plays an active role in bone tissue repair and regeneration. In this work, a bioactive polydopamine/Ti3C2/poly(vinylidene fluoride trifluoroethylene) (PDA/Ti3C2/P(VDF-TrFE)) nanocomposite coating with excellent near-infrared light (NIR)-triggered photothermal effect was designed to improve the osteogenic ability of implants. By incorporating dopamine (DA)-modified Ti3C2 nanosheets into the P(VDF-TrFE) matrix and combining them with alkali initiated in situ polymerization, the resulting PDA/Ti3C2/P(VDF-TrFE) nanocomposite coating gained high adhesion strength on Ti substrate, excellent tribological and corrosion resistance properties, which was quite important for clinical application of implant coatings. Cell biology experiments showed that NIR-triggered mild thermal stimulation on the coating surface promoted cell spreading and growth of BMSCs, and also greatly upregulated the osteogenic markers, including Runt-Related Transcription Factor 2 (RUNX2), alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN). Simultaneously, the synthesis of heat shock protein 47 (HSP47) was significantly promoted by the mild thermal stimulation, which strengthened the specific interaction between HSP47 and collagen Ⅰ (COL-Ⅰ), thereby activating the integrin-mediated MEK/ERK osteogenic differentiation signaling pathway. In addition, the results also showed that the mild thermal stimulation induced the polarization of macrophages towards M2 phenotype, which can attenuate the inflammatory response of injured bone tissue. Antibacterial results indicated that the coating exhibited an outstanding antibacterial ability against S. aureus and E. coli. Conceivably, the versatile implant bioactive coatings developed in this work will show great application potential for implant osseointegration.
Collapse
Affiliation(s)
- Sanqiang Xia
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
- The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Dun Liu
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Kanling Jiang
- The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Miao Cao
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Zhenqi Lou
- The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Ruobing Cheng
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Jie Yi
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Anlin Yin
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Yi Jiang
- The Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Benlong Shi
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Bolin Tang
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
- Nanotechnology Research Institute, G60 STI Valley Industry & Innovation Institute, Jiaxing University, Jiaxing, 314001, China
| |
Collapse
|
8
|
Tang Z, Lin X, Yu M, Yang J, Li S, Mondal AK, Wu H. A review of cellulose-based catechol-containing functional materials for advanced applications. Int J Biol Macromol 2024; 266:131243. [PMID: 38554917 DOI: 10.1016/j.ijbiomac.2024.131243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
With the increment in global energy consumption and severe environmental pollution, it is urgently needed to explore green and sustainable materials. Inspired by nature, catechol groups in mussel adhesion proteins have been successively understood and utilized as novel biomimetic materials. In parallel, cellulose presents a wide class of functional materials rating from macro-scale to nano-scale components. The cross-over among both research fields alters the introduction of impressive materials with potential engineering properties, where catechol-containing materials supply a general stage for the functionalization of cellulose or cellulose derivatives. In this review, the role of catechol groups in the modification of cellulose and cellulose derivatives is discussed. A broad variety of advanced applications of cellulose-based catechol-containing materials, including adhesives, hydrogels, aerogels, membranes, textiles, pulp and papermaking, composites, are presented. Furthermore, some critical remaining challenges and opportunities are studied to mount the way toward the rational purpose and applications of cellulose-based catechol-containing materials.
Collapse
Affiliation(s)
- Zuwu Tang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Xinxing Lin
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Meiqiong Yu
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China; College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Jinbei Yang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Shiqian Li
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Ajoy Kanti Mondal
- Institute of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh.
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
9
|
Liu Y, Wang J, Yue H, Du Z, Cheng X, Wang H, Cheng F, Du X. Flame-retardant phytic acid-decorated thermoplastic starch/halloysite nanotube composite films with enhanced mechanical strength and excellent barrier properties. Carbohydr Polym 2024; 323:121465. [PMID: 37940320 DOI: 10.1016/j.carbpol.2023.121465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Thermoplastic starch (TPS), a green and fully biodegradable composite, is considered the most viable option for replacing petroleum-based polymers. However, the poor mechanical properties, high flammability and moisture absorption susceptibility of TPS severely restrict its large-scale applications. Through PA phosphorylation and blending with halloysite nanotubes (HNTs), phytic acid (PA)-phosphorylated HNT/TPS composite films (HNTPSFs) were fabricated with enhanced mechanical strength, excellent flame retardancy, and improved barrier properties. The introduction of HNTs substantially increased the mechanical properties (tensile strength increased 54.3 % and elongation at break decreased 37.0 %) of TPS films and reduced the diffusion of water vapor (decreased 34.1 %). Thermogravimetric analysis studies demonstrated that the HNTPSFs had exceptional thermal stability at their anticipated working temperatures. Furthermore, when the PA content in the composite films increased, the peak heat release rate, total heat release and fire growth index of the HNTPSFs all decreased substantially, demonstrating the improved flame retardancy of HNTPSFs. Hence, the synthesized fully biodegradable TPS composites show enormous potential in the field of renewable biopolymers.
Collapse
Affiliation(s)
- Yuwei Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiuao Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hao Yue
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zongliang Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Xu Cheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Haibo Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Fei Cheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
| | - Xiaosheng Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
10
|
Atinafu DG, Kim YU, Kim S, Kang Y, Kim S. Advances in Biocarbon and Soft Material Assembly for Enthalpy Storage: Fundamentals, Mechanisms, and Multimodal Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2305418. [PMID: 37967349 DOI: 10.1002/smll.202305418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/24/2023] [Indexed: 11/17/2023]
Abstract
High-value-added biomass materials like biocarbon are being actively pursued integrating them with soft materials in a broad range of advanced renewable energy technologies owing to their advantages, such as lightweight, relatively low-cost, diverse structural engineering applications, and high energy storage potential. Consequently, the hybrid integration of soft and biomass-derived materials shall store energy to mitigate intermittency issues, primarily through enthalpy storage during phase change. This paper introduces the recent advances in the development of natural biomaterial-derived carbon materials in soft material assembly and its applications in multidirectional renewable energy storage. Various emerging biocarbon materials (biochar, carbon fiber, graphene, nanoporous carbon nanosheets (2D), and carbon aerogel) with intrinsic structures and engineered designs for enhanced enthalpy storage and multimodal applications are discussed. The fundamental design approaches, working mechanisms, and feature applications, such as including thermal management and electromagnetic interference shielding, sensors, flexible electronics and transparent nanopaper, and environmental applications of biocarbon-based soft material composites are highlighted. Furthermore, the challenges and potential opportunities of biocarbon-based composites are identified, and prospects in biomaterial-based soft materials composites are presented.
Collapse
Affiliation(s)
- Dimberu G Atinafu
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young Uk Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sungeun Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yujin Kang
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
11
|
Wei Z, Zhang Y, Cai C, Qu H, Fu Y, Tan SC. Wood Lamella-Inspired Photothermal Stearic Acid-Eutectic Gallium-Indium-Based Phase Change Aerogel for Thermal Management and Infrared Stealth. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302886. [PMID: 37485809 DOI: 10.1002/smll.202302886] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 07/25/2023]
Abstract
Eutectic Gallium-Indium (EGaIn) liquid metal is an emerging phase change metal material, but its low phase transition enthalpy and low light absorption limit its application in photothermal phase change energy storage materials (PCMs) field. Here, based on the dipole layer mechanism, stearic acid (STA)-EGaIn-based PCMs which exhibit extraordinary solar-thermal performance and phase change enthalpy are fabricated by ball milling method. The wood lamella-inspired cellulose-derived aerogel and molybdenum disulfide (MoS2 ) are used to support the PCMs by the capillary force and decrease the interfacial thermal resistance. The resulted PCMs achieved excellent photothermal conversion performance and leakage proof. They have excellent thermal conductivity of 0.31 W m-1 K-1 (this is increased by 138% as compared with pure STA), and high phase change enthalpy of187.50 J g-1 , which is higher than the most of the reported PCMs. Additionally, the thermal management system and infrared stealth materials based on the PCMs are developed. This work provides a new way to fabricate smart EGaIn-based PCMs for energy storage device thermal management and infrared stealth.
Collapse
Affiliation(s)
- Zechang Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yaoxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, Shanghai, 201306, China
| | - Chenyang Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Hao Qu
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Yu Fu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| |
Collapse
|
12
|
Dai Z, Gao Y, Wang C, Wu D, Jiang Z, She X, Ding Y, Zhang X, Zhao D. Oriented High Thermal Conductivity Solid-Solid Phase Change Materials for Mid-Temperature Solar-Thermal Energy Storage. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37230959 DOI: 10.1021/acsami.3c04429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As the global energy crisis intensifies, the development of solar energy has become a vital area of focus for many nations. The utilization of phase change materials (PCMs) for photothermal energy storage in the medium temperature range holds great potential for various applications, but their conventional forms face several challenges. For instance, the longitudinal thermal conductivity of photothermal PCMs is inadequate for effective heat storage on the photothermal conversion surface, and there is a risk of leakage due to repeated solid-liquid phase transitions. Here, we report a solid-solid phase change material, tris(hydroxymethyl)aminomethane (TRIS), which has a phase change temperature of 132 °C in the medium temperature range, enabling high-grade and stable solar energy storage. To overcome the low thermal conductivity problem, we propose a large-scale production of oriented high thermal conductivity composites by compressing a mixture of TRIS and expanded graphite (EG) using the pressure induction method to create in-plane highly thermally conductive channels. Remarkably, the resulting phase change composites (PCCs) exhibit a directional thermal conductivity of 21.3 W/(m·K). Furthermore, the high phase change temperature (132 °C) and large phase change entropy (213.47 J/g) enable a large-capacity high-grade thermal energy to be used. The developed PCCs, when combined with selected photo-absorbers, exhibit efficient integration of solar-thermal conversion and storage. Additionally, we also demonstrated a solar-thermoelectric generator device with an energy output of 93.1 W/m2, which is close to the power of photovoltaic systems. Overall, this work provides a technological route to the large-scale fabrication of mid-temperature solar energy storage materials with high thermal conductivity, high phase change enthalpy, and no risk of leakage, and also offers a potential alternative to photovoltaic technology.
Collapse
Affiliation(s)
- Zhaofeng Dai
- School of Energy & Environment, Southeast University, Nanjing 210096, China
| | - Yuanzhi Gao
- School of Energy & Environment, Southeast University, Nanjing 210096, China
| | - Changling Wang
- School of Energy & Environment, Southeast University, Nanjing 210096, China
| | - Dongxu Wu
- School of Energy & Environment, Southeast University, Nanjing 210096, China
| | - Zhu Jiang
- School of Energy & Environment, Southeast University, Nanjing 210096, China
- Engineering Research Centre of BEEE, Ministry of Education of China, Nanjing 210096, China
| | - Xiaohui She
- School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Yulong Ding
- Birmingham Centre for Energy Storage, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K
| | - Xiaosong Zhang
- School of Energy & Environment, Southeast University, Nanjing 210096, China
- Engineering Research Centre of BEEE, Ministry of Education of China, Nanjing 210096, China
| | - Dongliang Zhao
- School of Energy & Environment, Southeast University, Nanjing 210096, China
- Engineering Research Centre of BEEE, Ministry of Education of China, Nanjing 210096, China
| |
Collapse
|
13
|
Zhu M, Lu C, Liu L. Progress and challenges of emerging MXene based materials for thermoelectric applications. iScience 2023; 26:106718. [PMID: 37234091 PMCID: PMC10206441 DOI: 10.1016/j.isci.2023.106718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
To realize sustainable development, more and more countries forwarded carbon neutrality goal. Accordingly, improving the utilization efficiency of traditional fossil fuel is an effective strategy for this great goal. Keeping this in mind, developing thermoelectric devices to recover waste heat energy resulted in the consumption process of fuel is demonstrated to be promising. High performance thermoelectric devices require advanced materials. MXenes are a kind of 2D materials with a layered structure, which demonstrate excellent thermoelectric performance owing to their unique physical, mechanical, and chemical properties. Also, substantial achievement has been gained during the past few years in synthesizing MXene based materials for thermoelectric devices. In this review, the mainstream synthetic routes of MXene from etching MAX were summarized. Significantly, the current state and challenges of research on improving the performance of MXene based thermoelectrics are explored, including pristine MXene and MXene based composites.
Collapse
Affiliation(s)
- Maiyong Zhu
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Congcong Lu
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lingran Liu
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
14
|
Wang Y, Wang F, Shi C, Dong H, Song Y, Zhao J, Ling Z. Monolithic MXene Aerogels Encapsulated Phase Change Composites with Superior Photothermal Conversion and Storage Capability. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101661. [PMID: 37242077 DOI: 10.3390/nano13101661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
The inherently intermittent feature of solar energy requires reliable energy conversion and storage systems for utilizing the most abundant solar energy. Phase change materials are potential solutions to store a large amount of heat produced by solar light. However, few of the phase change materials have the ability to efficiently convert solar energy into heat; additionally, phase change materials need to be encapsulated in porous substrates for enhancing their leaking resistance and photo-to-thermal performance. In this work, monolithic MXene aerogels, fabricated by Al3+ cross-linking and freeze-drying, were used as the encapsulation and photothermal materials. The composites phase change materials of MXene/polyethylene glycol can be made with a large polyethylene glycol loading above 90 wt% with the maximum of 97 wt%, owing to the large porosity of MXene aerogels. The low content of MXene has a limited impact on the phase transition temperature and enthalpy of polyethylene glycol, with an enthalpy retention rate ranging from 89.2 to 96.5% for 90-97 wt% polyethylene glycol loadings. MXene aerogels greatly improve the leaking resistance of polyethylene glycol above its melting point of 60 °C, even at 100 °C. The composites phase change materials also show outstanding cycling stability for 500 cycles of heat storage and release, retaining 97.7% of the heat storage capability. The optimized composite phase change material has a solar energy utilization of 93.5%, being superior to most of the reported results. Our strategy produces promising composite phase change materials for solar energy utilization using the MXene aerogels as the encapsulation and photothermal materials.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Fuqiang Wang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Changrui Shi
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hongsheng Dong
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yongchen Song
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiafei Zhao
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zheng Ling
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
15
|
Park CE, Senthil RA, Jeong GH, Choi MY. Architecting the High-Entropy Oxides on 2D MXene Nanosheets by Rapid Microwave-Heating Strategy with Robust Photoelectrochemical Oxygen Evolution Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207820. [PMID: 36974611 DOI: 10.1002/smll.202207820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Indexed: 06/18/2023]
Abstract
High-entropy oxides (HEO) have recently concerned interest as the most promising electrocatalytic materials for oxygen evolution reactions (OER). In this work, a new strategy to the synthesis of HEO nanostructures on Ti3 C2 Tx MXene via rapid microwave heating and subsequent calcination at a low temperature is reported. Furthermore, the influence of HEO loading on Ti3 C2 Tx MXene is investigated toward OER performance with and without visible-light illumination in an alkaline medium. The obtained HEO/Ti3 C2 Tx -0.5 hybrid exhibited an outstanding photoelectrochemical OER ability with a low overpotential of 331 mV at 10 mA cm-2 and a small Tafel slope of 71 mV dec-1 , which exceeded that of a commercial IrO2 catalyst (340 mV at 10 mA cm-2 ). In particular, the fabricated water electrolyzer with the HEO/Ti3 C2 Tx -0.5 hybrid as anode required a less potential of 1.62 V at 10 mA cm-2 under visible-light illumination. Owing to the strong synergistic interaction between the HEO and Ti3 C2 Tx MXene, the HEO/Ti3 C2 Tx hybrid has a great electrochemical surface area, many metal active sites, high conductivity, and fast reaction kinetics, resulting in an excellent OER performance. This study offers an efficient strategy for synthesizing HEO-based materials with high OER performance to produce high-value hydrogen fuel.
Collapse
Affiliation(s)
- Chae Eun Park
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Raja Arumugam Senthil
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gyoung Hwa Jeong
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
16
|
Wang G, Tang Z, Gao Y, Liu P, Li Y, Li A, Chen X. Phase Change Thermal Storage Materials for Interdisciplinary Applications. Chem Rev 2023. [PMID: 36946191 DOI: 10.1021/acs.chemrev.2c00572] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Functional phase change materials (PCMs) capable of reversibly storing and releasing tremendous thermal energy during the isothermal phase change process have recently received tremendous attention in interdisciplinary applications. The smart integration of PCMs with functional supporting materials enables multiple cutting-edge interdisciplinary applications, including optical, electrical, magnetic, acoustic, medical, mechanical, and catalytic disciplines etc. Herein, we systematically discuss thermal storage mechanism, thermal transfer mechanism, and energy conversion mechanism, and summarize the state-of-the-art advances in interdisciplinary applications of PCMs. In particular, the applications of PCMs in acoustic, mechanical, and catalytic disciplines are still in their infancy. Simultaneously, in-depth insights into the correlations between microscopic structures and thermophysical properties of composite PCMs are revealed. Finally, current challenges and future prospects are also highlighted according to the up-to-date interdisciplinary applications of PCMs. This review aims to arouse broad research interest in the interdisciplinary community and provide constructive references for exploring next generation advanced multifunctional PCMs for interdisciplinary applications, thereby facilitating their major breakthroughs in both fundamental researches and commercial applications.
Collapse
Affiliation(s)
- Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhaodi Tang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Panpan Liu
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Yang Li
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Ang Li
- School of Chemistry Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiao Chen
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
17
|
Chen S, Huang W. A review related to MXene preparation and its sensor arrays of electronic skins. Analyst 2023; 148:435-453. [PMID: 36468668 DOI: 10.1039/d2an01143c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MXenes have been flourishing over the last decade as a high-performance 2D material, which combines the advantages of high electrical conductivity, photothermal conversion, and easy dispersion. They have been used to create soft, highly conductive, self-healing, and tactile-simulating electronic skins (E-skins). However, these E-skins remain generally limited to one or two functions with a complex preparation process. Next-generation E-skins necessitate not only large-scale fabrication using simple and fast methods but also the integration of multiple sensing functions and signal analysis components in order to provide functionality that was not unattainable in the past. Starting with the synthesis of pure MXenes, we walk through the steps of designing MXene sensors, integrating electronic skin arrays, and determining the function of MXene-based electronic skins. We also summarise the problems with existing MXene-based E-skins and possible futuristic directions.
Collapse
Affiliation(s)
- Sha Chen
- Chengdu Techman Software Co., Ltd, Chengdu, China
| | - Wu Huang
- Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Liu P, Chen X, Li Y, Cheng P, Tang Z, Lv J, Aftab W, Wang G. Aerogels Meet Phase Change Materials: Fundamentals, Advances, and Beyond. ACS NANO 2022; 16:15586-15626. [PMID: 36226846 DOI: 10.1021/acsnano.2c05067] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Benefiting from the inherent properties of ultralight weight, ultrahigh porosity, ultrahigh specific surface area, adjustable thermal/electrical conductivities, and mechanical flexibility, aerogels are considered ideal supporting alternatives to efficiently encapsulate phase change materials (PCMs) and rationalize phase transformation behaviors. The marriage of versatile aerogels and PCMs is a milestone in pioneering advanced multifunctional composite PCMs. Emerging aerogel-based composite PCMs with high energy storage density are accepted as a cutting-edge thermal energy storage (TES) concept, enabling advanced functionality of PCMs. Considering the lack of a timely and comprehensive review on aerogel-based composite PCMs, herein, we systematically retrospect the state-of-the-art advances of versatile aerogels for high-performance and multifunctional composite PCMs, with particular emphasis on advanced multiple functions, such as acoustic-thermal and solar-thermal-electricity energy conversion strategies, mechanical flexibility, flame retardancy, shape memory, intelligent grippers, and thermal infrared stealth. Emphasis is also given to the versatile roles of different aerogels in composite PCMs and the relationships between their architectures and thermophysical properties. This review also showcases the discovery of an interdisciplinary research field combining aerogels and 3D printing technology, which will contribute to pioneering cutting-edge PCMs. This review aims to arouse wider research interests among interdisciplinary fields and provide insightful guidance for the rational design of advanced multifunctional aerogel-based composite PCMs, thus facilitating the significant breakthroughs in both fundamental research and commercial applications.
Collapse
Affiliation(s)
- Panpan Liu
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, P.R. China
| | - Xiao Chen
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, P.R. China
| | - Yang Li
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, P.R. China
| | - Piao Cheng
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, P.R. China
| | - Zhaodi Tang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Junjun Lv
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Waseem Aftab
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
- Shunde Graduate School, University of Science and Technology Beijing, Shunde 528399, P.R. China
| |
Collapse
|
19
|
Luo Y, Zou L, Qiao J, Zhang J, Liu K, Wu H, Lin P, Chen Y. Boron Nitride-Doped Inorganic Hydrated Salt Gels Demonstrating Superior Thermal Energy Storage and Wearability Toward High-Performance Personal Thermal Management. ACS APPLIED ENERGY MATERIALS 2022; 5:11591-11603. [DOI: 10.1021/acsaem.2c02070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Yingying Luo
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Liqing Zou
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Junpeng Qiao
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jiaming Zhang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Kai Liu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Hongjiao Wu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Pengcheng Lin
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
20
|
Jin X, Wang S, Sang C, Yue Y, Xu X, Mei C, Xiao H, Lou Z, Han J. Patternable Nanocellulose/Ti 3C 2T x Flexible Films with Tunable Photoresponsive and Electromagnetic Interference Shielding Performances. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35040-35052. [PMID: 35861436 DOI: 10.1021/acsami.2c11567] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanocellulose-mediated MXene composites have attracted widespread attention in the fields of sustainable energy, wearable sensors, and electromagnetic interference (EMI) shielding. However, the effects of different nanocelluloses on the multifunctional properties of nanocellulose/Ti3C2Tx composites still need further exploration. Herein, we use three types of nanocelluloses, including bacterial cellulose (BC), cellulose nanocrystals (CNCs), and 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO)-oxidized cellulose nanofibers (TOCNs), as intercalation to link Ti3C2Tx nanosheets via a self-assembly process, improving the dispersibility, film-forming ability, mechanical properties, and multifunctional performances of nanocelluloses/Ti3C2Tx hybrids through electrostatic forces and hydrogen bonding. The optimized ultrathin (∼40 μm) TOCN/Ti3C2Tx film integrates excellent tensile strength (∼98.89 MPa), long-term stability (during deformation and water erosion), favorable photoelectric response (photosensitivity up to 2620%), and temperature response (reaching 163 °C in only 12 s). Laser-cutting patterned TOCN/Ti3C2Tx films are assembled into flexible multifunctional electronics, exhibiting splendid photoresponse performances and tunable electromagnetic energy shielding capability (>96.4%) related to the variation of water content at the film-gel electrolyte interface. Multifunctional patterned devices based on TOCN/Ti3C2Tx composite films provide a novel pathway to rationally design wearable EMI devices with photoelectric response and photothermal conversion.
Collapse
Affiliation(s)
- Xiaoyue Jin
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaowei Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenyu Sang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiying Yue
- College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xinwu Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changtong Mei
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, 15 Dineen Drive, Fredericton, New Brunswick E3B 5A3, Canada
| | - Zhichao Lou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- College of Engineering, University of Georgia, Athens, Georgia 30605, United States
| | - Jingquan Han
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
21
|
NIR-induced self-healing and recyclable polyurethane composites based on thermally reversible cross-linking for efficient solar-to-thermal energy storage. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|