1
|
Wu Z, Tang Y, Liu Y, Chen Z, Feng Y, Hu H, Liu H, Chen G, Lu Y, Hu Y, Xu R. Co-delivery of fucoxanthin and Twist siRNA using hydroxyethyl starch-cholesterol self-assembled polymer nanoparticles for triple-negative breast cancer synergistic therapy. J Adv Res 2025; 70:463-479. [PMID: 38636588 PMCID: PMC11976571 DOI: 10.1016/j.jare.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer with an extremely dismal prognosis and few treatment options. As a desmoplastic tumor, TNBC tumor cells are girdled by stroma composed of cancer-associated fibroblasts (CAFs) and their secreted stromal components. The rapidly proliferating tumor cells, together with the tumor stroma, exert additional solid tissue pressure on tumor vasculature and surrounding tissues, severely obstructing therapeutic agent from deep intratumoral penetration, and resulting in tumor metastasis and treatment resistance. OBJECTIVES Fucoxanthin (FX), a xanthophyll carotenoid abundant in marine algae, has attracted widespread attention as a promising alternative candidate for tumor prevention and treatment. Twist is a pivotal regulator of epithelial to mesenchymal transition, and its depletion has proven to sensitize antitumor drugs, inhibit metastasis, reduce CAFs activation and the following interstitial deposition, and increase tumor perfusion. The nanodrug delivery system co-encapsulating FX and nucleic acid drug Twist siRNA (siTwist) was expected to form a potent anti-TNBC therapeutic cyclical feedback loop. METHODS AND RESULTS Herein, our studies constituted a novel self-assembled polymer nanomedicine (siTwist/FX@HES-CH) based on the amino-modified hydroxyethyl starch (HES-NH2) grafted with hydrophobic segment cholesterol (CH). The MTT assay, flow cytometry apoptosis analysis, transwell assay, western blot, and 3D multicellular tumor spheroids growth inhibition assay all showed that siTwist/FX@HES-CH could kill tumor cells and inhibit their metastasis in a synergistic manner. The in vivo anti-TNBC efficacy was demonstrated that siTwist/FX@HES-CH remodeled tumor microenvironment, facilitated interstitial barrier crossing, killed tumor cells synergistically, drastically reduced TNBC orthotopic tumor burden and inhibited lung metastasis. CONCLUSION Systematic studies revealed that this dual-functional nanomedicine that targets both tumor cells and tumor microenvironment significantly alleviates TNBC orthotopic tumor burden and inhibits lung metastasis, establishing a new paradigm for TNBC therapy.
Collapse
Affiliation(s)
- Zeliang Wu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuxiang Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Yuanhui Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuao Feng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hang Hu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Hui Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Gang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Youming Lu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China.
| | - Rong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China; Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
2
|
Zhang Q, Cao K, Ren TJ, Wu H, Xu ZR. Exploring the homing effect and enhanced drug delivery potential of small extracellular vesicles. Chem Commun (Camb) 2025; 61:3708-3711. [PMID: 39927602 DOI: 10.1039/d4cc06241h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
We propose a strategy of assembling small extracellular vesicles (sEVs) and liposomes into dimers to explore the homing effect and the drug delivery potential of sEVs. The uptake rate of dimers by parental cells is 2.6-4.9 times higher than that by other cells, showing enhanced drug delivery capacity.
Collapse
Affiliation(s)
- Qi Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Ke Cao
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Ting-Ju Ren
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Hao Wu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, P. R. China
| |
Collapse
|
3
|
Bai D, Chen H, Xiang N, Zhang C, Wang Z, Zhang J, Wu C, Wang F, Zhang J. Ionic liquid combined with cationic liposome co-delivers microphthalmia-associated transcription factor small interfering RNA to regulate melanogenesis. Int J Biol Macromol 2024; 281:136027. [PMID: 39332571 DOI: 10.1016/j.ijbiomac.2024.136027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Suppressing allele-specific genes using small interfering RNAs (siRNAs) can effectively whiten skin by influencing cellular gene and protein expression. Topical delivery of siRNA is a promising alternative to injections for RNA interference. However, the barrier function of the skin hinders the effective penetration of siRNA. Here, we report, a novel approach to achieve the transdermal delivery of effective siRNA doses using a complementary synergistic strategy of an ionic liquid (IL) and cationic liposome (CL). Microphthalmia-associated transcription factor (MITF) siRNA molecules were formed through electrostatic adsorption of the IL and CL to form positively charged nanocomposites, which were named IL-CL/p-siM. IL-CL/p-siM has a particle size of 171.47 nm, ζ-potential of 29.94 mV, high encapsulation rate of 92.11 %, and pH-sensitive release properties. In vitro studies on porcine skin confirmed the additive/synergistic effect of this strategy in enhancing epidermal and dermal penetration. This combination enabled superior transfection efficiency and cell viability while inhibiting melanin synthesis in skin melanocytes by downregulating the expression of genes downstream of MITF, namely tyrosinase-related protein-1, tyrosinase, and tyrosinase-related protein-2, which are associated with the melanocortin 1 receptor. We also conducted clinical studies that demonstrated its potential in treating melasma and its anti-melanotic efficacy. To summarize, IL-CL/p-siM represents a simple, personalized, and scalable platform for effective local delivery of siRNA to treat skin complications.
Collapse
Affiliation(s)
- De Bai
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China
| | - Haowei Chen
- Dingmageili Biotechnology Ltd., Beijing 101300, China
| | - Nanxi Xiang
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Chunqiao Zhang
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Zhenyuan Wang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jichuan Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chengyu Wu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Fang Wang
- Dingmageili Biotechnology Ltd., Beijing 101300, China.
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
4
|
Huang C, Yang X, Li H, Zhang L, Guo Q, Yu Q, Wang H, Zhang L, Zhu D. GSH-responsive polymeric micelles-based augmented photoimmunotherapy synergized with PD-1 blockade for eliciting robust antitumor immunity against colon tumor. J Nanobiotechnology 2024; 22:542. [PMID: 39238020 PMCID: PMC11378416 DOI: 10.1186/s12951-024-02813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Phototherapy is a promising antitumor modality, which consists of photothermal therapy (PTT) and photodynamic therapy (PDT). However, the efficacy of phototherapy is dramatically hampered by local hypoxia in tumors, overexpression of indoleamine 2,3-dioxygenase (IDO) and programmed cell death ligand-1 (PD-L1) on tumor cells. To address these issues, self-assembled multifunctional polymeric micelles (RIMNA) were developed to co-deliver photosensitizer indocyanine green (ICG), oxygenator MnO2, IDO inhibitor NLG919, and toll-like receptor 4 agonist monophosphoryl lipid A (MPLA). It is worth noting that RIMNA polymeric micelles had good stability, uniform morphology, superior biocompatibility, and intensified PTT/PDT effect. What's more, RIMNA-mediated IDO inhibition combined with programmed death receptor-1 (PD-1)/PD-L1 blockade considerably improved immunosuppression and promoted immune activation. RIMNA-based photoimmunotherapy synergized with PD-1 antibody could remarkably inhibit primary tumor proliferation, as well as stimulate the immunity to greatly suppress lung metastasis and distant tumor growth. This study offers an efficient method to reinforce the efficacy of phototherapy and alleviate immunosuppression, thereby bringing clinical benefits to cancer treatment.
Collapse
Affiliation(s)
- Chenlu Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Xinyu Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Huidong Li
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Li Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Qing Guo
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Qingyu Yu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Hai Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Linhua Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China.
| | - Dunwan Zhu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, China.
| |
Collapse
|
5
|
Cheng Z, Fobian SF, Gurrieri E, Amin M, D'Agostino VG, Falahati M, Zalba S, Debets R, Garrido MJ, Saeed M, Seynhaeve ALB, Balcioglu HE, Ten Hagen TLM. Lipid-based nanosystems: the next generation of cancer immune therapy. J Hematol Oncol 2024; 17:53. [PMID: 39030582 PMCID: PMC11265205 DOI: 10.1186/s13045-024-01574-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Immunotherapy has become an important part of the oncotherapy arsenal. Its applicability in various cancer types is impressive, as well as its use of endogenous mechanisms to achieve desired ends. However, off-target or on-target-off-tumor toxicity, limited activity, lack of control in combination treatments and, especially for solid tumors, low local accumulation, have collectively limited clinical use thereof. These limitations are partially alleviated by delivery systems. Lipid-based nanoparticles (NPs) have emerged as revolutionary carriers due to favorable physicochemical characteristics, with specific applications and strengths particularly useful in immunotherapeutic agent delivery. The aim of this review is to highlight the challenges faced by immunotherapy and how lipid-based NPs have been, and may be further utilized to address such challenges. We discuss recent fundamental and clinical applications of NPs in a range of areas and provide a detailed discussion of the main obstacles in immune checkpoint inhibition therapies, adoptive cellular therapies, and cytokine therapies. We highlight how lipid-based nanosystems could address these through either delivery, direct modulation of the immune system, or targeting of the immunosuppressive tumor microenvironment. We explore advanced and emerging liposomal and lipid nanoparticle (LNP) systems for nucleic acid delivery, intrinsic and extrinsic stimulus-responsive formulations, and biomimetic lipid-based nanosystems in immunotherapy. Finally, we discuss the key challenges relating to the clinical use of lipid-based NP immunotherapies, suggesting future research directions for the near term to realize the potential of these innovative lipid-based nanosystems, as they become the crucial steppingstone towards the necessary enhancement of the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ziyun Cheng
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Seth-Frerich Fobian
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Elena Gurrieri
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mohamadreza Amin
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vito Giuseppe D'Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sara Zalba
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - María J Garrido
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain
| | - Mesha Saeed
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ann L B Seynhaeve
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hayri E Balcioglu
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Choi Y, Seok SH, Yoon HY, Ryu JH, Kwon IC. Advancing cancer immunotherapy through siRNA-based gene silencing for immune checkpoint blockade. Adv Drug Deliv Rev 2024; 209:115306. [PMID: 38626859 DOI: 10.1016/j.addr.2024.115306] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 05/23/2024]
Abstract
Cancer immunotherapy represents a revolutionary strategy, leveraging the patient's immune system to inhibit tumor growth and alleviate the immunosuppressive effects of the tumor microenvironment (TME). The recent emergence of immune checkpoint blockade (ICB) therapies, particularly following the first approval of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors like ipilimumab, has led to significant growth in cancer immunotherapy. The extensive explorations on diverse immune checkpoint antibodies have broadened the therapeutic scope for various malignancies. However, the clinical response to these antibody-based ICB therapies remains limited, with less than 15% responsiveness and notable adverse effects in some patients. This review introduces the emerging strategies to overcome current limitations of antibody-based ICB therapies, mainly focusing on the development of small interfering ribonucleic acid (siRNA)-based ICB therapies and innovative delivery systems. We firstly highlight the diverse target immune checkpoint genes for siRNA-based ICB therapies, incorporating silencing of multiple genes to boost anti-tumor immune responses. Subsequently, we discuss improvements in siRNA delivery systems, enhanced by various nanocarriers, aimed at overcoming siRNA's clinical challenges such as vulnerability to enzymatic degradation, inadequate pharmacokinetics, and possible unintended target interactions. Additionally, the review presents various combination therapies that integrate chemotherapy, phototherapy, stimulatory checkpoints, ICB antibodies, and cancer vaccines. The important point is that when used in combination with siRNA-based ICB therapy, the synergistic effect of traditional therapies is strengthened, improving host immune surveillance and therapeutic outcomes. Conclusively, we discuss the insights into innovative and effective cancer immunotherapeutic strategies based on RNA interference (RNAi) technology utilizing siRNA and nanocarriers as a novel approach in ICB cancer immunotherapy.
Collapse
Affiliation(s)
- Youngjin Choi
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Su Hyun Seok
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ju Hee Ryu
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Li X, Hu L, Naeem A, Xiao S, Yang M, Shang H, Zhang J. Neutrophil Extracellular Traps in Tumors and Potential Use of Traditional Herbal Medicine Formulations for Its Regulation. Int J Nanomedicine 2024; 19:2851-2877. [PMID: 38529365 PMCID: PMC10961241 DOI: 10.2147/ijn.s449181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibers composed of deoxyribonucleic acid (DNA) and decorated proteins produced by neutrophils. Recently, NETs have been associated with the development of many diseases, including tumors. Herein, we reviewed the correlation between NETs and tumors. In addition, we detailed active compounds from traditional herbal medicine formulations that inhibit NETs, related nanodrug delivery systems, and antibodies that serve as "guiding moieties" to ensure targeted delivery to NETs. Furthermore, we discussed the strategies used by pathogenic microorganisms to evade NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| |
Collapse
|
8
|
Paun RA, Jurchuk S, Tabrizian M. A landscape of recent advances in lipid nanoparticles and their translational potential for the treatment of solid tumors. Bioeng Transl Med 2024; 9:e10601. [PMID: 38435821 PMCID: PMC10905562 DOI: 10.1002/btm2.10601] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 03/05/2024] Open
Abstract
Lipid nanoparticles (LNPs) are biocompatible drug delivery systems that have found numerous applications in medicine. Their versatile nature enables the encapsulation and targeting of various types of medically relevant molecular cargo, including oligonucleotides, proteins, and small molecules for the treatment of diseases, such as cancer. Cancers that form solid tumors are particularly relevant for LNP-based therapeutics due to the enhanced permeation and retention effect that allows nanoparticles to accumulate within the tumor tissue. Additionally, LNPs can be formulated for both locoregional and systemic delivery depending on the tumor type and stage. To date, LNPs have been used extensively in the clinic to reduce systemic toxicity and improve outcomes in cancer patients by encapsulating chemotherapeutic drugs. Next-generation lipid nanoparticles are currently being developed to expand their use in gene therapy and immunotherapy, as well as to enable the co-encapsulation of multiple drugs in a single system. Other developments include the design of targeted LNPs to specific cells and tissues, and triggerable release systems to control cargo delivery at the tumor site. This review paper highlights recent developments in LNP drug delivery formulations and focuses on the treatment of solid tumors, while also discussing some of their current translational limitations and potential opportunities in the field.
Collapse
Affiliation(s)
- Radu A. Paun
- Department of Biomedical Engineering, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Sarah Jurchuk
- Department of Biomedical Engineering, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Faculty of Dentistry and Oral Health SciencesMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
9
|
Kumbhar PR, Kumar P, Lasure A, Velayutham R, Mandal D. An updated landscape on nanotechnology-based drug delivery, immunotherapy, vaccinations, imaging, and biomarker detections for cancers: recent trends and future directions with clinical success. DISCOVER NANO 2023; 18:156. [PMID: 38112935 PMCID: PMC10730792 DOI: 10.1186/s11671-023-03913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/20/2023] [Indexed: 12/21/2023]
Abstract
The recent development of nanotechnology-based formulations improved the diagnostics and therapies for various diseases including cancer where lack of specificity, high cytotoxicity with various side effects, poor biocompatibility, and increasing cases of multi-drug resistance are the major limitations of existing chemotherapy. Nanoparticle-based drug delivery enhances the stability and bioavailability of many drugs, thereby increasing tissue penetration and targeted delivery with improved efficacy against the tumour cells. Easy surface functionalization and encapsulation properties allow various antigens and tumour cell lysates to be delivered in the form of nanovaccines with improved immune response. The nanoparticles (NPs) due to their smaller size and associated optical, physical, and mechanical properties have evolved as biosensors with high sensitivity and specificity for the detection of various markers including nucleic acids, protein/antigens, small metabolites, etc. This review gives, initially, a concise update on drug delivery using different nanoscale platforms like liposomes, dendrimers, polymeric & various metallic NPs, hydrogels, microneedles, nanofibres, nanoemulsions, etc. Drug delivery with recent technologies like quantum dots (QDs), carbon nanotubes (CNTs), protein, and upconverting NPs was updated, thereafter. We also summarized the recent progress in vaccination strategy, immunotherapy involving immune checkpoint inhibitors, and biomarker detection for various cancers based on nanoplatforms. At last, we gave a detailed picture of the current nanomedicines in clinical trials and their possible success along with the existing approved ones. In short, this review provides an updated complete landscape of applications of wide NP-based drug delivery, vaccinations, immunotherapy, biomarker detection & imaging for various cancers with a predicted future of nanomedicines that are in clinical trials.
Collapse
Affiliation(s)
- Pragati Ramesh Kumbhar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | - Aarti Lasure
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | | | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India.
| |
Collapse
|
10
|
Alsaikhan F. Hyaluronic acid-empowered nanotheranostics in breast and lung cancers therapy. ENVIRONMENTAL RESEARCH 2023; 237:116951. [PMID: 37633628 DOI: 10.1016/j.envres.2023.116951] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Nanomedicine application in cancer therapy is an urgency because of inability of current biological therapies for complete removal of tumor cells. The development of smart and novel nanoplatforms for treatment of cancer can provide new insight in tumor suppression. Hyaluronic acid is a biopolymer that can be employed for synthesis of smart nanostructures capable of selective targeting CD44-overexpressing tumor cells. The breast and lung cancers are among the most malignant and common tumors in both females and males that environmental factors, lifestyle and genomic alterations are among the risk factors for their pathogenesis and development. Since etiology of breast and lung tumors is not certain and multiple factors participate in their development, preventative measures have not been completely successful and studies have focused on developing new treatment strategies for them. The aim of current review is to provide a comprehensive discussion about application of hyaluronic acid-based nanostructures for treatment of breast and lung cancers. The main reason of using hyaluronic acid-based nanoparticles is their ability in targeting breast and lung cancers in a selective way due to upregulation of CD44 receptor on their surface. Moreover, nanocarriers developed from hyaluronic acid or functionalized with hyaluronic acid have high biocompatibility and their safety is appreciated. The drugs and genes used for treatment of breast and lung cancers lack specific accumulation at cancer site and their cytotoxicity is low, but hyaluronic acid-based nanostructures provide their targeted delivery to tumor site and by increasing internalization of drugs and genes in breast and lung tumor cells, they improve their therapeutic index. Furthermore, hyaluronic acid-based nanostructures can be used for phototherapy-mediated breast and lung cancers ablation. The stimuli-responsive and smart kinds of hyaluronic acid-based nanostructures such as pH- and light-responsive can increase selective targeting of breast and lung cancers.
Collapse
Affiliation(s)
- Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| |
Collapse
|
11
|
Kiaie SH, Salehi-Shadkami H, Sanaei MJ, Azizi M, Shokrollahi Barough M, Nasr MS, Sheibani M. Nano-immunotherapy: overcoming delivery challenge of immune checkpoint therapy. J Nanobiotechnology 2023; 21:339. [PMID: 37735656 PMCID: PMC10512572 DOI: 10.1186/s12951-023-02083-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
Immune checkpoint (ICP) molecules expressed on tumor cells can suppress immune responses against tumors. ICP therapy promotes anti-tumor immune responses by targeting inhibitory and stimulatory pathways of immune cells like T cells and dendritic cells (DC). The investigation into the combination therapies through novel immune checkpoint inhibitors (ICIs) has been limited due to immune-related adverse events (irAEs), low response rate, and lack of optimal strategy for combinatorial cancer immunotherapy (IMT). Nanoparticles (NPs) have emerged as powerful tools to promote multidisciplinary cooperation. The feasibility and efficacy of targeted delivery of ICIs using NPs overcome the primary barrier, improve therapeutic efficacy, and provide a rationale for more clinical investigations. Likewise, NPs can conjugate or encapsulate ICIs, including antibodies, RNAs, and small molecule inhibitors. Therefore, combining the drug delivery system (DDS) with ICP therapy could provide a profitable immunotherapeutic strategy for cancer treatment. This article reviews the significant NPs with controlled DDS using current data from clinical and pre-clinical trials on mono- and combination IMT to overcome ICP therapeutic limitations.
Collapse
Affiliation(s)
- Seyed Hossein Kiaie
- Department of Formulation Development, ReNAP Therapeutics, Tehran, Iran.
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hossein Salehi-Shadkami
- Department of Formulation Development, ReNAP Therapeutics, Tehran, Iran
- Department of Medical Science, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Sanaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| | - Marzieh Azizi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Mohammad Sadegh Nasr
- Department of Computer Science and Engineering Multi-Interprofessional Center for Health Informatics (MICHI), The University of Texas at Arlington, Arlington, TX, USA
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Chuan D, Fan R, Chen B, Ren Y, Mu M, Chen H, Zou B, Dong H, Tong A, Guo G. Lipid-Polymer Hybrid Nanoparticles with Both PD-L1 Knockdown and Mild Photothermal Effect for Tumor Photothermal Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42209-42226. [PMID: 37605506 DOI: 10.1021/acsami.3c07648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
In developing countries, the incidence of colorectal cancer (CRC) is on the rise. The combination of programmed cell death ligand-1 (PD-L1) siRNA (siPD-L1) and mild photothermal therapy (PTT) is a promising strategy for CRC treatment. In this study, dopamine-modified polyethylenimine (PEI) was prepared to fabricate an IR780 and siPD-L1 codelivery lipid-polymer hybrid nanoparticle (lip@PSD-siP) for the photothermal immunotherapy of CRC. The modification of dopamine can significantly reduce the cytotoxicity of PEI. lip@PSD-siP can be effectively taken up by CT26 cells and successfully escaped from lysosomes after entering the cells for 4 h. After CT26 cells were transfected with lip@PSD-siP, the PD-L1 positive cell rate decreased by 82.4%, and its PD-L1 knockdown effect was significantly stronger than the positive control Lipo3000-siP. In vivo studies showed that lip@PSD-siP-mediated mild PTT and efficient PD-L1 knockdown exhibited primary and distal tumor inhibition, metastasis delay, and rechallenged tumor inhibition. The treatment with lip@PSD-siP significantly promoted the maturation of dendritic cells in lymph nodes. The amount of T cell infiltration in the tumor tissues increased significantly, and the frequency of CD8+ T cells and CD4+ T cells was significantly higher than that of other groups. The percentage of immunosuppressive regulatory cells (Tregs) in the tumor tissue on the treatment side decreased by 88% compared to the PBS group, and the proportion of CD8+CD69+ T cells in the distal tumor tissue was 2.8 times that of the PBS group. The memory T cells of mice in the long-term antitumor model were analyzed. The results showed that after treatment with lip@PSD-siP, the frequency of effector memory T cells (Tem cells) significantly increased, suggesting the formation of immune memory.
Collapse
Affiliation(s)
- Di Chuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rangrang Fan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yangmei Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Mu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haifeng Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haohao Dong
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Aiping Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Subhan MA, Filipczak N, Torchilin VP. Advances with Lipid-Based Nanosystems for siRNA Delivery to Breast Cancers. Pharmaceuticals (Basel) 2023; 16:970. [PMID: 37513882 PMCID: PMC10386415 DOI: 10.3390/ph16070970] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is the most frequently diagnosed cancer among women. Breast cancer is also the key reason for worldwide cancer-related deaths among women. The application of small interfering RNA (siRNA)-based drugs to combat breast cancer requires effective gene silencing in tumor cells. To overcome the challenges of drug delivery to tumors, various nanosystems for siRNA delivery, including lipid-based nanoparticles that protect siRNA from degradation for delivery to cancer cells have been developed. These nanosystems have shown great potential for efficient and targeted siRNA delivery to breast cancer cells. Lipid-based nanosystems remain promising as siRNA drug delivery carriers for effective and safe cancer therapy including breast cancer. Lipid nanoparticles (LNPs) encapsulating siRNA enable efficient and specific silencing of oncogenes in breast tumors. This review discusses a variety of lipid-based nanosystems including cationic lipids, sterols, phospholipids, PEG-lipid conjugates, ionizable liposomes, exosomes for effective siRNA drug delivery to breast tumors, and the clinical translation of lipid-based siRNA nanosystems for solid tumors.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh
- Division of Nephrology, University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, Box 675, Rochester, NY 14642, USA
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
14
|
Bhattacharya S, Sharma S, Prajapati BG. Development of D-α-Tocopherol polyethylene glycol 1000 succinate fabricated nanostructural lipid carrier of sorafenib tosylate for metastatic colorectal targeting application: Stability, physical characterization, cytotoxicity, and apoptotic studies against SW48 cells PTEN. Front Oncol 2022; 12:990841. [DOI: 10.3389/fonc.2022.990841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
The study aimed to create D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) nanostructured lipid carriers (NLC) of sorafenib tosylate (ST) as lymphatic delivery systems (LDDS) to fight Metastatic colorectal cancer. Initially, ST-SLN, ST-NLC, and ST-LNE were formulated considering oleic acid (OA), glycerol monolinoleate (GMO), glycerol monolinoleate (GML) as solid lipid and further characterised, and tested for stability. The most stable ST-NLC was fabricated with TPGS to produce ST-TPGS-NLC and evaluated by performing in vitro drug profiling, in vitro cytotoxicity, and apoptotic studies against human female colorectal adenocarcinoma cell lines (SW48 Cells PTEN). Stability studies on three lipidic nanoparticles (ST-SLN, ST-NLC, ST-LEN) showed particle size, polydispersity index, and zeta potential ranging from 165 nm to 298 nm, 0.125 to 0.288, and -31 mV to -16 mV. At 1600 minutes, more than 80% of ST-NLC1 was released, confirming the sustained release pattern of the formulation. ST-NLC and ST-TPGS-NLC have entrapment efficiencies above 50%. Pure ST’s IC50 at 72 hr was 3.45 µg/mL, while 1.56 µg/mL was for ST-TPGS-NLC. The ST-TPGS-NLC reduced the number of livings SW48 Cells PTEN from 91% to 5%, compared to 75% to 8% of pure ST. The ST-TPGS-NLC is a promising LDDS for delivering ST for metastatic colorectal cancer.
Collapse
|