1
|
Cheng S, Tao Y, Wang Y, Jiang W, Liang J, Han Y, Wang N, Cao X. Triboelectric nanogenerators based on antimicrobial, stretchable, and degradable copper-modified zinc imidazolate framework-8/chitosan composite films for sensitive medical care. Carbohydr Polym 2025; 361:123625. [PMID: 40368547 DOI: 10.1016/j.carbpol.2025.123625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 05/16/2025]
Abstract
Triboelectric materials are critical for triboelectric nanogenerators (TENGs), as they not only determine output performance but also provide multifunctional capabilities, such as high antimicrobial activity and degradability. In this study, copper-modified zinc imidazolate framework-8/chitosan (Cu/ZIF-8/CS) triboelectric materials with excellent output performance, high antimicrobial activity, UV protection, and degradation were prepared by loading bimetallic Cu/ZIF-8 onto the surface of CS films. These materials were then used to fabricate xCu/ZIF-8/CS-TENG (ZC-TENG) based on the composite film of Cu/ZIF-8/CS. The loading of Cu/ZIF-8 onto the surface of CS films enriches the metal element species on the CS film surface and modifies the surface microstructure of the CS films. This modification promotes charge transfer on the film surface, enhances the films' antimicrobial mechanism of action, and ultimately improves the output performance and antimicrobial effect of TENGs. The optimized ZC-TENG demonstrated an open-circuit voltage (Voc) of 281.3 V, a short-circuit current (Isc) of 26.4 μA, and a maximum output power density of 239 mW·m-2 at 3 Hz. Additionally, the antibacterial rate reached 83.23%. Furthermore, the designed ZC-TENG exhibits exceptional stretchability, UV protection, degradability, and biocompatibility, properties that can propel its development for disposable healthcare self-powered sensors.
Collapse
Affiliation(s)
- Shounian Cheng
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Yang Tao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Yudong Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Wen Jiang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Jiandan Liang
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Yu Han
- School of Energy Storage Science and Engineering, North China University of Technology, Beijing 100144, China
| | - Ning Wang
- University of Science and Technology Beijing, Beijing 100083, China
| | - Xia Cao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
| |
Collapse
|
2
|
He J, Wang X, Nan Y, Zhou H. Research Progress of Triboelectric Nanogenerators for Ocean Wave Energy Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411074. [PMID: 39737754 DOI: 10.1002/smll.202411074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/11/2024] [Indexed: 01/01/2025]
Abstract
The ocean wave energy is considered one of the most promising forms of marine blue energy due to its vast reserves and high energy density. However, traditional electromagnetic power generation technology suffers from drawbacks such as high maintenance costs, heavy structures, and low conversion efficiency, which restricts its application range. The triboelectric nanogenerator (TENG) uses Maxwell displacement current as its internal driving force, which can efficiently convert irregular, low-frequency, and dispersed mechanical energy into electrical energy. The generator utilizes the coupling effect between contact electrification and electrostatic induction, showing the significant advantages of light weight, high cost effectiveness, and easy expansion. Compared with traditional mechanical energy harvesting techniques such as electromagnetic generators, triboelectric nanogenerators exhibit higher efficiency and output performance in the low-frequency range. Thus, wave power generation technology based on triboelectric nanogenerators has emerged as a highly potential alternative in this field. Herein, recent progress to summarize the latest advancements in TENG-based ocean wave energy capture is reviewed. More importantly, the actual progress of TENG with different structures in wave energy harvesting is discussed, providing an overview of the current research status in this field for relevant researchers.
Collapse
Affiliation(s)
- Jingshun He
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiutong Wang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youbo Nan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Zhou
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Priyadarshini A, Divya S, Swain J, Das N, Swain S, Hajra S, Panda S, Samantaray R, Belal M, Kaja KR, Kumar N, Kim HJ, Oh TH, Vivekananthan V, Sahu R. Advancements in framework materials for enhanced energy harvesting. NANOSCALE 2025; 17:1790-1811. [PMID: 39666371 DOI: 10.1039/d4nr04570j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Energy harvesting, the process of capturing ambient energy from various sources and converting it into usable electrical power, has attracted a lot of attention due to its potential to provide long-term and self-sufficient energy solutions. This comprehensive review thoroughly explores the use of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) for energy harvesting by piezoelectric and triboelectric nanogenerators (PENGs and TENGs). It begins by classifying and outlining the structural diversity of MOFs and COFs, which is key to understanding their importance in energy applications. Key characterization techniques are focused on emphasizing their importance in optimizing material properties for efficient energy conversion. The working mechanisms of PENGs and TENGs are discussed, focusing on their ability to transform mechanical energy into electrical energy and their advantages in operation. The use of MOFs and COFs in energy harvesting applications is then discussed, including synthesis procedures, unique characteristics relevant to electricity conversion, and various practical applications such as self-powered sensors and wearable electronics. Current challenges such as stability, scalability, and performance improvements are explored, as well as proposed future improvements to help advance current research. Finally, the study highlights the importance of framework materials for the development of energy harvesting systems, providing an invaluable resource for academics and engineers seeking to exploit the potential of these materials for renewable energy sources. The goal of this article is to stimulate further invention and implementation of efficient materials-based energy harvesting framework devices by integrating recent advances and mapping future possibilities.
Collapse
Affiliation(s)
- Anulipsa Priyadarshini
- Future Materials Laboratory, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| | - S Divya
- Department of School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Jaykishon Swain
- Future Materials Laboratory, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| | - Niharika Das
- Future Materials Laboratory, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| | - Subrat Swain
- Future Materials Laboratory, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| | - Sugato Hajra
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, South Korea.
| | - Swati Panda
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, South Korea.
| | - Raghabendra Samantaray
- Future Materials Laboratory, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| | - Mohamed Belal
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, South Korea.
| | - Kushal Ruthvik Kaja
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, South Korea.
| | - Naveen Kumar
- Department Materials Engineering, Indian Institute of Science, CV Raman Avenue, Bangalore, 560012, India
| | - Hoe Joon Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, South Korea.
| | - Tae Hwan Oh
- Department of School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Venkateswaran Vivekananthan
- Center for Flexible Electronics, Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Guntur 522502, India
- Department of Integrated Research and Discovery, Koneru Lakshmaiah Education Foundation, Guntur 522502, India
| | - Rojalin Sahu
- Future Materials Laboratory, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| |
Collapse
|
4
|
Ghosh T, Santra S, Zyryanov GV, Ranu BC. Recent Developments on the Synthesis of Oxygen- and Sulfur-containing Heterocycles and their Derivatives under Visible Light Induced Reactions. Curr Top Med Chem 2025; 25:124-140. [PMID: 38963107 DOI: 10.2174/0115680266313243240624071549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Abstract
Visible-light-mediated reactions have recently emerged as a powerful strategy for the synthesis of diverse organic molecules under mild reaction conditions. Usually, the reactions are performed at room temperature and thus sensitive functional groups remain unaffected. Thus, this protocol has received intense interest from academia as well as industries. The heterocycles, in general, are of much interest because of their biological activities and application in therapeutics. The Oxygen- and Sulfur-containing heterocyclic compounds have recently attracted attention as these compounds showed promising activities as anti-cancer drugs, antibiotics, antifungal and anti-inflammatory agents among other applications. The synthesis of this class of compounds by efficient and greener routes has become an important target. This review highlights the various procedures for the synthesis of these compounds and their derivatives under visible light-induced reactions. The green aspects and mechanism of each procedure have been discussed.
Collapse
Affiliation(s)
- Tubai Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences, Jadavpur, Kolkata, 700032, India
| | - Sougata Santra
- Department of Organic & Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation
| | - Grigory V Zyryanov
- Department of Organic & Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation
| | - Brindaban C Ranu
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences, Jadavpur, Kolkata, 700032, India
- Department of Organic & Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation
| |
Collapse
|
5
|
Jung H, Lee DM, Park J, Kim T, Kim SW, Son SU. MnO 2 Nanowires with Sub-10 nm Thick Conjugated Microporous Polymers as Synergistic Triboelectric Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409917. [PMID: 39492600 DOI: 10.1002/advs.202409917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Indexed: 11/05/2024]
Abstract
MnO2 nanowires coated with conjugated microporous polymers (CMP) are applied as triboelectric energy harvesting materials. The tribopositive performance of the CMP shells is enhanced with the assistance of MnO2 nanowires (MnO2 NW), likely due to cationic charge transfer from the tribopositive CMP layers to the surface Mn2+ and Mn3+ species of MnO2 NW. This is supported by model studies. The MnO2@CMP-2 with sub-10 nm thick CMP layers shows promising triboelectric output voltages up to 576 V and a maximum power density of 1.31 mW cm-2. Spring-assisted triboelectric nanogenerators fabricated with MnO2@CMP-2/PVP-3 films are used as power supplies to operate electronic devices.
Collapse
Affiliation(s)
- Hanbyeol Jung
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Dong-Min Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
- Center for Human-Oriented Triboelectric Energy Harvesting, Yonsei University, Seoul, 03722, South Korea
| | - Jina Park
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Taeho Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Sang-Woo Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
- Center for Human-Oriented Triboelectric Energy Harvesting, Yonsei University, Seoul, 03722, South Korea
| | - Seung Uk Son
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
6
|
Slater B, Tan JC. Triboelectric behaviour of selected zeolitic-imidazolate frameworks: exploring chemical, morphological and topological influences. Chem Sci 2024; 15:10056-10064. [PMID: 38966360 PMCID: PMC11220587 DOI: 10.1039/d4sc01337a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/21/2024] [Indexed: 07/06/2024] Open
Abstract
Tribo- and contact electrification remain poorly understood, baffling and discombobulating scientists for millennia. Despite the technology needed to harvest mechanical energy with triboelectric generators being incredibly rudimentary and the fact that a triboelectric output can be obtained from almost any two material combinations, research into triboelectric generator materials typically focuses on achieving the highest possible output; meanwhile, understanding trends and triboelectric behaviours of related but lower performing materials is often overlooked or not studied. Metal-organic frameworks, a class of typically highly porous and crystalline coordination polymers are excellent media to study to fill this knowledge gap. Their chemistry, topology and morphology can be individually varied while keeping other material properties constant. Here we study 5 closely related zeolitic-imidazolate type metal-organic frameworks for their triboelectric performance and behaviour by contact-separating each one with five counter materials. We elucidate the triboelectric electron transfer behaviour of each material, develop a triboelectric series and characterise the surface potential by Kelvin-probe force microscopy. From our results we draw conclusions on how the chemistry, morphology and topology affect the triboelectric output by testing and characterising our series of frameworks to help better understand triboelectric phenomena.
Collapse
Affiliation(s)
- Ben Slater
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford Parks Road Oxford OX1 3PJ UK
| | - Jin-Chong Tan
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford Parks Road Oxford OX1 3PJ UK
| |
Collapse
|
7
|
Liu S, Yang H, Zhang Y, Wang F, Qin Q, Wang D, Huang C, Zhang YY. Robust cooperative of cadmium sulfide with highly ordered hollow microstructure coordination polymers for regulating the photocatalytic performance. J Colloid Interface Sci 2024; 663:919-929. [PMID: 38447406 DOI: 10.1016/j.jcis.2024.02.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Accurately controlling and achieving selective reactivity at difficult-to-access reaction sites in organic molecules is challenging owing to the similar local and electronic environments of multiple reaction sites. In this work, we regulated multiple reaction sites in a highly selective and active manner using cobalt coordination polymers (Co-CP) 1 and 1a with various particle sizes and morphologies ranging from large granular to ordered hollow hemispheres by introducing sodium dodecyl sulfate (SDS) as a surfactant. The size and morphology of the catalysts could be tuned by controlling the amount of SDS. An SDS concentration of 0.03 mmol generated 1a having a highly ordered hollow hemispherical microstructure with a well-defined platform as a pre-made building unit. Cadmium sulfide (CdS), as a typical photocatalyst, was subsequently uniformly anchored in-situ on the premade building unit 1a to produce CdS@1a composites, that inherited the originally ordered hollow hemispherical microstructure while integrating CdS as well-dispersed catalytic active sites. Furthermore, the well-established CdS@1a composites were used as photocatalysts in selective oxidation reactions under air atmosphere with blue irradiation. The CdS0.109@1a composite with unique structural characteristics, including uniformly distributed and easily accessible catalytic sites and excellent photoelectrochemical performance, served as a highly efficient heterogeneous photocatalyst for promoting the selective oxidation of sulfides to sulfoxides as the sole products. This work presents an approach for fabricating CPs as premade building units that function as well-defined platforms for integration with photocatalysts, enabling tuning of the structure-selectivity-activity relationships.
Collapse
Affiliation(s)
- Saiwei Liu
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China; School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Haiyan Yang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China; School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China.
| | - Yue Zhang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China; School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Fei Wang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China; School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Qi Qin
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Dandan Wang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Chao Huang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China.
| | - Ying-Ying Zhang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China.
| |
Collapse
|
8
|
Sarfudeen S, P K N, Basith SA, Varghese M, Jhariat P, Chandrasekhar A, Panda T. A Novel Mechano-Synthesized Zeolitic Tetrazolate Framework for a High-Performance Triboelectric Nanogenerator and Self-Powered Selective Neurochemical Detection. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38691767 DOI: 10.1021/acsami.4c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Designing a high-performing triboelectric novel material with eco-friendly, rapid, and cost-effective synthesis is the future of material research in triboelectric nanogenerators (TENG). We report a mechanochemical ball mill synthesis of a zeolitic tetrazolate framework (ZTF-8) that is isostructural with the well-known zeolitic imidazolate framework ZIF-8. ZTF-8 is extremely stable in water, 0.1 M aqueous acid/base solutions for 75 days at 25 °C, and boiling water (100 °C) for 7 days. Kelvin probe force microscopy and molecular electrostatic surface potential computational analysis exhibited that ZTF-8 has a very high positive surface potential. Atomic force microscopy and three-dimensional digital microscopy studies reveal the high roughness profile in the ZTF-8 film. The unique structure, exceptional acid/base stability, good dielectric property, and high roughness profile combined with the extremely electropositive nature of ZTF-8 make it a suitable candidate as a polymer-free triboelectric positive material in TENG with outstanding performance (power density of 720 mW/m2). High triboelectric output was further validated using the COMSOL Multiphysics simulation tool. Simple mechanical hand tapping of the ZTF-based TENG (ZTF-TENG) device generates high electric output, which was practically used to power numerous low-powered devices like tally counter, clinical thermometer, and digital clock and also illuminates 125 light-emitting diodes. In addition, the efficiency of ZTF-TENG was utilized as a self-powered device for a selective dopamine (DA) sensor with good sensitivity (377.76 mV/μM/cm2), wide range linearity (5-120 μM), and excellent limit of detection (0.42 μM).
Collapse
Affiliation(s)
- Shafeeq Sarfudeen
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Nitha P K
- Nanosensors and Nanoenergy Lab, Sensor Systems Lab, Department of Sensors and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Sayyid Abdul Basith
- Nanosensors and Nanoenergy Lab, Sensor Systems Lab, Department of Sensors and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Mebin Varghese
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Pampa Jhariat
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Arunkumar Chandrasekhar
- Nanosensors and Nanoenergy Lab, Sensor Systems Lab, Department of Sensors and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Tamas Panda
- Centre for Clean Environment (CCE), Vellore Institute of Technology (VIT), Vellore, Tamil Na̅du 632014, India
| |
Collapse
|
9
|
Li D, Yadav A, Zhou H, Roy K, Thanasekaran P, Lee C. Advances and Applications of Metal-Organic Frameworks (MOFs) in Emerging Technologies: A Comprehensive Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300244. [PMID: 38356684 PMCID: PMC10862192 DOI: 10.1002/gch2.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/19/2023] [Indexed: 02/16/2024]
Abstract
Metal-organic frameworks (MOFs) that are the wonder material of the 21st century consist of metal ions/clusters coordinated to organic ligands to form one- or more-dimensional porous structures with unprecedented chemical and structural tunability, exceptional thermal stability, ultrahigh porosity, and a large surface area, making them an ideal candidate for numerous potential applications. In this work, the recent progress in the design and synthetic approaches of MOFs and explore their potential applications in the fields of gas storage and separation, catalysis, magnetism, drug delivery, chemical/biosensing, supercapacitors, rechargeable batteries and self-powered wearable sensors based on piezoelectric and triboelectric nanogenerators are summarized. Lastly, this work identifies present challenges and outlines future opportunities in this field, which can provide valuable references.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | - Anurag Yadav
- Department of ChemistryPondicherry UniversityPuducherry605014India
| | - Hong Zhou
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | - Kaustav Roy
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | | | - Chengkuo Lee
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| |
Collapse
|
10
|
Rajaboina RK, Khanapuram UK, Vivekananthan V, Khandelwal G, Potu S, Babu A, Madathil N, Velpula M, Kodali P. Crystalline Porous Material-Based Nanogenerators: Recent Progress, Applications, Challenges, and Opportunities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306209. [PMID: 37641193 DOI: 10.1002/smll.202306209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Nanogenerator (NG) is a potential technology that allows to build self-powered systems, sensors, flexible and portable electronics in the current Internet of Things (IoT) generation. Nanogenerators include piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs), convert different forms of mechanical motion into useful electrical signals. They have evolved and expanded their applications in various fields since their discovery in 2006 and 2012. Material selection is crucial for designing efficient NGs, with high conversion efficiencies. In the recent past, crystalline porous mat erials (metal-organic frameworks (MOFs) and covalent organic frameworks (COFs)) have been widely reported as potential candidates for nanogenerators, owing to their special properties of large surface area, porosity tailoring, ease of surface, post-synthesis modification, and chemical stability. The present organized review provides a complete overview of all the crystalline porous materials (CPMs)-based nanogenerator devices reported in the literature, including synthesis, characterization, device fabrication, and potential applications. Additionally, this review article discusses current challenges, future directions, and perspectives in the field of CPMs-NGs.
Collapse
Affiliation(s)
- Rakesh Kumar Rajaboina
- Department of Physics, Energy Materials and Devices Lab, National Institute of Technology-Warangal, Warangal, Telangana, 506004, India
| | - Uday Kumar Khanapuram
- Department of Physics, Energy Materials and Devices Lab, National Institute of Technology-Warangal, Warangal, Telangana, 506004, India
| | - Venkateswaran Vivekananthan
- Center for Flexible Electronics, Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vijayawada, Andhra Pradesh, 522302, India
| | - Gaurav Khandelwal
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow, G128QQ, UK
| | - Supraja Potu
- Department of Physics, Energy Materials and Devices Lab, National Institute of Technology-Warangal, Warangal, Telangana, 506004, India
| | - Anjaly Babu
- Department of Physics, Energy Materials and Devices Lab, National Institute of Technology-Warangal, Warangal, Telangana, 506004, India
| | - Navaneeth Madathil
- Department of Physics, Energy Materials and Devices Lab, National Institute of Technology-Warangal, Warangal, Telangana, 506004, India
| | - Mahesh Velpula
- Department of Physics, Energy Materials and Devices Lab, National Institute of Technology-Warangal, Warangal, Telangana, 506004, India
| | - Prakash Kodali
- Department of Electronics and Communication Engineering, Flexible Electronics Lab, National Institute of Technology-Warangal, Warangal, 506004, India
| |
Collapse
|
11
|
Shao Z, Cheng H, Wei Y, Chen J, Gao K, Fang Z, Yan Y, Mi L, Hou H. Cationic metal-organic framework with charge separation effect as a high output triboelectric nanogenerator material for self-powered anticorrosion. Dalton Trans 2023; 52:13316-13323. [PMID: 37668663 DOI: 10.1039/d3dt02185h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
New stable frictional materials based on metal-organic frameworks (MOFs) are greatly desired for applications in self-powered systems. This work reports an ionic MOF material with efficient charge separation mediated by charge induction. ZUT-iMOF-1(Cu) is chemically stable and its triboelectric output performance surpasses those of traditional MOF materials. The short-circuit current of the iMOF triboelectric nanogenerator is 73.79 μA at 5 Hz. The output performance remains stable over 50 000 cycles of continuous operation. The charge and power densities peak at 123.20 μC m-2 and 3133.23 mW m-2. Owing to its high output performance, ZUT-iMOF-1(Cu) effectively prevents metal corrosion in cathodic-protection systems. Theoretical calculations show that increasing the charge-separation effect promotes the frictional electricity generation behaviour. This study provides research suggestions for ionic MOF frictional materials and will promote their application in self-powered electrochemical cathodic-protection systems.
Collapse
Affiliation(s)
- Zhichao Shao
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.
| | - Haoran Cheng
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.
| | - Yi Wei
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
| | - Junshuai Chen
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.
| | - Kexin Gao
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.
| | - Zhe Fang
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.
| | - Yangshuang Yan
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.
| | - Liwei Mi
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.
| | - Hongwei Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
| |
Collapse
|
12
|
Wang C, Guo H, Wang P, Li J, Sun Y, Zhang D. An Advanced Strategy to Enhance TENG Output: Reducing Triboelectric Charge Decay. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209895. [PMID: 36738121 DOI: 10.1002/adma.202209895] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/20/2023] [Indexed: 05/17/2023]
Abstract
The Internet of Things (IoT) is poised to accelerate the construction of smart cities. However, it requires more than 30 billion sensors to realize the IoT vision, posing great challenges and opportunities for industries of self-powered sensors. Triboelectric nanogenerator (TENG), an emerging new technology, is capable of easily converting energy from surrounding environment into electricity, thus TENG has tremendous application potential in self-powered IoT sensors. At present, TENG encounters a bottleneck to boost output for large-scale commercial use if just by promoting triboelectric charge generation, because the output is decided by the triboelectric charge dynamic equilibrium between generation and decay. To break this bottleneck, the strategy of reducing triboelectric charge decay to enhance TENG output is focused. First, multiple mechanisms of triboelectric charge decay are summarized in detail with basic theoretical principles for future research. Furthermore, recent advances in reducing triboelectric charge decay are thoroughly reviewed and outlined in three aspects: inhibition and application of air breakdown, simultaneous inhibition of air breakdown and triboelectric charge drift/diffusion, and inhibition of triboelectric charge drift/diffusion. Finally, challenges and future research focus are proposed. This review provides reference and guidance for enhancing TENG output.
Collapse
Affiliation(s)
- Congyu Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 168 Wenchi Middle Road, Qingdao, 266237, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Hengyu Guo
- Stata Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044, P. R. China
| | - Peng Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 168 Wenchi Middle Road, Qingdao, 266237, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Jiawei Li
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 168 Wenchi Middle Road, Qingdao, 266237, China
| | - Yihan Sun
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 168 Wenchi Middle Road, Qingdao, 266237, China
| | - Dun Zhang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 168 Wenchi Middle Road, Qingdao, 266237, China
- University of Chinese Academy of Science, Beijing, 100049, China
| |
Collapse
|
13
|
Huang Y, Jiang Y, Jin H, Wang S, Xu J, Fan Y, Wang L. Cobalt Metal-Organic Framework and its Composite Membranes as Heterogeneous Catalysts for Cyanosilylation and Strecker reactions. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
14
|
Lin C, Sun L, Meng X, Yuan X, Cui C, Qiao H, Chen P, Cui S, Zhai L, Mi L. Covalent Organic Frameworks with Tailored Functionalities for Modulating Surface Potentials in Triboelectric Nanogenerators. Angew Chem Int Ed Engl 2022; 61:e202211601. [DOI: 10.1002/anie.202211601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Chao Lin
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Linhai Sun
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Xutong Meng
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Xin Yuan
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Cheng‐Xing Cui
- School of Chemistry and Chemical Engineering Henan Institute of Science and Technology Xinxiang 453003 P. R. China
| | - Huijie Qiao
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Pengjing Chen
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Siwen Cui
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 45007 P. R. China
| |
Collapse
|
15
|
Lin C, Sun L, Meng X, Yuan X, Cui CX, Qiao H, Chen P, Cui S, Zhai L, Mi L. Covalent Organic Frameworks with Tailored Functionalities for Modulating Surface Potentials in Triboelectric Nanogenerators. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chao Lin
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| | - Linhai Sun
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| | - Xutong Meng
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| | - Xin Yuan
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| | - Cheng-Xing Cui
- Henan Institute of Technology: Henan Institute of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Huijie Qiao
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| | - Pengjing Chen
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| | - Siwen Cui
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| | - Lipeng Zhai
- Zhongyuan University of Technology Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials NO.41 Zhongyuan Road 450007 Zhengzhou CHINA
| | - Liwei Mi
- Zhongyuan University of Technology Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research CHINA
| |
Collapse
|
16
|
Qin Q, Wang D, Shao Z, Zhang Y, Zhang Q, Li X, Huang C, Mi L. Sequentially Regulating the Structural Transformation of Copper Metal-Organic Frameworks (Cu-MOFs) for Controlling Site-Selective Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36845-36854. [PMID: 35938901 DOI: 10.1021/acsami.2c09290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Regulating atomically precise sites in catalysts to achieve site-selective reactions is remarkable but challenging. In this work, a convenient and facile solid-gas/liquid reaction strategy was used to construct controllable active sites in metal-organic frameworks (MOFs) to guide an orientation site-selective reaction. A flexible CuI-MOF-1 with dynamics originating from an anionic and tailorable framework could undergo a reversible structural transformation to engineer a topologically equivalent mixed-valent CuICuII-MOF-2 via a solid-gas/liquid oxidation/reduction process. More importantly, CuI-MOF-1 and CuICuII-MOF-2 could further execute the solid-gas/liquid reaction under ammonia vapor/solution to generate CuII-MOF-3. Furthermore, the transformation from CuI-MOF-1 to CuICuII-MOF-2 and CuII-MOF-3 served as controllable catalysts to facilitate site-selective reactions to realize direct C-N bond arylations. The results demonstrated that CuI-MOF-1 and CuII-MOF-3 possessed well-defined platforms with uniformly and accurately active sites to attain a "turn-on/off" process via different reaction routes, providing the desired site-selective ring-opening products.
Collapse
Affiliation(s)
- Qi Qin
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Di Wang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Zhichao Shao
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Yingying Zhang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Qiang Zhang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Xinyue Li
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Chao Huang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Liwei Mi
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| |
Collapse
|
17
|
Lu G, Huang C, Qiu M, Zhang Q, Cui S, Zhang L, Zhang YY, Mi L. Output Enhancement of Triboelectric Nanogenerators Based on Hierarchically Regular Cadmium Coordination Polymers for Photocycloaddition. Inorg Chem 2022; 61:12736-12745. [PMID: 35929450 DOI: 10.1021/acs.inorgchem.2c01810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exploiting the well-arranged and tunable frameworks of crystalline materials, we herein report coordination polymers (CPs) with modulated hierarchical structures as triboelectric materials to construct and extend the application scope of triboelectric nanogenerators (TENGs). Different lengths and shapes of bridging ligands [4,4'-bpa = 1,2-bis(4-pyridyl)ethane, 4,4'-bpe = 1,2-bis(4-pyridyl)ethene, and 4,4'-bpp = 1,3-di(2-pyridyl)propane for 1, 2, and 3, respectively] were used to construct Cd-CP-based hierarchical frameworks. These compounds were used as triboelectric materials, and their electronic structure contributions were determined by the output of the corresponding TENGs. The results indicated that 2-TENG with the 4,4'-bpe ligand had the highest output, attributed to the improvement in the electron activity due to the π-conjugation group in the bridging ligand, which was further verified by density functional theory calculations. Furthermore, 2@PVDF (PVDF = polyvinylidene fluoride) composite films with different concentrations of Cd-CP were prepared. Detailed electrical characterizations revealed that the arrangement of 12% active constituents of Cd-CP-2 effectively enhanced the output performance of 2@PVDF-TENG, which could light up an ultraviolet lamp plate to successfully execute the [2 + 2] photocycloaddition.
Collapse
Affiliation(s)
- Guizhen Lu
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Chao Huang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Mei Qiu
- Department of Chemistry, College of Science, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qiang Zhang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Siwen Cui
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Lin Zhang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Ying-Ying Zhang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Liwei Mi
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| |
Collapse
|