1
|
Ding Q, Jin B, Zheng Y, Zhao H, Wang J, Li H, Wang D, Tang BZ. Integration of Bio-Enzyme-Treated Super-Wood and AIE-Based Nonwoven Fabric for Efficient Evaporating the Wastewater with High Concentration of Ammonia Nitrogen. NANO-MICRO LETTERS 2025; 17:176. [PMID: 40063218 PMCID: PMC11893956 DOI: 10.1007/s40820-025-01685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
The treatment of ammonia nitrogen wastewater (ANW) has garnered significant attention due to the ecology, and even biology is under increasing threat from over discharge ANW. Conventional ANW treatment methods often encounter challenges such as complex processes, high costs and secondary pollution. Considerable progress has been made in employing solar-induced evaporators for wastewater treatment. However, there remain notable barriers to transitioning from fundamental research to practical applications, including insufficient evaporation rates and inadequate resistance to biofouling. Herein, we propose a novel evaporator, which comprises a bio-enzyme-treated wood aerogel that serves as water pumping and storage layer, a cost-effective multi-walled carbon nanotubes coated hydrophobic/hydrophilic fibrous nonwoven mat functioning as photothermal evaporation layer, and aggregation-induced emission (AIE) molecules incorporated as anti-biofouling agent. The resultant bioinspired evaporator demonstrates a high evaporation rate of 12.83 kg m-2 h-1 when treating simulated ANW containing 30 wt% NH4Cl under 1.0 sun of illumination. AIE-doped evaporator exhibits remarkable photodynamic antibacterial activity against mildew and bacteria, ensuring outstanding resistance to biofouling over extended periods of wastewater treatment. When enhanced by natural wind under 1.0 sun irradiation, the evaporator achieves an impressive evaporation rate exceeding 20 kg m-2 h-1. This advancement represents a promising and viable approach for the effective removal of ammonia nitrogen wastewater.
Collapse
Affiliation(s)
- Qian Ding
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Bingqi Jin
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yinxia Zheng
- Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Huiru Zhao
- Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jun Wang
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Haoxuan Li
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Dong Wang
- Centre for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518061, People's Republic of China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, People's Republic of China.
| |
Collapse
|
2
|
Yuan ZZ, Fan YZ, Cheng SJ, Wei FJ, Gao J, Wang CX, Song BS, Tan SL, Gao SL, Kang JJ, Liu Y, Li SH. A bibliometric analysis of hydrogel research in various fields: the trends and evolution of hydrogel application. J Nanobiotechnology 2025; 23:70. [PMID: 39891241 PMCID: PMC11783735 DOI: 10.1186/s12951-025-03090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/02/2025] [Indexed: 02/03/2025] Open
Abstract
Hydrogel, a polymer material with a three-dimensional structure, has considerably expanded in research across multiple fields lately. However, the lack of a comprehensive review integrating the research status of hydrogel across diverse fields has hindered the development of hydrogel. This bibliometric analysis reviewed the hydrogel-related research over the past decades, emphasizing the evolution, status, and future directions within a multitude of fields, such as materials science, chemistry, polymer science, engineering, physics, biochemistry molecular biology, pharmacology pharmacy, cell biology, biotechnology applied microbiology, etc. We encapsulated applications and the potential of hydrogel in wound healing, drug delivery, cell encapsulation, bioprinting, tissue engineering, electronic products, environment applications, and disease treatment. This study integrated the current matrix system and characteristics of hydrogels, aiming to offer a cross-field reference for hydrogel researchers and promote the advancement of hydrogel research. Furthermore, we proposed a novel and reproducible bibliometric research paradigm, which can provide a more comprehensive analysis of the trends and trajectory of a research field.
Collapse
Affiliation(s)
- Zhong-Zhu Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu-Zhou Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shao-Jun Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Feng-Jie Wei
- College of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chen-Xi Wang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo-Shuang Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Si-Lu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Si-Lian Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Juan-Juan Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| |
Collapse
|
3
|
You Y, Xing H, Li K, Xie Y, Ye M, Lu Y, Xue J. Bioinspired Carbon-Silver Sulfide Scaffold with Synergistic Enhanced Light Capture and Anti-Biofouling Property for Stable Solar Steam Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402544. [PMID: 39718254 DOI: 10.1002/smll.202402544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Indexed: 12/25/2024]
Abstract
Carbon material is a hot topic in solar evaporation. Due to the widely distributed microorganisms in natural water, biofouling has limited the actual application of solar evaporation material. Although carbon material lacks of nutrition for microbe, it is still vulnerable to biofouling because of the efficient pollutant adsorption property. However, current anti-biofouling design focuses on microbial control, neglects its influence on evaporators light absorption, that is usually a trade-off with evaporation efficiency. Herein, a bioinspired aligned carbon-Ag2S scaffold is introduced with synergistical enhanced light absorption (increased to 98.0% from 97.4%) and anti-biofouling property. The bioinspired aligned carbon-Ag2S scaffold exhibits a 1.87 kg m-2 h-1 evaporation rate under one sun, superior to pure carbon scaffold (1.78 kg m-2 h-1). It also maintains efficient light capture (-97.2%) and evaporation rate (1.73 kg m-2 h-1) after bacterial interference, avoiding sharp decline in light absorption (reduced to 83.3-87.6%) and evaporation performance (reduced to 1.24-1.28 kg m-2 h-1) which occurs in carbon scaffold due to biofouling. The carbon-Ag2S scaffold shows solid advantage in balancing light captures and biofouling control, compared to carbon-ZnO scaffold with conventional anti-biofouling design, which inhibits biofouling sacrificing light absorption (reduced to 89.8%) and evaporation performance (reduced to 1.41 kg m-2 h-1).
Collapse
Affiliation(s)
- Yang You
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hanye Xing
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kangkang Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yuqing Xie
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Meiqi Ye
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yang Lu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jingzhe Xue
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Institute of Quality and Standardization, Hefei, 230001, China
| |
Collapse
|
4
|
Braide T, Manoj Lalwani S, Eneh CI, Lutkenhaus JL. Divalent cation effects in the glass transition of poly(diallyldimethylammonium)-poly(styrene sulfonate) polyelectrolyte complexes. SOFT MATTER 2024; 20:9631-9641. [PMID: 39589362 DOI: 10.1039/d4sm00856a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The assembly and dynamics of polyelectrolyte complexes (PECs) and polyelectrolyte multilayers (PEMs) are influenced by water content, pH, and salt concentration. However, the influence of divalent salts on the assembly of polyelectrolyte complexes remains unclear. This work showcases that divalent chloride salts directly impact the glass transition temperature and the ion-ion interactions within PECs. Here, poly(diallyldimethylammonium)-poly(styrene sulfonate) (PDADMA-PSS) PECs are assembled in solutions containing MgCl2 and CaCl2 (following the Hofmeister series). These PECs are studied for the cations' influence on physicochemical properties (glass transition, polymer composition, ion pairing) at varying salt concentrations (0.03 M, 0.10 M, 0.15 M, and 0.20 M). Modulated differential scanning calorimetry (MDSC) experiments demonstrate that PECs assembled with CaCl2 have a significantly higher glass transition temperature when compared to PECs assembled with MgCl2. Neutron activation analysis (NAA) and nuclear magnetic resonance (NMR) spectroscopy demonstrate that this difference is due to strong ion-specific effects influencing the ratio of intrinsic and extrinsic ion pairings in the system. Furthermore, this study demonstrates a universal linear relationship between the thermal transition and the number of water molecules surrounding oppositely charged polyelectrolyte-polyelectrolyte intrinsic ion pairs, even when the salt contains divalent cations. Ion-specific trends have implications on the glass transition and composition of PDADMA-PSS PECs. Divalent salts not only follow the trend of the Hofmeister series but also introduce bridging into the polyelectrolyte complex; however, the structural relaxation of the PEC remains the same. This study offers a bridge between divalent cation behavior on polymer assembly properties and its transition to industrial applications such as controlled drug delivery, sensors, and water purification.
Collapse
Affiliation(s)
- Tamunoemi Braide
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA.
| | - Suvesh Manoj Lalwani
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA.
| | - Chikaodinaka I Eneh
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA.
| | - Jodie L Lutkenhaus
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA.
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, USA
| |
Collapse
|
5
|
Yu J, Li L, Liu Y, Wen J, Liu S, Li J, Ning J, Shao C, Wu T, Liu B. Solar-Driven Evaporator With "Starburst Turbine" Design Featuring Directional Salt Crystallization, Antibacterial, and Catalytic Multifunctionality for Efficient Water Purification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406696. [PMID: 39320342 DOI: 10.1002/advs.202406696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/28/2024] [Indexed: 09/26/2024]
Abstract
Facing the global challenge of water scarcity, solar-driven desalination is considered a sustainable technology for obtaining freshwater from seawater. However, issues such as uncontrolled salt crystallization and bacterial contamination limit its efficiency and practicality. This study proposes an innovative solar-driven evaporator designed to address these challenges using optimized shape design and advanced photothermal materials. Based on finite element analyses, cylindrical evaporators with a "Starburst Turbine" shape are designed and fabricated, achieving directional salt crystallization and a record-breaking water collection rate of 3.56 kg m-2 h-1 and an evaporation rate of 4.57 kg m-2 h-1 under one sun illumination. During continuous 60-h illumination tests, the evaporator maintained a stable evaporation rate, attributed to its excellent directional salt crystallization capability. Additionally, the evaporator demonstrates superior photodynamic antibacterial performance and photocatalytic degradation of organic pollutants. Under one sun illumination for 1 h, it achieves 100% sterilization of S. aureus and E. coli, and a 95.4% degradation of methylene blue (MB), demonstrating its potential to purify various wastewater types. These findings underscore the significant scientific and practical value of integrating antibacterial and photocatalytic functions into solar water purification materials, providing a sustainable solution to global water scarcity challenges and environmental protection.
Collapse
Affiliation(s)
- Jiahui Yu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Medical Science and Technology Innovation Center, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Lele Li
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Medical Science and Technology Innovation Center, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yuxuan Liu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Medical Science and Technology Innovation Center, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jie Wen
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Medical Science and Technology Innovation Center, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Shu Liu
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Jiye Li
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Medical Science and Technology Innovation Center, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Junyi Ning
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Medical Science and Technology Innovation Center, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Changxiang Shao
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Medical Science and Technology Innovation Center, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Tao Wu
- Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Bing Liu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Medical Science and Technology Innovation Center, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| |
Collapse
|
6
|
Yan H, Wang P, Li L, Zhao Z, Xiang Y, Guo H, Yang B, Yang X, Li K, Li Y, He X, You Y. Development Status of Solar-Driven Interfacial Steam Generation Support Layer Based on Polymers and Biomaterials: A Review. Polymers (Basel) 2024; 16:2427. [PMID: 39274060 PMCID: PMC11397863 DOI: 10.3390/polym16172427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
With the increasing shortage of water resources and the aggravation of water pollution, solar-driven interfacial steam generation (SISG) technology has garnered considerable attention because of its low energy consumption, simple operation, and environmental friendliness. The popular multi-layer SISG evaporator is composed of two basic structures: a photothermal layer and a support layer. Herein, the support layer underlies the photothermal layer and carries out thermal management, supports the photothermal layer, and transports water to the evaporation interface to improve the stability of the evaporator. While most research focuses on the photothermal layer, the support layer is typically viewed as a supporting object for the photothermal layer. This review focuses on the support layer, which is relatively neglected in evaporator development. It summarizes existing progress in the field of multi-layer interface evaporators, based on various polymers and biomaterials, along with their advantages and disadvantages. Specifically, mainly polymer-based support layers are reviewed, including polymer foams, gels, and their corresponding functional materials, while biomaterial support layers, including natural plants, carbonized biomaterials, and other innovation biomaterials are not. Additionally, the corresponding structure design strategies for the support layer were also involved. It was found that the selection and optimal design of the substrate also played an important role in the efficient operation of the whole steam generation system. Their evolution and refinement are vital for advancing the sustainability and effectiveness of interfacial evaporation technology. The corresponding potential future research direction and application prospects of support layer materials are carefully presented to enable effective responses to global water challenges.
Collapse
Affiliation(s)
- Haipeng Yan
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Pan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Lingsha Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Zixin Zhao
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Yang Xiang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Haoqian Guo
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Boli Yang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Xulin Yang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Kui Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Ying Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Xiaohong He
- School of Automation, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yong You
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
7
|
Yang X, Tang J, Song Z, Li W, Gong X, Liu W. Enhancing the anti-biofouling property of solar evaporator through the synergistic antibacterial effect of lignin and nano silver. Int J Biol Macromol 2024; 268:131953. [PMID: 38685536 DOI: 10.1016/j.ijbiomac.2024.131953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Solar desalination is an effective solution to address the global water scarcity issue. However, biofouling poses a significant challenge for solar evaporators due to the presence of bacteria in seawater. In this study, an anti-biofouling evaporator was constructed using the synergistic antibacterial effect of lignin and silver nanoparticles (AgNPs). The AgNPs were easily synthesized using lignin as reductant under mild reaction conditions. Subsequently, the Lignin-AgNPs solution was integrated into polyacrylamide hydrogel (PAAm) without any purification steps, resulting in the formation of Lignin/AgNPs-PAAm (LAg-PAAm). Under the combined action of AgNPs and the hydroquinone groups present in oxidized lignin, LAg-PAAm achieved over 99 % disinfection efficiency within 1 h, effectively preventing biofilm formation in pore channels of solar evaporators. The anti-biofouling solar evaporator demonstrated an evaporation rate of 1.85 kg m-2 h-1 under 1 sun irradiation, and maintained stable performance for >30 days due to its high efficient bactericidal effect. Furthermore, it also exhibited exceptional salt-rejection capability attributed to its superior hydrophilicity.
Collapse
Affiliation(s)
- Xiaoqin Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jiebin Tang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Institute for Advanced Interdisciplinary Research (iAIR), School of Chemitry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Zhaoping Song
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China.
| | - Wei Li
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xi Gong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Wenxia Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
8
|
Wang P, Wang X, Wang X, Lin X, Qiu X. Biomass-Based Antibacterial Hybrid Engineering Hydrogel for Efficient Solar Steam Generation. CHEM & BIO ENGINEERING 2024; 1:252-263. [PMID: 39974204 PMCID: PMC11835181 DOI: 10.1021/cbe.3c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 02/21/2025]
Abstract
Interfacial solar steam generation is recognized as a promising solution to alleviate the scarcity of freshwater resources owing to its utilization of clean solar energy alongside its high efficiency and minimal heat loss. Nonetheless, the utilization of solar energy for water evaporation encounters challenges, primarily manifested in low evaporation rates and efficiency. Herein, we introduced an approach involving the development of a biomass-based hybrid engineering hydrogel evaporator, denoted as CLC (chitosan and lignosulfonate sodium hybrid hydrogel with a carbon nanotube). The construction of this evaporator involves the straightforward blending of lignosulfonate sodium (LS) and marine polysaccharide biomass chitosan (CS) with carbon nanotubes (CNT) serving as the photothermal materials. The interaction between the sulfonic group of LS and the amino group of CS with water molecules, facilitated by hydrogen bonding and electrostatic interactions, reduces the evaporation enthalpy of water, thereby lowering the energy demand for evaporation. Furthermore, the incorporation of LS reduces the thermal conductivity of the as-prepared hydrogel and promotes photothermal management to mitigate heat loss. The CLC hydrogel demonstrates an evaporation rate of 2.48 kg m-2 h-1 and energy efficiency of 90% under one sun illumination. Moreover, the CLC hydrogel exhibits excellent antibacterial properties (98.4%), ensuring that desalinated water meets drinking standards. This high efficiency and eco-friendly biomass hydrogel with antibiological pollution characteristics and purification abilities holds great potential for widespread application of long-term seawater desalination.
Collapse
Affiliation(s)
- Ping Wang
- Guangdong
Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang
Center, Jieyang 515200, China
- Guangdong
Provincial Key Laboratory of Plant Resources Biorefinery, School of
Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xianjiao Wang
- Guangdong
Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang
Center, Jieyang 515200, China
- Guangdong
Provincial Key Laboratory of Plant Resources Biorefinery, School of
Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaofei Wang
- Guangdong
Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang
Center, Jieyang 515200, China
- Guangdong
Provincial Key Laboratory of Plant Resources Biorefinery, School of
Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuliang Lin
- Guangdong
Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang
Center, Jieyang 515200, China
- Guangdong
Provincial Key Laboratory of Plant Resources Biorefinery, School of
Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xueqing Qiu
- Guangdong
Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang
Center, Jieyang 515200, China
- Guangdong
Provincial Key Laboratory of Plant Resources Biorefinery, School of
Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
9
|
Cui J, Liu L, Chen B, Hu J, Song M, Dai H, Wang X, Geng H. A comprehensive review on the inherent and enhanced antifouling mechanisms of hydrogels and their applications. Int J Biol Macromol 2024; 265:130994. [PMID: 38518950 DOI: 10.1016/j.ijbiomac.2024.130994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/02/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Biofouling remains a persistent challenge within the domains of biomedicine, tissue engineering, marine industry, and membrane separation processes. Multifunctional hydrogels have garnered substantial attention due to their complex three-dimensional architecture, hydrophilicity, biocompatibility, and flexibility. These hydrogels have shown notable advances across various engineering disciplines. The antifouling efficacy of hydrogels typically covers a range of strategies to mitigate or inhibit the adhesion of particulate matter, biological entities, or extraneous pollutants onto their external or internal surfaces. This review provides a comprehensive review of the antifouling properties and applications of hydrogels. We first focus on elucidating the fundamental principles for the inherent resistance of hydrogels to fouling. This is followed by a comprehensive investigation of the methods employed to enhance the antifouling properties enabled by the hydrogels' composition, network structure, conductivity, photothermal properties, release of reactive oxygen species (ROS), and incorporation of silicon and fluorine compounds. Additionally, we explore the emerging prospects of antifouling hydrogels to alleviate the severe challenges posed by surface contamination, membrane separation and wound dressings. The inclusion of detailed mechanistic insights and the judicious selection of antifouling hydrogels are geared toward identifying extant gaps that must be bridged to meet practical requisites while concurrently addressing long-term antifouling applications.
Collapse
Affiliation(s)
- Junting Cui
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Lan Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Beiyue Chen
- Nanjing Xiaozhuang University, College of Electronics Engineering, Nanjing 211171, China
| | - Jiayi Hu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Mengyao Song
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Hongya Geng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| |
Collapse
|
10
|
He J, Liu J, Gou H, Zhen X, Li S, Kang Y, Li A. Cost-Effective and Scalable Solar Interface Evaporators Derived from Industry Waste for Efficient Solar Steam Generation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5545-5555. [PMID: 38428024 DOI: 10.1021/acs.langmuir.4c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Interfacial solar steam generation for sustainable and eco-friendly desalination and wastewater treatment has attracted much attention. However, costly raw materials and complex preparation processes pose constant challenges to its wide promotion. Herein, a novel, cost-effective, and scalable strategy is presented for preparing solar interface evaporators using industrial waste as a raw material. Modified polyethylene foam evaporators (M-EPEs) are simply prepared by drilling and then hydrophilic modification of industrial waste (EPE-1). M-EPEs not only retain the strong mechanical properties and thermal insulating properties (0.047 W·m-1·K-1) of EPE-1 but also exhibit superhydrophilicity and strong light absorption (over 90%). M-EPEs achieve a high evaporation rate of 1.497 kg·m-2·h-1 and photothermal efficiency of up to 93.8% under 1 kW·m-2 solar illumination. Moreover, it has excellent stability and salt tolerance. Our work addresses the environmental issues of recycling polyethylene waste and provides a facile and efficient strategy for designing low-cost, large-scale solar interface evaporators for desalination.
Collapse
Affiliation(s)
- Jingxian He
- School of New Energy and Power Engineering, Lanzhou Jiao Tong University, Lanzhou 730070, People's Republic of China
| | - Jianxia Liu
- School of New Energy and Power Engineering, Lanzhou Jiao Tong University, Lanzhou 730070, People's Republic of China
| | - Hao Gou
- School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, People's Republic of China
| | - Xiaofei Zhen
- School of New Energy and Power Engineering, Lanzhou Jiao Tong University, Lanzhou 730070, People's Republic of China
| | - Shuaibing Li
- School of New Energy and Power Engineering, Lanzhou Jiao Tong University, Lanzhou 730070, People's Republic of China
| | - Yongqiang Kang
- School of New Energy and Power Engineering, Lanzhou Jiao Tong University, Lanzhou 730070, People's Republic of China
| | - An Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730070, People's Republic of China
| |
Collapse
|
11
|
Wu X, Lu Y, Ren X, Wu P, Chu D, Yang X, Xu H. Interfacial Solar Evaporation: From Fundamental Research to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313090. [PMID: 38385793 DOI: 10.1002/adma.202313090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Indexed: 02/23/2024]
Abstract
In the last decade, interfacial solar steam generation (ISSG), powered by natural sunlight garnered significant attention due to its great potential for low-cost and environmentally friendly clean water production in alignment with the global decarbonization efforts. This review aims to share the knowledge and engage with a broader readership about the current progress of ISSG technology and the facing challenges to promote further advancements toward practical applications. The first part of this review assesses the current strategies for enhancing the energy efficiency of ISSG systems, including optimizing light absorption, reducing energy losses, harvesting additional energy, and lowering evaporation enthalpy. Subsequently, the current challenges faced by ISSG technologies, notably salt accumulation and bio-fouling issues in practical applications, are elucidated and contemporary methods are discussed to overcome these challenges. In the end, potential applications of ISSG, ranging from initial seawater desalination and industrial wastewater purification to power generation, sterilization, soil remediation, and innovative concept of solar sea farm, are introduced, highlighting the promising potential of ISSG technology in contributing to sustainable and environmentally conscious practices. Based on the review and in-depth understanding of these aspects, the future research focuses are proposed to address potential issues in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Xuan Wu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Yi Lu
- International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaohu Ren
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Pan Wu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
- School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xiaofei Yang
- International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Haolan Xu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| |
Collapse
|
12
|
Zhao Y, Ran B, Lee D, Liao J. Photo-Controllable Smart Hydrogels for Biomedical Application: A Review. SMALL METHODS 2024; 8:e2301095. [PMID: 37884456 DOI: 10.1002/smtd.202301095] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Nowadays, smart hydrogels are being widely studied by researchers because of their advantages such as simple preparation, stable performance, response to external stimuli, and easy control of response behavior. Photo-controllable smart hydrogels (PCHs) are a class of responsive hydrogels whose physical and chemical properties can be changed when stimulated by light at specific wavelengths. Since the light source is safe, clean, simple to operate, and easy to control, PCHs have broad application prospects in the biomedical field. Therefore, this review timely summarizes the latest progress in the PCHs field, with an emphasis on the design principles of typical PCHs and their multiple biomedical applications in tissue regeneration, tumor therapy, antibacterial therapy, diseases diagnosis and monitoring, etc. Meanwhile, the challenges and perspectives of widespread practical implementation of PCHs are presented in biomedical applications. This study hopes that PCHs will flourish in the biomedical field and this review will provide useful information for interested researchers.
Collapse
Affiliation(s)
- Yiwen Zhao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Bei Ran
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Dashiell Lee
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
13
|
Zhang X, Zhou S, Wang Z, Wei X, Zhang S, Jin J. Facile Preparation of Hydrogel-Coated Surfaces with Antifouling and Salt Resistance for Efficient Solar-Driven Water Evaporation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50196-50205. [PMID: 37870122 DOI: 10.1021/acsami.3c11299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Hydrogel-based evaporators are a promising strategy to obtain freshwater from seawater and sewage. However, the time-consuming and energy-consuming methods used in hydrogel preparation, as well as their limited scalability, are major factors that hinder the development of a hydrogel-based evaporator. Herein, a facile and scalable strategy was designed to prepare a hydrogel-coated evaporator to realize efficient solar-driven water evaporation. The hydrogel coating layer is composed of a robust 3D network formed by tannic acid (TA) and poly(vinyl alcohol) (PVA) through a hydrogen bond. With the assistance of TA surface modifier, carbon black (CB) is uniformly distributed within the hydrogel matrix, endowing the coating with remarkable photothermal properties. In addition, Fe3+ is deposited on the surface of the hydrogel coating through metal coordination with TA, further improving the light absorption of the coating. Due to the synergistic effect of CB and Fe3+, the hydrogel-coated foam exhibited excellent photothermal properties. The water evaporation rate reached 3.64 kg m-2 h-1 under 1 sun irradiation. Because of the hydration ability of PVA hydrogel and the large porous structure of the foam, the hydrogel-coated foam demonstrated excellent antifouling performance and salt resistance. This study provides a facile method for designing and manufacturing high-performance solar-driven water evaporation materials.
Collapse
Affiliation(s)
- Xingzhen Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory for Environment Functional Materials, Huaiyin Normal University, Huaian 223300, China
- College of Chemistry, Chemical Engineering and Materials Science; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China
| | - Shouyong Zhou
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory for Environment Functional Materials, Huaiyin Normal University, Huaian 223300, China
| | - Zhigang Wang
- College of Chemistry, Chemical Engineering and Materials Science; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China
| | - Xian Wei
- College of Chemistry, Chemical Engineering and Materials Science; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China
| | - Shenxiang Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China
| | - Jian Jin
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory for Environment Functional Materials, Huaiyin Normal University, Huaian 223300, China
- College of Chemistry, Chemical Engineering and Materials Science; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China
| |
Collapse
|
14
|
Li X, Wang P, Lu Q, Yao H, Yang C, Zhao Y, Hu J, Zhou H, Song M, Cheng H, Dai H, Wang X, Geng H. A hierarchical porous aerohydrogel for enhanced water evaporation. WATER RESEARCH 2023; 244:120447. [PMID: 37574625 DOI: 10.1016/j.watres.2023.120447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
Natural solar-powered steam generation provides a promising strategy to deal with deteriorating water resources. However, the practical applications of this strategy are limited by the tedious manufacturing of structures at micro-nano levels to concentrate heat and transport water to heat-localized regions. Herein, this work reports the fabrication of hierarchically porous aerohydrogel with enhanced light absorption and thermal localization at the air-solid interface. This aerohydrogel steam generator is fabricated by a simple yet controllable micropore generation approach to assemble air and hydrogel into hierarchically porous gas-solid hybrids. The tunable micropore size in a wide range from 99±49µm to 316±58μm not only enables contrasting sunlight absorptance (0.2 - 2.5µm) by reducing the reflection of solar light but also harnesses water transportation to the heating region via a capillary force-driven liquid flow. Therefore, a solar-vapor conversion efficiency of 91.3% under one sun irradiation was achieved using this aerohydrogel evaporator, reaching a ready evaporation rate of 2.76kg m-2 h-1 and 3.71kg m-2 h-1 under one and two sun irradiations, respectively. Our work provides a versatile and scalable approach to engineering porous hydrogels for highly efficient steam generation and opens an avenue for other potential practical applications based on this aerohydrogel.
Collapse
Affiliation(s)
- Xiaorui Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China; Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Pengxu Wang
- Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Qianyun Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Houze Yao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Ce Yang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Yanming Zhao
- Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Jiayi Hu
- Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Hongfeng Zhou
- Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Mengyao Song
- Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China.
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China.
| | - Hongya Geng
- Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
15
|
Li M, Xu M, Wang H, Liu S, Xiao Y, Wang L, James TD. Constructing A Solar Evaporator by Stacking Exhausted Wood Sponges for Freshwater Generation and Fertilizer Recovery. CHEMSUSCHEM 2023; 16:e202300426. [PMID: 37209007 DOI: 10.1002/cssc.202300426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Solar water evaporation is an efficient and sustainable technology. To reduce energy consumption and improve cost efficiency, the surface modification of wood sponge by polypyrrole-glutathione (PGWS) was achieved using an in-situ synthetic method. The PGWS exhibits excellent adsorption efficiency for Hg(II) ions with adsorption capacity of 330.8 mg g-1 at 25 °C. Following Hg(II) absorption, the PGWS could be upcycled for solar steam generation. A stackable device was constructed by placing two wood sponges under a Hg(II) saturated PGWS [PGWS-Hg(II)], this system exhibited the highest water evaporation rate of 2.14 kg m-2 h-1 under 1 kW m-2 . Moreover, collecting paper was inserted between the stacked PGWS-Hg(II) and wood sponge for the collection of salts. As such salt can be successfully collected from simulated fertilizer plant effluent and then used as a nutrient for growing plants using a hydroponic system. The facile design of stackable evaporation provides an opportunity for wastewater utilization by harvesting solar energy.
Collapse
Affiliation(s)
- Meng Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, P. R. China
| | - Mengwen Xu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, P. R. China
| | - Haotian Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, P. R. China
| | - Sichen Liu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, P. R. China
| | - Yumeng Xiao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, P. R. China
| | - Lidong Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, P. R. China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| |
Collapse
|
16
|
Arshad N, Irshad MS, Asghar MS, Alomar M, Tao J, Shah MAKY, Wang X, Guo J, Wageh S, Al‐Hartomy OA, Kalam A, Hao Y, Ouyang Z, Zhang H. 2D MXenes Embedded Perovskite Hydrogels for Efficient and Stable Solar Evaporation. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300091. [PMID: 37745825 PMCID: PMC10517291 DOI: 10.1002/gch2.202300091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/12/2023] [Indexed: 09/26/2023]
Abstract
Solar evaporation is a facile and promising technology to efficiently utilize renewable energy for freshwater production and seawater desalination. Here, the fabrication of self-regenerating hydrogel composed of 2D-MXenes nanosheets embedded in perovskite La 0.6Sr 0.4Co 0.2Fe 0.8O3- δ (LSCF)/polyvinyl alcohol hydrogels for efficient solar-driven evaporation and seawater desalination is reported. The mixed dimensional LSCF/Ti3C2 composite features a localized surface plasmonic resonance effect in the polymeric network of polyvinyl alcohol endows excellent evaporation rates (1.98 kg m-2 h-1) under 1 k Wm-2 or one sun solar irradiation ascribed by hydrophilicity and broadband solar absorption (96%). Furthermore, the long-term performance reveals smooth mass change (13.33 kg m-2) during 8 h under one sun. The composite hydrogel prompts the dilution of concentrated brines and redissolves it back to water (1.2 g NaCl/270 min) without impeding the evaporation rate without any salt-accumulation. The present research offers a substantial opportunity for solar-driven evaporation without any salt accumulation in real-life applications.
Collapse
Affiliation(s)
- Naila Arshad
- Collaborative Innovation Centre for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P. R. China
- Interdisciplinary Center of High Magnetic Field PhysicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Muhammad Sultan Irshad
- Collaborative Innovation Centre for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P. R. China
- School of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - M. Sohail Asghar
- School of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Muneerah Alomar
- Department of PhysicsCollege of SciencesPrincess Nourah bint Abdulrahman UniversityP. O. Box 84428Riyadh11671Saudi Arabia
| | - Junyang Tao
- School of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - M. A. K. Yousaf Shah
- School of Energy and EnvironmentSoutheast UniversityNo. 2 Si Pai LouNanjing210096China
| | - Xianbao Wang
- School of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Jinming Guo
- School of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - S. Wageh
- Department of PhysicsFaculty of ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia
| | - Omar A. Al‐Hartomy
- Research Center for Advanced Materials Science (RCAMS)King Khalid UniversityP. O. Box 9004Abha61413Saudi Arabia
| | - Abul Kalam
- Department of PhysicsFaculty of ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia
| | - Yabin Hao
- Collaborative Innovation Centre for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P. R. China
| | - Zhengbiao Ouyang
- Collaborative Innovation Centre for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P. R. China
| | - Han Zhang
- Collaborative Innovation Centre for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P. R. China
- Interdisciplinary Center of High Magnetic Field PhysicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|
17
|
Inoue G, Barras A, Ma Y, Cao N, Fadel A, Roussel P, Naushad M, Szunerits S, Boukherroub R. Petroleum Coke Embedded in Cigarette Butts: All Waste-Derived Solar Evaporator for Effective Water Evaporation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37327-37336. [PMID: 37505220 DOI: 10.1021/acsami.3c04894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Solar-driven interfacial evaporation is an eco-friendly solution for tackling the impending water scarcity the world is facing in our century. In this work, a solar-driven interfacial evaporator was prepared from cigarette butts loaded with petroleum coke powder (Filter-PetCoke), a by-product of the oil refinery processes, for the improvement of the absorption of the incident solar light. A comparison between a flat 2D and a 3D evaporator with a surface composed of orderly patterned protrusions of 2.1 cm was carried out to assess the influence of the evaporator configuration on the evaporation performance. The 3D evaporator (3D Filter-PetCoke) achieved by far the best performance (evaporation rate: 1.97 ± 0.08 kg m-2 h-1 and solar conversion efficiency: 93.2 ± 5.4%) among the prepared samples (3D Filter-PetCoke, 3D Filter, 2D Filter-PetCoke, and 2D Filter). In addition, this configuration seems to be adaptable for real and more massive operation because of the geometry of the evaporator. The high efficiency was ascribed to the good heat generation of the petroleum coke and the excellent heat management of the 3D structure of the evaporator. Moreover, this evaporator was resistant to multiple repeated usages without significant efficiency loss and capable of producing drinking water from seawater and Escherichia coli (E. coli)-contaminated water. The findings in this work indicate that this evaporator is pertinent to real situations to supply safe freshwater very efficiently from chemically/biologically contaminated water.
Collapse
Affiliation(s)
- Go Inoue
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Alexandre Barras
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Yunfei Ma
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Ning Cao
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Alexandre Fadel
- Université de Lille, CNRS, INRA, ENSCL, Université d'Artois, FR 2638 - IMEC -Institut Michel-Eugène Chevreul, F59000 Lille, France
| | - Pascal Roussel
- Université de Lille, CNRS, Centrale Lille, Université d'Artois, UMR 8181 - UCCS, F59000 Lille, France
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| | - Sabine Szunerits
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| |
Collapse
|
18
|
Sun MH, Li C, Liu J, Min P, Yu ZZ, Li X. Three-Dimensional Mirror-Assisted and Concave Pyramid-Shaped Solar-Thermal Steam Generator for Highly Efficient and Stable Water Evaporation and Brine Desalination. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37248165 DOI: 10.1021/acsami.3c02087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Although significant advances have been achieved in developing solar-driven water evaporators for seawater desalination, there is still room for simultaneously enhancing water evaporation efficiency, salt resistance, and utilization of solar energy. Herein, for the first time, we demonstrate a highly efficient three-dimensional (3D) mirror-assisted and concave pyramid-shaped solar-thermal water evaporation system for high-yield and long-term desalination of seawater and brine water, which consists of a 3D concave pyramid-shaped solar-thermal architecture on the basis of polypyrrole-coated nonwoven fabrics (PCNFs), a 3D mirror array, a self-floating polystyrene foam layer, and a tail-like PCNF for upward transport of water. The 3D concave pyramid-shaped solar-thermal architecture enables multiple solar light reflections to absorb more solar energy, while the 3D mirror-assisted solar light enhancement design can activate the solar-thermal energy conversion of the back side of the concave pyramid-shaped PCNF architecture to improve the solar-thermal energy conversion efficiency. Crucially, selective accumulation of the precipitated salts on the back side of the concave pyramid-shaped architecture is realized, ensuring a favorable salt-resistant feature. The 3D mirror-assisted and concave pyramid-shaped solar-driven water evaporation system achieves a record high water evaporation rate of 4.75 kg m-2 h-1 under 1-sun irradiation only and exhibits long-term desalination stability even when evaporating high-salinity brine waters, demonstrating its great applicability and reliability for high-yield solar-driven desalination of seawater and high-salinity brine water.
Collapse
Affiliation(s)
- Ming-Hong Sun
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changjun Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ji Liu
- School of Chemistry, CRANN and AMBER, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Peng Min
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaofeng Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
19
|
Lu D, Qin M, Zhao Y, Li H, Luo L, Ding C, Cheng P, Su M, Li H, Song Y, Li J. Supramolecular Photonic Hydrogel for High-Sensitivity Alkaline Phosphatase Detection via Synergistic Driving Force. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206461. [PMID: 36587969 DOI: 10.1002/smll.202206461] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Structurally-colored photonic hydrogels which are fabricated by introducing hydrogels into thin films or photonic crystal structures are promising candidates for biosensing. Generally, the design of photonic hydrogel biosensors is based on the sensor-analyte interactions induced charge variation within the hydrogel matrix, or chemically grafting binding sites onto the polymer chains, to achieve significant volume change and color variation of the photonic hydrogel. However, relatively low anti-interference capability or complicated synthesis hinder the facile and low-cost fabrication of high-performance photonic hydrogel biosensors. Here, a facilely prepared supramolecular photonic hydrogel biosensor is developed for high-sensitivity detection of alkaline phosphatase (ALP), which is an extensively considered clinical biomarker for a variety of diseases. Responding to ALP results in the broken supramolecular crosslinking and thus increased lattice distancing of the photonic hydrogel driven by synergistic repulsive force between nanoparticles embedded in photonic crystal structure and osmotic swelling pressure. The biosensor shows sensitivity of 7.3 nm spectral shift per mU mL-1 ALP, with detection limit of 0.52 mU mL-1 . High-accuracy colorimetric detection can be realized via a smartphone, promoting point-of-care sensing and timely diagnosis of related pathological conditions.
Collapse
Affiliation(s)
- Dengfeng Lu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yonghang Zhao
- College of Computer Science and Technology, Jilin University, Changchun, 130012, P. R. China
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Longbo Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Pei Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huiying Li
- College of Computer Science and Technology, Jilin University, Changchun, 130012, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
20
|
Cagnetta GE, Martínez SR, Ibarra LE, Gallastegui A, Martucci JF, Palacios RE, Chesta CA, Gómez ML. Reusable antimicrobial antibiotic-free dressings obtained by photopolymerization. BIOMATERIALS ADVANCES 2023; 149:213399. [PMID: 37011423 DOI: 10.1016/j.bioadv.2023.213399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
In recent years significant efforts have been made to develop new materials for wound dressing with improved healing properties. However, the synthesis methods usually employed to this end are often complex or require several steps. We describe here the synthesis and characterization of antimicrobial reusable dermatological wound dressings based on N-isopropylacrylamide co-polymerized with [2-(Methacryloyloxy) ethyl] trimethylammonium chloride hydrogels (NIPAM-co-METAC). The dressings were obtained with a very efficient single-step synthesis procedure based on visible light (455 nm) by photopolymerization. To this end, F8BT nanoparticles of the conjugated polymer (poly(9,9-dioctylfluorene-alt-benzothiadiazole) - F8BT) were used as macro-photoinitiators, and a modified silsesquioxane was employed as crosslinker. Dressings obtained by this simple and gentle method show antimicrobial and wound healing properties, without the incorporation of antibiotics or any other additives. The physical and mechanical properties of these hydrogel-based dressings were evaluated, as well as their microbiological properties, through in vitro experiments. Results show that dressings with a molar ratio of METAC of 0.5 or higher exhibit high swelling capacity, appropriate water vapor transmission rate values, stability and thermal response, high ductility and adhesiveness. In addition, biological tests showed that the dressings have significant antimicrobial capacity. The best inactivation performance was found for hydrogels synthesized with the highest METAC content. The dressings were tested several times with fresh bacterial cultures, showing a bacterial kill efficiency of 99.99 % even after three repetitions in a row, employing the same dressing, demonstrating the intrinsic bactericidal property of the materials and their reusability. In addition, the gels show low hemolytic effect, high dermal biocompatibility and noticeable wound healing effects. Overall results demonstrate that some specific hydrogel formulations have potential application as dermatological dressings for wound healing and disinfection.
Collapse
Affiliation(s)
- Gonzalo E Cagnetta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - Sol R Martínez
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - Luis E Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - Antonela Gallastegui
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastian 20018, Gipuzkoa, Spain
| | - Josefa F Martucci
- Instituto de Investigaciones en Ciencias y Tecnología de los Materiales (INTEMA), Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Av. Colón 10850, 7600 Mar del Plata, Argentina
| | - Rodrigo E Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - Carlos A Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - María L Gómez
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina.
| |
Collapse
|
21
|
Xie G, Wang X, Mo M, Zhang L, Zhu J. Photothermal Hydrogels for Promoting Infected Wound Healing. Macromol Biosci 2023; 23:e2200378. [PMID: 36337010 DOI: 10.1002/mabi.202200378] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Photothermal therapies (PTT), with spatiotemporally controllable antibacterial capabilities without inducing resistance, have shown encouraging prospects in the field of infected wound treatments. As an important platform for PTT, photothermal hydrogels exhibit attractive advantages in the field of infected wound treatment due to their excellent biochemical properties and have been intensively explored in recent years. This review summarizes the progress of the photothermal hydrogels for promoting infected wound healing. Three major elements of photothermal hydrogels, i.e., photothermal materials, hydrogel matrix, and construction methods, are introduced. Furthermore, different strategies of photothermal hydrogels in the treatment of infected wounds are summarized. Finally, the challenges and prospects in the clinical treatment of photothermal hydrogels are discussed.
Collapse
Affiliation(s)
- Ge Xie
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiao Wang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Min Mo
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Lianbin Zhang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
22
|
Gao Y, Gao Y, Zhang Z, Jia F, Gao G. Acetylated Distarch Phosphate-Mediated Tough and Conductive Hydrogel for Antibacterial Wearable Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51420-51428. [PMID: 36318451 DOI: 10.1021/acsami.2c16025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conductive, stretchable, and flexible hydrogel wearable sensors have attracted extensive attention in the fields of artificial intelligence and electronic equipment. However, it is an enormous challenge to fabricate conductive hydrogel sensors with biocompatibility, antibacterial properties, and toughness. Here, a highly conductive hydrogel with excellent toughness, good biocompatibility, and strong antibacterial properties was prepared by incorporating acetylated distarch phosphate (ADSP) into poly(vinyl alcohol) (PVA)/polyhexamethylene biguanide hydrochloride (PHMG). The addition of ADSP not only ionized sodium ions to make the hydrogel conductive but also provided abundant hydroxyl groups to form hydrogen bonds with PVA to improve the toughness of the hydrogel. Furthermore, PHMG endowed the hydrogel with antibacterial properties toward E. coli (Escherichia coli, Gram-negative bacteria) and S. aureus (Staphylococcus aureus, Gram-positive bacteria). Meanwhile, the hydrogel was implanted in mice for 14 days, and the surrounding tissue remained in good condition. More importantly, the hydrogel could detect ECG signals and electrical signals under different actions. This study affords a novel approach for exploiting wearable sensors with antibacterial properties and biocompatibility.
Collapse
Affiliation(s)
- Yiyan Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun130012, P. R. China
| | - Yang Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun130012, P. R. China
| | - Zhixin Zhang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun130012, P. R. China
| | - Fei Jia
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun130012, P. R. China
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun130012, P. R. China
| |
Collapse
|
23
|
Li J, Li N, Wu X, Wang S, Li S, Guo C, Yu L, Wang Z, Murto P, Xu X. Photothermal Aerogel Beads Based on Polysaccharides: Controlled Fabrication and Hybrid Applications in Solar-Powered Interfacial Evaporation, Water Remediation, and Soil Enrichment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50266-50279. [PMID: 36305787 DOI: 10.1021/acsami.2c16634] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Solar-powered interfacial evaporation has emerged as an innovative and sustainable technology for clean water production. However, the rapid, mass and shape-controlled fabrication of three-dimensional (3D) steam generators (SGs) for versatile hybrid applications remains challenging. Herein, composite aerogel beads with self-contained properties (i.e., hydrophilic, porous, photothermal, and durable) are developed and demonstrated for threefold hybrid applications including efficient solar-powered interfacial evaporation, water remediation, and controlled soil enrichment. The rational incorporation of selected polysaccharides enables us to fabricate bead-like aerogels with rapid gelation, continuous processing, and enhanced ion adsorption. The composite beads can attain a high water evaporation rate of 1.62 kg m-2 h-1 under 1 sun. Meanwhile, high phosphate adsorption capacity of over 120 mg g-1 is achieved in broad pH (2.5-12.4) and concentration (200-1000 mg L-1) ranges of phosphate solutions. Gratifyingly, we demonstrate the first example of recycling biomaterials from interfacial SGs for controlled nutrient release, soil enrichment, and sustainable agriculture. The phosphate-saturated beads can be gradually broken down in the soil. Macronutrients (N, P, and K) can be slowly released in 50 days, sustaining the plant germination and growth in a whole growth stage. This work shines light on the mass and controlled fabrication of aerogel beads based on double-network biopolymers, not merely scaling up solar-powered interfacial evaporation but also considering water remediation, waste material disposal, and value-added conversion.
Collapse
Affiliation(s)
- Jingjing Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Na Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaochun Wu
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuxue Wang
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuai Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Cui Guo
- College of Marine Life Science, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhihang Wang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Petri Murto
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Xiaofeng Xu
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
24
|
Chen J, Jian M, Yang X, Xia X, Pang J, Qiu R, Wu S. Highly Effective Multifunctional Solar Evaporator with Scaffolding Structured Carbonized Wood and Biohydrogel. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46491-46501. [PMID: 36149391 DOI: 10.1021/acsami.2c11399] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A solar evaporator that utilizes solar radiation energy can be a renewable approach to deal with energy crisis and fresh water shortage. In this study, a solar evaporator was prepared by assembling composite carbonized wood of Melaleuca Leucadendron L. and biobased hydrogel. The multilayer MXene (Ti3C2Tx) was embedded in the scaffolding structure of the wood to form composite carbonized wood, where the loose and ordered scaffolding structure of the carbonized wood significantly improves the efficiency of water transportation with increased capillary force. The MXene adsorbed in the carbonized wood has high binding energy with water molecules, leading to reduction of vaporization enthalpy and contact angle. Moreover, the addition of MXene can improve the light absorbance, especially for the infrared and ultraviolet light bands. The hydrogel was fabricated by crosslinking konjac glucomannan and sodium alginate polysaccharides with Ca2+, and it has a lower thermal conductivity than water and improves the evaporation efficiency by regulating the temperature distribution and concentrating the heat on the surface of the evaporator. This solar evaporator has an evaporation rate of 3.71 kg·m-2·h-1 and an evaporation efficiency of 129.64% under 2 sun illumination and is available to generate an open-circuit voltage of 1.8 mV after a 20 min hydrovoltaic, demonstrating a high performance and versatility. Also, experiments and numerical simulation were carried out to understand the mechanism and design principles of this solar evaporators.
Collapse
Affiliation(s)
- Jie Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Muqiang Jian
- Beijing Graphene Institute, Beijing 100095, China
| | - Xiaoyi Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolu Xia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renhui Qiu
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Shuyi Wu
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| |
Collapse
|
25
|
Chu A, Yang M, Yang H, Shi X, Chen J, Fang J, Wang Z, Li H. Sustainable Self-Cleaning Evaporators for Highly Efficient Solar Desalination Using a Highly Elastic Sponge-like Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36116-36131. [PMID: 35913129 DOI: 10.1021/acsami.2c08561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Interfacial evaporation using light-absorbing hydrogels offers efficient solar evaporation performance under natural sunlight, ensuring an affordable clean water supply. However, achieving light-absorbing hydrogels with durable and efficient utilization is still a challenge due to inevitable salt accumulation, a difficult-to-control surface morphology, and poor mechanical properties on the surfaces of hydrogel-based evaporators. In this work, a photothermal sponge-like hydrogel with a 3D interconnected porous structure was constructed using low-cost activated carbon as a photothermal material, as well as a double-network polymer chain as the basic skeleton using a simple foaming polymerization strategy. The sponge-like hydrogel evaporator showed tailored surface topography, adequate water transport, excellent elasticity and toughness, good salt rejection, and thermal localization properties. Under the irradiation of simulated sunlight (1.0 kW/m2), a high evaporation rate of 2.33 kg·m-2·h-1 was achieved. Furthermore, efficient salt self-cleaning behavior was achieved due to the fast ion diffusion within the 3D interconnected porous structures. Even in highly concentrated brine of 15 wt %, continuous and efficient water evaporation was still achieved. The excellent evaporation and salt rejection properties of this photothermal sponge-like hydrogel indicated its promising long-term sustainable utilization in seawater desalination.
Collapse
Affiliation(s)
- Aqiang Chu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Meng Yang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Hongda Yang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Xueqi Shi
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Juanli Chen
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jing Fang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Zhiying Wang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|