1
|
Naqvi SM, Hassan T, Iqbal A, Zaman S, Cho S, Hussain N, Kong X, Khalid Z, Hao Z, Koo CM. Comparative electromagnetic shielding performance of Ti 3C 2T x-PVA composites in various structural forms: compact films, hydrogels, and aerogels. NANOSCALE 2025; 17:8563-8576. [PMID: 40067347 DOI: 10.1039/d5nr00450k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The structural design of light-weight MXene-polymer composites has attracted significant interest for enhancing both electromagnetic interference (EMI) shielding performance and mechanical strength, which are critical for practical applications. However, a systematic understanding of how various structural configurations of MXene composites affect EMI shielding is lacking. In this study, light-weight Ti3C2Tx-PVA composites were fabricated in three structural forms, hydrogel, aerogel, and compact film, while varying the Ti3C2Tx areal density (14 to 20 mg cm-2) to elucidate the role of structural design in X-band EMI shielding and mechanical properties. The EMI shielding performance depends on the structural configuration and areal density of the MXene in Ti3C2Tx-PVA composites. The shielding effectiveness increases with increasing Ti3C2Tx content in each configuration. At a fixed Ti3C2Tx areal density of 0.02 g cm-2, the Ti3C2Tx-PVA hydrogel demonstrated the highest shielding effectiveness (SE = 70 dB at 10 GHz), attributed to strong dipole polarization and efficient ionic conduction behavior, followed by the compact film (40 dB) and then the aerogel (21 dB). Notably, the aerogel achieved the highest absorption coefficient (A = 0.89) due to the improved impedance matching and pronounced internal reflections, whereas the hydrogel and compact film exhibited reflection-dominated shielding. Furthermore, the incorporation of PVA polymer molecules into Ti3C2Tx MXenes significantly enhanced their mechanical properties across all configurations: the hydrogel achieved high stretchability (636%), the aerogel displayed superior compressive strength (0.215 MPa), and the compact film reached a tensile strength of 56 MPa, each surpassing the performance of its pristine Ti3C2Tx MXene counterpart. Overall, tailoring the structural configuration into a hydrogel, aerogel, or compact film offers versatile routes for optimizing both EMI attenuation and mechanical performance of MXene-polymer composites.
Collapse
Affiliation(s)
- Shabbir Madad Naqvi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| | - Tufail Hassan
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| | - Aamir Iqbal
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| | - Shakir Zaman
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| | - Sooyeong Cho
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| | - Noushad Hussain
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| | - Xiangmeng Kong
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| | - Zubair Khalid
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| | - Zhiwang Hao
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| | - Chong Min Koo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
2
|
Guo X, Zhu X, Long Q, Wu X, Li Z, Li J, Zhang T, Qian X, Li X, Chen Y, Zhu S, Hong W, Hong Q, Zhao Y. Multifunctional pressure and humidity sensor modulated by electrostatic interactions and hydrogen bonds for wearable health monitoring. J Colloid Interface Sci 2025; 678:1061-1072. [PMID: 39276515 DOI: 10.1016/j.jcis.2024.09.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Breathing and urination, are vital physiological activities of the human body, continuous real-time monitoring of these physiological behaviors could offer timely feedback on an individual's health status. However, current monitoring techniques predominantly rely on cumbersome and intricate medical apparatuses, posing challenges in adapting to the diverse requirements of multi-scenario detection. Consequently, there is a growing interest in developing wearable devices capable of monitoring breathing and urination. In this work, we developed a multifunctional sensor integrating humidity and pressure sensing modes using a simple dip-coating process. By introducing sodium carboxymethyl cellulose and conductive polyaniline hybrid intercalation between MXene layers, a stable conductive network is established through hydrogen bonds and electrostatic interactions among materials. The overall electromechanical properties of the composites will be well improved. And, the effects of different conductive filler ratios and the number of dipping times on the construction of conductive networks are investigated. The multifunctional sensor exhibited improved sensing characteristics, including detecting pressures up to 532 kPa and a sensitivity of 19.58 kPa-1. Furthermore, it also demonstrates good humidity-sensing capabilities. Tests on volunteers demonstrated the potential in the detection of breathing and urination. In addition, the sensors are capable of transmitting Morse code. This interesting application will offer the possibility of normal communication for people with speech impairments. Given its utility and sustainability, the sensor has potential for applications in wearable health monitoring, intelligent life and telemedicine.
Collapse
Affiliation(s)
- Xiaohui Guo
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China.
| | - Xiaowen Zhu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Qiang Long
- Huadong Photo-Electron IC Institute, Bengbu Anhui 233030, China
| | - Xinyu Wu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Zhaobin Li
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Jiahao Li
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Tianxu Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Xingyu Qian
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Xianghui Li
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Yinuo Chen
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Shengxin Zhu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Weiqiang Hong
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China.
| | - Qi Hong
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Yunong Zhao
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China.
| |
Collapse
|
3
|
Mokhtari F, Usman KAS, Zhang J, Komljenovic R, Simon Ž, Dharmasiri B, Rezk A, Sherrell PC, Henderson LC, Varley RJ, Razal JM. Enhanced Acoustoelectric Energy Harvesting with Ti 3C 2T x MXene in an All-Fiber Nanogenerator. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3214-3228. [PMID: 39743311 DOI: 10.1021/acsami.4c15178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Materials and devices that harvest acoustic energy can enable autonomous powering of microdevices and wireless sensors. However, traditional acoustic energy harvesters rely on brittle piezoceramics, which have restricted their use in wearable electronic devices. To address these limitations, this study involves the fabrication of acoustic harvesters using electrospinning of the piezoelectric polymer PVDF-TrFE onto fabric-based electrodes. Two-dimensional (2D) Ti3C2Tx MXene flakes were used to induce polarization locking of the electrospun PVDF-TrFE for optimal electromechanical performance of PVDF-TrFE. The mechanically robust, lightweight, and flexible device was demonstrated to detect and harvest energy in the sound frequency range of 50 to 1000 Hz at sound levels between 60 and 95 dB, while exhibiting a high sensitivity of 37 VPa-1, which is higher than previously reported values for PVDF-based sound harvesters. The maximum output power can reach 19 mW/cm3 under 200 Hz and 95 dB. The development of this material opens a future pathway for powering small electronic devices, such as implantable biomedical devices, smart wearable technology, and remote Internet-of-Things devices.
Collapse
Affiliation(s)
- Fatemeh Mokhtari
- Carbon Nexus at the Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Ken Aldren S Usman
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Jizhen Zhang
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Robert Komljenovic
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Žan Simon
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Bhagya Dharmasiri
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Amgad Rezk
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Peter C Sherrell
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Luke C Henderson
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Russell J Varley
- Carbon Nexus at the Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
4
|
Wei R, Liu K, Liu Y, Wang Z, Jiao Y, Huo Q, Hua X, Wang L, Wang X. Controlled Distribution of MXene on the Pore Walls of Polyarylene Ether Nitrile Porous Films for Absorption-Dominated Electromagnetic Interference Shielding Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407142. [PMID: 39479733 DOI: 10.1002/smll.202407142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/22/2024] [Indexed: 01/11/2025]
Abstract
With the increasing application of electronic devices, absorption-dominated electromagnetic interference shielding materials (EMISM) have garnered significant attention for preventing secondary electromagnetic pollution. In this study, polyethyleneimine (PEI)-modified MXene (PEI@MXene) is fabricated and achieved its controlled distribution on the pore walls of polyarylene ether nitrile (PEN) porous films via the phase inversion method (PIM) to obtain a closed porous skeleton of MXene on the pore walls (CPS-MPW). The resulting PEI@MXene/PEN composite film (CFx) exhibited absorption-dominated EMIS efficiency (EMISE). Attributing to the strong interaction between PEI and the hydrophilic segment of amphiphilic Pluronic F127, with its hydrophobic segment anchored by the PEN matrix, PEI@MXene is directionally distributed on the pore walls of CFx. In addition, resulting from the cladding of MXene with PEI and isolating it with closed honeycomb pores, the obtained CFx are insulators without forming a conductive network. As a result, these CFx demonstrate absorption-dominated EMISE with the highest SET of 41.2 dB and coefficient A higher than 0.51. Further continuous hot pressing of CFx results in thinner and denser films with an impressive specific EMISE up to 750 dB cm-1. The successful fabrication of these CPS-MPW-type CFx with absorption-dominated EMISE provides a reference for developing and preparing novel EMISM.
Collapse
Affiliation(s)
- Renbo Wei
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Kexin Liu
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Yongxian Liu
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Zaixing Wang
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Yayao Jiao
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Qi Huo
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Xiufu Hua
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Lingling Wang
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Isari AA, Ghaffarkhah A, Hashemi SA, Wuttke S, Arjmand M. Structural Design for EMI Shielding: From Underlying Mechanisms to Common Pitfalls. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310683. [PMID: 38467559 DOI: 10.1002/adma.202310683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/11/2024] [Indexed: 03/13/2024]
Abstract
Modern human civilization deeply relies on the rapid advancement of cutting-edge electronic systems that have revolutionized communication, education, aviation, and entertainment. However, the electromagnetic interference (EMI) generated by digital systems poses a significant threat to the society, potentially leading to a future crisis. While numerous efforts are made to develop nanotechnological shielding systems to mitigate the detrimental effects of EMI, there is limited focus on creating absorption-dominant shielding solutions. Achieving absorption-dominant EMI shields requires careful structural design engineering, starting from the smallest components and considering the most effective electromagnetic wave attenuating factors. This review offers a comprehensive overview of shielding structures, emphasizing the critical elements of absorption-dominant shielding design, shielding mechanisms, limitations of both traditional and nanotechnological EMI shields, and common misconceptions about the foundational principles of EMI shielding science. This systematic review serves as a scientific guide for designing shielding structures that prioritize absorption, highlighting an often-overlooked aspect of shielding science.
Collapse
Affiliation(s)
- Ali Akbar Isari
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ahmadreza Ghaffarkhah
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Stefan Wuttke
- Basque Centre for Materials, Applications and Nanostructures (BCMaterials), Bld. Martina Casiano, 3rd. Floor UPV/EHU Science Park Barrio Sarriena s/n, Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
6
|
Wang G, Yang Z, Li L, Ren J, Liu J, Li L. Self-Assembled MXene@Fluorographene Hybrid for High Dielectric Constant and Low Loss Ferroelectric Polymer Composite Films. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38691002 DOI: 10.1021/acsami.4c01607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Modern electrical applications urgently need flexible polymer films with a high dielectric constant (εr) and low loss. Recently, the MXene-filled percolative composite has emerged as a potential material choice because of the promised high εr. Nevertheless, the typically accompanied high dielectric loss hinders its applications. Herein, a facile and effective surface modification strategy of cladding Ti3C2Tx MXene (T = F or O; FMX) with fluorographene (FG) via self-assembly is proposed. The obtained FMX@FG hybrid yields high εr (up to 108 @1 kHz) and low loss (loss tangent tan δ = 1.16 @ 1 kHz) in a ferroelectric polymer composite at a low loading level (the equivalent of 1.5 wt % FMX), which is superior to its counterparts in our work (e.g., FMX: εr = 104, tan δ = 10.71) and other studies. It is found that the FG layer outside FMX plays a critical role in both the high dielectric constant and low loss from experimental characterizations and finite element simulations. For one thing, FG with a high F/C ratio would induce a favorable structure of high β-phase crystallinity, extensive microcapacitor networks, and abundant interfacial dipoles in polymer composites that account for the high εr. For another, FG, as a highly insulating layer, can inhibit the formation of conductive networks and inter-FMX electron tunneling, which is responsible for conduction loss. The results demonstrate the potential of a self-assembled FMX@FG hybrid for high εr and low loss polymer composite films and offer a new strategy for designing advanced polymer composite dielectrics.
Collapse
Affiliation(s)
- Guolong Wang
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhuofan Yang
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Leyuan Li
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Junwen Ren
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiamei Liu
- Instrument Analysis Center of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Li
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
7
|
Ashouri-Sanjani M, Salari M, Rahmati R, Hamidinejad M, Park CB. Incorporating Loss Factor Modular Design for Full Ku-Band Microwave Attenuation in Double-Layered Graphene Aerogels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53847-53858. [PMID: 37960885 DOI: 10.1021/acsami.3c12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The fabrication of absorption-dominant electromagnetic interference (EMI) shielding materials is a pressing priority to prevent secondary electromagnetic pollution in miniaturized electronic devices and communication systems. Meeting this goal has remained a tough challenge to keep pace with the rapid evolution of electronics due to the complex compositional and structural design and narrow operating bands. This work articulates a sound and simple strategy to precisely modulate the electrical conductivity of reduced graphene oxide (rGO), as the building block in lightweight double-layered rGO-film/rGO-aerogel/polyvinyl-alcohol (PVA) composites, for efficient microwave absorption over the entire Ku-band frequency range. These constructs reasonably comprised a porous absorption structure built from parallel rGO sheets aligned and prepared via freeze casting followed by freeze drying. The electrical conductivity and impedance of this layer were tuned by varying the annealing temperature from 400 to 800 °C, thereby adjusting the degree of reduction and the absorption characteristic. This layer was backed by a highly conductive rGO film reduced at a high temperature of 1000 °C, with a reflectivity of 97.5%. The incorporation of this film ensured high EMI shielding effectiveness of the double-layered structure through the absorption-reflection-reabsorption mechanism, consistent with the predicted values based on calculated loss factors and the input impedance of the structure. Accordingly, at an average EMI shielding effectiveness of 57.59 dB, the reflection shielding effectiveness (SER) and reflectivity (R) of the assembled composites were optimized to be as low as 0.22 dB and 0.049, respectively. This equates to approximately 99.999% shielding (SET) and ∼95% absorptivity (A) of the incident wave. This study opens new avenues for the development of lightweight (with a density as low as 15 mg/cm3) absorption-dominant EMI shielding composite materials with promising EMI shielding efficiency and potential applications in modern electronics.
Collapse
Affiliation(s)
- Mehran Ashouri-Sanjani
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto M5S 3G8, Canada
| | - Meysam Salari
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto M5S 3G8, Canada
| | - Reza Rahmati
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto M5S 3G8, Canada
| | - Mahdi Hamidinejad
- Department of Mechanical Engineering, Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton T6G 2H5, Canada
| | - Chul B Park
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto M5S 3G8, Canada
| |
Collapse
|
8
|
Ma L, Wei L, Hamidinejad M, Park CB. Layered polymer composite foams for broadband ultra-low reflectance EMI shielding: a computationally guided fabrication approach. MATERIALS HORIZONS 2023; 10:4423-4437. [PMID: 37486618 DOI: 10.1039/d3mh00632h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The development of layered polymer composites and foams offers a promising solution for achieving effective electromagnetic interference (EMI) shielding while minimizing secondary electromagnetic pollution. However, the current fabrication process is largely based on trial and error, with limited focus on optimizing geometry and microstructure. This often results in suboptimal electromagnetic wave reflection and the use of unnecessarily thick samples. In this study, an input impedance model was employed to guide the fabrication of layered PVDF composite foams. This approach optimized the void fraction (VF) and the thickness of each layer to achieve broadband low reflection. Moreover, hybrid heterostructures of SiCnw@MXene were incorporated into the PVDF composite foams as an absorption layer, while the conductive PVDF/CNT composite foams served as a shielding layer. Directed by theoretical computations, we found that combining 2.2 mm of PVDF/SiCnw@MXene composite foam (50% VF) and 1.6 mm of PVDF/CNT composite yielded EMI shielding effectiveness of 45 dB, with an average reflectivity (R) of 0.03 and an effective absorption bandwidth of 5.54 GHz (for R < 0.1) over the Ku-band (12.4-18 GHz). Importantly, the corresponding peak R was only 0.000017. Our work showcases a theoretically guided approach for developing absorption-dominant EMI shielding materials with broadband ultra-low reflection, paving the way for cutting-edge applications.
Collapse
Affiliation(s)
- Li Ma
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada.
| | - Linfeng Wei
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada.
| | - Mahdi Hamidinejad
- Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G1H9, Canada.
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G1H9, Canada.
| | - Chul B Park
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada.
| |
Collapse
|
9
|
Zhang Q, Wang Q, Cui J, Zhao S, Zhang G, Gao A, Yan Y. Structural design and preparation of Ti 3C 2T x MXene/polymer composites for absorption-dominated electromagnetic interference shielding. NANOSCALE ADVANCES 2023; 5:3549-3574. [PMID: 37441247 PMCID: PMC10334419 DOI: 10.1039/d3na00130j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023]
Abstract
Electromagnetic interference (EMI) is a pervasive and harmful phenomenon in modern society that affects the functionality and reliability of electronic devices and poses a threat to human health. To address this issue, EMI-shielding materials with high absorption performance have attracted considerable attention. Among various candidates, two-dimensional MXenes are promising materials for EMI shielding due to their high conductivity and tunable surface chemistry. Moreover, by incorporating magnetic and conductive fillers into MXene/polymer composites, the EMI shielding performance can be further improved through structural design and impedance matching. Herein, we provide a comprehensive review of the recent progress in MXene/polymer composites for absorption-dominated EMI shielding applications. We summarize the fabrication methods and EMI shielding mechanisms of different composite structures, such as homogeneous, multilayer, segregated, porous, and hybrid structures. We also analyze the advantages and disadvantages of these structures in terms of EMI shielding effectiveness and the absorption ratio. Furthermore, we discuss the roles of magnetic and conductive fillers in modulating the electrical properties and EMI shielding performance of the composites. We also introduce the methods for evaluating the EMI shielding performance of the materials and emphasize the electromagnetic parameters and challenges. Finally, we provide insights and suggestions for the future development of MXene/polymer composites for EMI shielding applications.
Collapse
Affiliation(s)
- Qimei Zhang
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
- School of Materials and Environmental Engineering, Chizhou University Chizhou 247000 China
| | - Qi Wang
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Jian Cui
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Shuai Zhao
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Guangfa Zhang
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Ailin Gao
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Yehai Yan
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
10
|
Ustad RE, Kundale SS, Rokade KA, Patil SL, Chavan VD, Kadam KD, Patil HS, Patil SP, Kamat RK, Kim DK, Dongale TD. Recent progress in energy, environment, and electronic applications of MXene nanomaterials. NANOSCALE 2023; 15:9891-9926. [PMID: 37097309 DOI: 10.1039/d2nr06162g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since the discovery of graphene, two-dimensional (2D) materials have gained widespread attention, owing to their appealing properties for various technological applications. Etched from their parent MAX phases, MXene is a newly emerged 2D material that was first reported in 2011. Since then, a lot of theoretical and experimental work has been done on more than 30 MXene structures for various applications. Given this, in the present review, we have tried to cover the multidisciplinary aspects of MXene including its structures, synthesis methods, and electronic, mechanical, optoelectronic, and magnetic properties. From an application point of view, we explore MXene-based supercapacitors, gas sensors, strain sensors, biosensors, electromagnetic interference shielding, microwave absorption, memristors, and artificial synaptic devices. Also, the impact of MXene-based materials on the characteristics of respective applications is systematically explored. This review provides the current status of MXene nanomaterials for various applications and possible future developments in this field.
Collapse
Affiliation(s)
- Ruhan E Ustad
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Somnath S Kundale
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
| | - Kasturi A Rokade
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
| | - Snehal L Patil
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
| | - Vijay D Chavan
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Kalyani D Kadam
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Harshada S Patil
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Sarita P Patil
- School of Physical Science, Sanjay Ghodawat University, Atigre, Kolhapur-416118, MH, India
| | - Rajanish K Kamat
- Department of Electronics, Shivaji University, Kolhapur-416004, India
- Dr Homi Bhabha State University, 15, Madam Cama Road, Mumbai-400032, India
| | - Deok-Kee Kim
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Tukaram D Dongale
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
| |
Collapse
|
11
|
AhadiParsa M, Dehghani A, Ramezanzadeh B. Sulfonated Polyaniline-Grafted Two-Dimensional Ti 3C 2-MXene (SPANI-MXene) Nanoplatform for Designing an Advanced Smart Self-Healable Coating System. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24756-24768. [PMID: 37163998 DOI: 10.1021/acsami.2c19946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
MXene nanosheets (MXenes), a brand-new classification of two-dimensional (2D) nanomaterials, are assumed to be highly functional components in anticorrosion polymeric systems. In general, MXenes possess many advantageous features that can be utilized to improve the polymeric matrices' anticorrosion performance. In this work, zinc ions (Zn) were deposited on the sulfonated polyaniline (SPANI) that was polymerized on Ti3C2-MXene surfaces (MXP-Zn) in order to achieve a high-performance anticorrosion nanofiller for epoxy coating (EP-MXP-Zn). Field-emission scanning electron microscopy-transmission electron microscopy images, Fourier transform infrared, Raman, X-ray diffraction, UV-vis, derivative thermogravimetry, and thermogravimetric analysis have evidenced the successful characterization of the MXP-Zn nanocomposite. Likewise, the excellent barrier properties of SPANI, in conjunction with the cathodic protection of Zn, resulted in a novel nanocomposite that could mitigate the negative consequences of destructive ions' attack on the metal surface in an aggressive media. Quantitative and qualitative anticorrosion measurements verified the outstanding anticorrosion performance of EP-MXP-Zn over time in severe conditions. According to the electrochemical impedance spectroscopy assessments, the |Z0.01 Hz| value for EP-MXP-Zn was 1010.04 Ω cm2, which was over 105 times greater than that of neat EP (104.66 Ω cm2) over a 6-week period of immersion in a 3.5 wt % NaCl solution.
Collapse
Affiliation(s)
- Mobina AhadiParsa
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran 1668836471, Iran
| | - Ali Dehghani
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran 1668836471, Iran
| | - Bahram Ramezanzadeh
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran 1668836471, Iran
| |
Collapse
|
12
|
Idumah CI. MXene polymeric nanoarchitectures mechanical, deformation, and failure mechanism: A review. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- C. I. Idumah
- Faculty of Engineering, Department of Polymer Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
13
|
Qin Q, Hu Y, Guo S, Yang Y, Lei T, Cui Z, Wang H, Qin S. PVDF-based composites for electromagnetic shielding application: a review. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
14
|
He Y, Chen J, Qian Y, Wei Y, Wang C, Ye Z, Liu Y, Chen G. Organohydrogel based on cellulose-stabilized emulsion for electromagnetic shielding, flame retardant, and strain sensing. Carbohydr Polym 2022; 298:120132. [DOI: 10.1016/j.carbpol.2022.120132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022]
|
15
|
Wu B, Liu R, Yang Y, Zhu H, Yu Y, Huang J, Li Y. Asymmetrically structured polyvinylidene fluoride composite for directional high absorbed electromagnetic interference shielding. J Appl Polym Sci 2022. [DOI: 10.1002/app.53340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Bozhen Wu
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou China
| | - Renrong Liu
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou China
| | - Yuhao Yang
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou China
| | - Honghao Zhu
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou China
| | - Yujing Yu
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou China
| | - Jiang Huang
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou China
| | - Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai China
- Wenzhou Institute of Shanghai University Wenzhou China
| |
Collapse
|
16
|
Gholamirad F, Ge J, Sadati M, Wang G, Taheri-Qazvini N. Tuning the Self-Assembled Morphology of Ti 3C 2T x MXene-Based Hybrids for High-Performance Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49158-49170. [PMID: 36269799 DOI: 10.1021/acsami.2c14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hybrid materials based on transition metal carbide and nitride (MXene) nanosheets have great potential for electromagnetic interference (EMI) shielding due to their excellent electrical conductivity. However, the performance of final products depends not only on the properties of constituent components but also on the morphology of the assembly. Here, via the controlled diffusion of positively charged poly(allylamine hydrochloride) (PAH) chains into the negatively charged Ti3C2Tx MXene suspension, MXene/PAH hybrids in the forms of thin films, porous structures, and fibers with distinguished internal morphologies are obtained. Our results confirm that PAH chains could effectively enhance the oxidation stability and integrity of wet and dry MXene structures. The flexibility to tune the structures allows for a thorough discussion of the relations between the morphology, electrical conductivity, and EMI shielding mechanism of the hybrids in a wide range of electrical conductivity (2.5 to 3347 S·cm-1) and thickness (7.7 to 1900 μm) values. The analysis of thin films shows the direct impact of the polymer content on the alignment and compactness of MXene nanosheets regulating the films' electrical conductivity/EMI shielding effectiveness. The colloidal behavior of the initial MXene suspension determines the interconnection of MXene nanosheets in MXene/PAH porous assemblies and the final electrical properties. In addition to the internal morphology, examining the laminated MXene/PAH fibers with geometrically different arrangements demonstrates the role of conductive network configuration on EMI shielding performance. These findings provide insights into tuning the EMI shielding effectiveness via the charge-driven bottom-up assembly of electrically conductive MXene/polyelectrolyte hybrids.
Collapse
Affiliation(s)
- Farivash Gholamirad
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Jinqun Ge
- Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Monirosadat Sadati
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Guoan Wang
- Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina29208, United States
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina29208, United States
| |
Collapse
|