1
|
Wang H, Dai R, Wang Z. Deciphering Mechanisms of Silica-Metal Scaling on RO Membranes via 3D Structural and Compositional Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40364532 DOI: 10.1021/acs.est.5c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Deciphering the structure and composition of the scaling layer is crucial for understanding its formation mechanisms in the reverse osmosis (RO) process. However, conventional characterization techniques face challenges in providing high three-dimensional resolution and precise compositional analysis of mixed scales, which hinders in-depth elucidation of the underlying mechanisms. In this study, we combined the exceptional depth resolution of time-of-flight secondary ion mass spectrometry (ToF-SIMS) and the superior mixed-scale discrimination capability of thermogravimetry-infrared spectroscopy (TG-IR) to analyze Si/Al scaling, a common issue in industrial RO systems. Under acid conditions, ToF-SIMS measurements revealed Al species enrichment on the membrane surface, attributed to the strong affinity between Al3+ and the membrane. The preferential deposition of Al3+ further facilitated the heterogeneous nucleation of polymerized silica through the electrostatic shielding effect, leading to the rapid formation of a thin and dense scaling layer. In contrast, neutral and alkaline conditions produced a slower-developing, uniform, thicker, and loosely structured scaling layer through physical deposition of supersaturated Si/Al complex scales. TG-IR analysis revealed that neutral conditions favored coprecipitated adsorption-bound Si/Al species (6-coordinate Al) and Si/Al polymers (4-coordinate Al), whereas alkaline conditions primarily produced coprecipitated silica and Al(OH)4-. These findings advance the mechanistic understanding of Si/Al scaling and provide a foundation for targeted control strategies in silica-metal combined scaling in RO systems.
Collapse
Affiliation(s)
- Hailan Wang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Prasad D, Mitra N. Catalytic Effects of Water-Solvated Metal Cations in Epoxy-Amine Curing through Hydrogen Bonds and Metal-Ligand Interactions. J Phys Chem B 2025; 129:3464-3481. [PMID: 40130471 DOI: 10.1021/acs.jpcb.4c05874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Hydrogen bonds and metal-ligand interactions catalyze the epoxy-amine cross-linking reactions. Through a detailed quantum chemical study, it was demonstrated that water, through hydrogen bond formations, acts as a better catalyst than amines in the epoxy-amine cross-linking reactions. The presence of various solvated metal cations (Na+, Mg2+, and Al3+) results in the formation of metal-ligand interactions with both epoxy and amine moieties. A comprehensive investigation of these interactions has been performed in the study to demonstrate that the presence of these cations in small quantities effectively catalyzes the epoxy-amine reactions. The energetic analysis of different metal-epoxy-amine complexes suggests the inhibitory nature of Al3+ toward the extent of cross-linking.
Collapse
Affiliation(s)
- Dipak Prasad
- Hopkins Extreme Materials Institute and Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Nilanjan Mitra
- Hopkins Extreme Materials Institute and Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
3
|
Stankiewicz K, Lipkowski A, Kowalczyk P, Giżyński M, Waśniewski B. Resistance Welding of Thermoplastic Composites, Including Welding to Thermosets and Metals: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4797. [PMID: 39410368 PMCID: PMC11477612 DOI: 10.3390/ma17194797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024]
Abstract
This review paper presents the current progress in the development of resistance welding techniques for thermoplastic composites, with a particular emphasis on their application in hybrid joints, such as those involving thermosetting composites and metals. Resistance welding, a fusion bonding method, offers significant advantages over adhesive bonding and mechanical joining by eliminating the need for additional adhesive materials and enabling integration into automated manufacturing processes. The study highlights the unique benefits of resistance welding, including lower energy consumption compared to other methods and its compatibility with automated manufacturing, which can reduce production costs by up to 40%. Key findings from the literature indicate that resistance welding is particularly effective in achieving strong, durable joints for complex and large structures, such as those used in the aerospace industry. The review also identifies the main challenges associated with resistance welding, including temperature control, current leakage in carbon-fiber-reinforced polymers, and potential corrosion when using metal meshes. To address these challenges, various strategies are discussed, including surface treatments, the use of nanocomposites, and the integration of carbon nanotubes. The review concludes by emphasizing the need for further research to optimize welding parameters and to develop non-destructive testing methods for industrial applications, ensuring the reliability and long-term performance of welded joints.
Collapse
Affiliation(s)
- Karolina Stankiewicz
- Lukasiewicz Research Network—Institute of Aviation, 02-256 Warsaw, Poland; (A.L.); (P.K.); (M.G.); (B.W.)
| | | | | | | | | |
Collapse
|
4
|
Huang YT, Chen JY, Hsieh CA, Ezhumalai Y, Huang CJ, Yau S. Effects of Anion Coadsorption on the Self-Assembly of 11-Acryloylamino Undecanoic Acid on an Au(111) Electrode. ACS OMEGA 2024; 9:39827-39835. [PMID: 39346848 PMCID: PMC11425958 DOI: 10.1021/acsomega.4c05080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
11-acryloylamino undecanoic acid (AAUA) is a versatile polymerizable surfactant that has been applied to coat medical devices, and these applications can benefit from a fundamental understanding of its interaction with a metal substrate. Cyclic voltammetry and in situ scanning tunneling microscopy (STM) were used to examine the adsorption configuration of AAUA molecules on an ordered Au(111) electrode and their mutual interactions, as AAUA was adsorbed from a methanol dosing solution. In addition to the van der Waals force between the aliphatic groups, the hydrogen bonding between the carboxylic acid and acrylamide groups was also important to guide the spatial arrangement of AAUA admolecules on the Au electrode. The -COOH group of AAUA admolecule likely dissociated in neutral media to -COO-, which formed hydrogen bonds with H2PO4 - in phosphate buffer solution (PBS). This interaction between the AAUA admolecules and ions in the electrolyte resulted in different electrochemical characteristics observed in phosphate buffer solution (PBS) and potassium sulfate (K2SO4). Molecular-resolution STM imaging revealed distinctly different AAUA spatial structures on the Au electrode in PBS and K2SO4. Shifting the potential positively to 0.5 V (versus Ag/AgCl) led to lifting of the reconstructed Au(111) to the (1 × 1) phase and the dissolution of the ordered AAUA film, suggesting that the orientation of the AAUA admolecule was altered. The ordered AAUA adlayer could be partially recovered by shifting the potential negatively.
Collapse
Affiliation(s)
- Yi-Ting Huang
- Department
of Chemistry, National Central University, Chungli County, Taoyuan City 32049, Taiwan ROC
| | - Jia-Yin Chen
- Department
of Chemical and Materials Engineering, National
Central University, Chungli County, Taoyuan City 32049, Taiwan ROC
| | - Chiao-An Hsieh
- Department
of Chemistry, National Central University, Chungli County, Taoyuan City 32049, Taiwan ROC
| | - Yamuna Ezhumalai
- Department
of Chemistry, National Central University, Chungli County, Taoyuan City 32049, Taiwan ROC
| | - Chun-Jen Huang
- Department
of Chemical and Materials Engineering, National
Central University, Chungli County, Taoyuan City 32049, Taiwan ROC
- R&D
Center for Membrane Technology, Chung Yuan
Christian University, 200 Chung Pei Rd., Chungli County, Taoyuan
City 32023, Taiwan ROC
| | - Shuehlin Yau
- Department
of Chemistry, National Central University, Chungli County, Taoyuan City 32049, Taiwan ROC
| |
Collapse
|
5
|
Duan W, Robles UA, Poole‐Warren L, Esrafilzadeh D. Bioelectronic Neural Interfaces: Improving Neuromodulation Through Organic Conductive Coatings. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306275. [PMID: 38115740 PMCID: PMC11251570 DOI: 10.1002/advs.202306275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/07/2023] [Indexed: 12/21/2023]
Abstract
Integration of bioelectronic devices in clinical practice is expanding rapidly, focusing on conditions ranging from sensory to neurological and mental health disorders. While platinum (Pt) electrodes in neuromodulation devices such as cochlear implants and deep brain stimulators have shown promising results, challenges still affect their long-term performance. Key among these are electrode and device longevity in vivo, and formation of encapsulating fibrous tissue. To overcome these challenges, organic conductors with unique chemical and physical properties are being explored. They hold great promise as coatings for neural interfaces, offering more rapid regulatory pathways and clinical implementation than standalone bioelectronics. This study provides a comprehensive review of the potential benefits of organic coatings in neuromodulation electrodes and the challenges that limit their effective integration into existing devices. It discusses issues related to metallic electrode use and introduces physical, electrical, and biological properties of organic coatings applied in neuromodulation. Furthermore, previously reported challenges related to organic coating stability, durability, manufacturing, and biocompatibility are thoroughly reviewed and proposed coating adhesion mechanisms are summarized. Understanding organic coating properties, modifications, and current challenges of organic coatings in clinical and industrial settings is expected to provide valuable insights for their future development and integration into organic bioelectronics.
Collapse
Affiliation(s)
- Wenlu Duan
- The Graduate School of Biomedical EngineeringUNSWSydneyNSW2052Australia
| | | | - Laura Poole‐Warren
- The Graduate School of Biomedical EngineeringUNSWSydneyNSW2052Australia
- Tyree Foundation Institute of Health EngineeringUNSWSydneyNSW2052Australia
| | | |
Collapse
|
6
|
Stanley J, Xanthopoulou E, Zemljič LF, Klonos PA, Kyritsis A, Lambropoulou DA, Bikiaris DN. Fabrication of Poly(ethylene furanoate)/Silver and Titanium Dioxide Nanocomposites with Improved Thermal and Antimicrobial Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1606. [PMID: 38612120 PMCID: PMC11012300 DOI: 10.3390/ma17071606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Poly(ethylene furanoate) (PEF)-based nanocomposites were fabricated with silver (Ag) and titanium dioxide (TiO2) nanoparticles by the in-situ polymerization method. The importance of this research work is to extend the usage of PEF-based nanocomposites with improved material properties. The PEF-Ag and PEF-TiO2 nanocomposites showed a significant improvement in color concentration, as determined by the color colorimeter. Scanning electron microscopy (SEM) photographs revealed the appearance of small aggregates on the surface of nanocomposites. According to crystallinity investigations, neat PEF and nanocomposites exhibit crystalline fraction between 0-6%, whereas annealed samples showed a degree of crystallinity value above 25%. Combining the structural and molecular dynamics observations from broadband dielectric spectroscopy (BDS) measurements found strong interactions between polymer chains and nanoparticles. Contact angle results exhibited a decrease in the wetting angle of nanocomposites compared to neat PEF. Finally, antimicrobial studies have been conducted, reporting a significant rise in inhibition of over 15% for both nanocomposite films against gram-positive and gram-negative bacteria. From the overall results, the synthesized PEF-based nanocomposites with enhanced thermal and antimicrobial properties may be optimized and utilized for the secondary packaging (unintended food-contact) materials.
Collapse
Affiliation(s)
- Johan Stanley
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (J.S.); (E.X.)
| | - Eleftheria Xanthopoulou
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (J.S.); (E.X.)
| | - Lidija Fras Zemljič
- Faculty of Mechanical Engineering, University of Maribor, SI-2000 Maribor, Slovenia;
| | - Panagiotis A. Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780 Athens, Greece; (P.A.K.); (A.K.)
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780 Athens, Greece; (P.A.K.); (A.K.)
| | - Dimitra A. Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-57001 Thessaloniki, Greece
| | - Dimitrios N. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (J.S.); (E.X.)
| |
Collapse
|
7
|
Yang G, Lin W, Shah BA, Liang J, Lu X, Yuan B. Superhydrophilic and Antifriction Thin Hydrogel Formed under Mild Conditions for Medical Bare Metal Guide Wires. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1482-1491. [PMID: 38147690 DOI: 10.1021/acsami.3c15211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Medical guide wires play a crucial role in the process of intravascular interventional therapy. However, it is essential for bare metal guide wires to possess both hydrophilic lubricity and coating durability, avoiding tissue damage caused by friction inside the blood vessel during the interventional procedure. Additionally, it is still a huge challenge for diverse metal materials to bind with polymer coatings easily. Herein, we present a hydrogel coating scheme and its preparation method for various wires under mild conditions for environmental protection purposes. The preparation process involves surface pretreatment, including low-temperature heating and silanization, followed by a two-step dip coating and ultraviolet polymerization. The whole process leads to the formation of an interpenetrating cross-linked hydrogel network from the substrate to the surface section. This study confirms the superhydrophilicity and lubricity of three metal wires with the designed coating, especially reducing the friction significantly by ≥ 95%. The thin coating (average thickness <6.2 μm) demonstrates strong adhesion with various substrates and exhibits resistance to 25 or even 125 cycles of friction, indicating excellent stability and preventing easy detachment. The finally prepared composite nickel-titanium (NiTi) guide wire with stainless steel (SS) and platinum-tungsten (Pt-W) coils (overall diameter of ∼0.36 mm) shows satisfactory performance with a friction of 0.183 N for 25 cycles, meeting the clinical requirements (average friction ≤0.2 N) for interventional operation. These findings highlight the potential of this study in advancing the development of medical devices, particularly in the field of intravascular interventional therapy.
Collapse
Affiliation(s)
- Guangyao Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, Guangzhou 510640, P. R. China
| | - Weihao Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, Guangzhou 510640, P. R. China
| | - Basit Ali Shah
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jinxia Liang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xun Lu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Bin Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, Guangzhou 510640, P. R. China
| |
Collapse
|
8
|
Stanley J, Xanthopoulou E, Finšgar M, Zemljič LF, Klonos PA, Kyritsis A, Koltsakidis S, Tzetzis D, Lambropoulou DA, Baciu D, Steriotis TA, Charalambopoulou G, Bikiaris DN. Synthesis of Poly(ethylene furanoate) Based Nanocomposites by In Situ Polymerization with Enhanced Antibacterial Properties for Food Packaging Applications. Polymers (Basel) 2023; 15:4502. [PMID: 38231946 PMCID: PMC10708257 DOI: 10.3390/polym15234502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Poly(ethylene 2,5-furandicarboxylate) (PEF)-based nanocomposites containing Ce-bioglass, ZnO, and ZrO2 nanoparticles were synthesized via in situ polymerization, targeting food packaging applications. The nanocomposites were thoroughly characterized, combining a range of techniques. The successful polymerization was confirmed using attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, and the molecular weight values were determined indirectly by applying intrinsic viscosity measurements. The nanocomposites' structure was investigated by depth profiling using time-of-flight secondary ion mass spectrometry (ToF-SIMS), while color measurements showed a low-to-moderate increase in the color concentration of all the nanocomposites compared to neat PEF. The thermal properties and crystallinity behavior of the synthesized materials were also examined. The neat PEF and PEF-based nanocomposites show a crystalline fraction of 0-5%, and annealed samples of both PEF and PEF-based nanocomposites exhibit a crystallinity above 20%. Furthermore, scanning electron microscopy (SEM) micrographs revealed that active agent nanoparticles are well dispersed in the PEF matrix. Contact angle measurements showed that incorporating nanoparticles into the PEF matrix significantly reduces the wetting angle due to increased roughness and introduction of the polar -OH groups. Antimicrobial studies indicated a significant increase in inhibition of bacterial strains of about 9-22% for Gram-positive bacterial strains and 5-16% for Gram-negative bacterial strains in PEF nanocomposite films, respectively. Finally, nanoindentation tests showed that the ZnO-based nanocomposite exhibits improved hardness and elastic modulus values compared to neat PEF.
Collapse
Affiliation(s)
- Johan Stanley
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (J.S.); (E.X.)
| | - Eleftheria Xanthopoulou
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (J.S.); (E.X.)
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia;
| | - Lidija Fras Zemljič
- Faculty of Mechanical Engineering, University of Maribor, SI-2000 Maribor, Slovenia;
| | - Panagiotis A. Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780 Athens, Greece; (P.A.K.); (A.K.)
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780 Athens, Greece; (P.A.K.); (A.K.)
| | - Savvas Koltsakidis
- Digital Manufacturing and Materials Characterization Laboratory, International Hellenic University, GR-57001 Thessaloniki, Greece; (S.K.); (D.T.)
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, International Hellenic University, GR-57001 Thessaloniki, Greece; (S.K.); (D.T.)
| | - Dimitra A. Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-57001 Thessaloniki, Greece
| | - Diana Baciu
- National Center for Scientific Research “Demokritos”, GR-15341 Ag. Paraskevi Attikis, Greece; (D.B.); (T.A.S.); (G.C.)
| | - Theodore A. Steriotis
- National Center for Scientific Research “Demokritos”, GR-15341 Ag. Paraskevi Attikis, Greece; (D.B.); (T.A.S.); (G.C.)
| | - Georgia Charalambopoulou
- National Center for Scientific Research “Demokritos”, GR-15341 Ag. Paraskevi Attikis, Greece; (D.B.); (T.A.S.); (G.C.)
| | - Dimitrios N. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (J.S.); (E.X.)
| |
Collapse
|
9
|
Bi X, Li Y, Xu M, Wang Z. Heteroatom Introduction to Reconstruct Interfacial Chemical Structures for High-Reliability CFRTP/A6061-T6 Hybrid Structures. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37364042 DOI: 10.1021/acsami.3c05249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The application of carbon-fiber-reinforced thermoplastic (CFRTP)/metal hybrid structures is a vital step for realizing the lightweight design concepts in aerospace. However, the CFRTP/metal hybrid structures are usually not reliable enough in practical applications due to the high differences in chemical and physical properties between these two materials. The current work provides a bottom-up strategy of introducing heteroatoms into CFRTP/metal interfaces to reconstruct the interfacial chemical structures and thus manufacture high-reliability hybrid structures. Based on the principle of utmost using reaction sites at metal surfaces, the heteroatoms of oxygen and hydrogen are specially designed and introduced to the CFRTP/A6061-T6 (6061) interfaces by simple and green plasma polymerization. The introduced oxygen and hydrogen heteroatoms react with the aluminum and oxygen of the oxidation film at 6061 surfaces to produce great interfacial Al-O covalencies and hydrogen bonds. The reconstructing interfacial chemical structures strengthen the joint strength of CFRTP/6061 hybrid structures from 8.82 to 23.97 MPa. Our heteroatom introduction strategy is expected to get a fresh insight into the interfacial design concept and has several important implications for the future application of high-reliability CFRTP/metal hybrid structures.
Collapse
Affiliation(s)
- Xiaoyang Bi
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yan Li
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Mengjia Xu
- School of Mechanical Engineering and Automation, Northeastern University, No. 11 Wenhua Road, Shenyang 110819, P. R. China
- Foshan Graduate School of Innovation, Northeastern University, No. 2 Zhihui Road, Foshan 528300, P. R. China
| | - Zhenmin Wang
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| |
Collapse
|
10
|
Wan H, Teng H, Lv F, Lin J, Min J. Interface Wetting Driven by Laplace Pressure on Multiscale Topographies and Its Application to Performance Enhancement of Metal-Composite Hybrid Structure. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18427-18439. [PMID: 36987883 DOI: 10.1021/acsami.2c22358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Surface topography reconstruction is extensively used to address the issue of weak bonding at the polymer-metal interface of metal-composite hybrid structure, while enhancement from this approach is seriously impaired by insufficient interface wetting. In this study, the wetting behavior of polymer on aluminum surfaces with multiscale topographies was theoretically and experimentally investigated to realize stable and complete wetting. Geometric dimensions of multiscale surface topographies have a notable impact on interfacial forces at the three-phase contact line of polymer/air/aluminum, and a competition exists between Laplace pressure and bubble pressure in dominating the wetting behavior. Laplace pressure facilitates the degassing of trapped air bubbles in grooves, bringing more robust interfacial wettability to grooves than dimples and grids. Conversely, dimples with excessive dimensions generate interfacial pores, and this intrinsic mechanism is theoretically unraveled. Moreover, different degrees of interface wetting cause variations in bonding strength of polymer-aluminum interface, which changes from ∼18% improvement to ∼17% reduction compared to original strength. Finally, groove topography perfectly achieved complete wetting between polymer and aluminum and consequently improved flexure performance by over 11% for the aluminum-carbon fiber hybrid side impact bar, which verifies the importance of complete wetting at a part scale. This study deepens the understanding of wetting behavior and clarifies the intrinsic correlation between interfacial bonding performance and surface topography.
Collapse
Affiliation(s)
- Hailang Wan
- School of Mechanical Engineering, Tongji University, Cao An Road 4800, Shanghai 201804, China
| | - Hao Teng
- School of Mechanical Engineering, Tongji University, Cao An Road 4800, Shanghai 201804, China
| | - Fangwei Lv
- School of Mechanical Engineering, Tongji University, Cao An Road 4800, Shanghai 201804, China
| | - Jianping Lin
- School of Mechanical Engineering, Tongji University, Cao An Road 4800, Shanghai 201804, China
- Shanghai Key Laboratory for A & D of Metallic Functional Material, Tongji University, Shanghai 200092, China
| | - Junying Min
- School of Mechanical Engineering, Tongji University, Cao An Road 4800, Shanghai 201804, China
- Shanghai Key Laboratory for A & D of Metallic Functional Material, Tongji University, Shanghai 200092, China
| |
Collapse
|
11
|
Liao W, Zhao S, Gao M. Oscillating Laser Conduction Joining of Dissimilar PET to Stainless Steel. Polymers (Basel) 2022; 14:polym14224956. [PMID: 36433083 PMCID: PMC9692861 DOI: 10.3390/polym14224956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
How to improve the bonding strength of polymers to metals has been one of the challenges in joining fields. It is generally assumed that laser transmission joining is better than laser conduction joining (LCJ) for transparent polymers, and few studies have been focused on LCJ. However, by introducing beam oscillation, an excellent result was obtained in the LCJ of transparent polyethylene terephthalate (PET) to 304 stainless steel. The interface defects of thermal decomposition and bubbles could be eliminated or reduced more efficiently in oscillating laser conduction joining (O-LCJ) rather than transmission joining. Correspondingly, the tensile shear force of joint O-LCJ could be increased by 23.8%, and the plasticity characterized by tensile displacement could be increased by seven times. The improvement mechanism was attributed to two factors by calculating the interface energy distribution and analyzing the force state at the interface. One is the homogenization of interface energy distribution caused by beam oscillation, which decreases the degradation and destruction of polymer macromolecular chains induced by high temperature. The other is the formation of interface bi-directional forces that both inhibit the porosity formation and intensify the chemical reactions. The results bring new insights and provide a new pathway to improve the joining performances of dissimilar polymers to metals.
Collapse
|
12
|
Bi X, Xu M, Xie Z, Li Y, Tian J, Wang Z, Wang Z. A Conceptual Strategy toward High-Reliability Metal-Thermoplastic Hybrid Structures Based on a Covalent-Bonding Mechanism. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50363-50374. [PMID: 36240257 DOI: 10.1021/acsami.2c14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metal-thermoplastic hybrid structures have proven their effectiveness to achieve lightweight design concepts in both primary and secondary structural components of advanced aircraft. However, the drastic differences in physical and chemical properties between metal and thermoplastic make it challenging to fabricate high-reliability hybrid structures. Here, a simple and universal strategy to obtain strong hybrid structures thermoplastics is reported by regulating the bonding behavior at metal/thermoplastic interfaces. To achieve such, we first researched and uncovered the bonding mechanism at metal/thermoplastic interfaces by experimental methods and density functional theory (DFT) calculations. The results suggest that the interfacial covalency, which is formed due to the interfacial reaction between high-electronegativity elements of thermoplastics and metallic elements at metal surfaces, dominates the interfacial bonding interaction of metal-thermoplastic hybrid structures. The differences in electronegativity and atomic size between bonding atoms influence the covalent-bond strength and finally control the interfacial reliability of hybrid structures. Based on our covalent-bonding mechanism, the carboxyl functional group (COOH) is specifically grafted on polyetheretherketone (PEEK) by plasma polymerization to increase the density and strength of interfacial covalency and thus fabricate high-reliability hybrid structures between PEEK and A6061-T6 aluminum alloy. Current work provides an in-depth understanding of the bonding mechanism at metal-thermoplastics interfaces, which opens a fascinating direction toward high-reliability metal-thermoplastic hybrid structures.
Collapse
Affiliation(s)
- Xiaoyang Bi
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Mengjia Xu
- School of Mechanical Engineering and Automation, Northeastern University, No. 11 Wenhua Road, Shenyang 110819, PR China
- Foshan Graduate School of Innovation, Northeastern University, No. 2 Zhihui Road, Foshan 528300, PR China
| | - Zhengchao Xie
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Yan Li
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Jiyu Tian
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Zhenmin Wang
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
- Research Center for Nature-Inspired Engineering, City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| |
Collapse
|