1
|
Zeng Y, Zhao Q, Jiang Z, Huang Z, Xuan W. Linker Engineering of High-Nuclearity {V 12@P 8W 48}-Based Metal-Organic Frameworks for Green-Light-Driven Oxidative Coupling of Amines. Inorg Chem 2025; 64:10012-10021. [PMID: 40344681 DOI: 10.1021/acs.inorgchem.5c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
The development of long-wavelength visible-light-responsive and reusable photocatalysts for organic transformation is of significant interest. Herein, we report the design and synthesis of high-nuclearity {V12@P8W48}-based metal-organic frameworks, POMOF1 and POMOF2, as heterogeneous photocatalysts for long-wavelength light-triggered oxidation. Linker engineering, by tuning from visible-light-inactive triazole (L1) to a photosensitive anthraquinone-derived ligand (L2), not only leads to the generation of porous 1D open channels within POMOF2 but also imparts a strong peak absorption centered at 500 nm. Moreover, the integration of {V12@P8W48} and Cu2+ ions together with L2 into POMOF2 enables the continued and broad absorption ranging from the ultraviolet to near-infrared region. Consequently, POMOF2 exhibited excellent activity in the green-light-driven oxidative coupling of benzylamines, affording a series of imines with high conversions of up to 99% under mild conditions. In contrast, POMOF1 could barely promote the reaction under the same conditions, further confirming the advantage of linker modulation. POMOF2 is stable and can be reused for three cycles with little loss of catalytic activity and structural integrity. This work highlights the potential of linker engineering as an efficient approach for designing long-wavelength photocatalysts, which can further push forward photoredox catalysis.
Collapse
Affiliation(s)
- Yang Zeng
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China
| | - Qixin Zhao
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China
| | - Zhiqiang Jiang
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China
| | - Zhenxuan Huang
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China
| | - Weimin Xuan
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China
| |
Collapse
|
2
|
Zhang R, Tian X, Zuo M, Zhang T, Pangannaya S, Hu XY. Bionic Artificial Leaves Based on AIE-Active Supramolecular Hydrogel for Efficient Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2504993. [PMID: 40344372 DOI: 10.1002/advs.202504993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/17/2025] [Indexed: 05/11/2025]
Abstract
A novel hydrogel-based biomimetic artificial leaf is fabricated by integrating host-guest interactions with covalent bonding. Specifically, a water-soluble tetraphenylethylene-embedded pillar[5]arene (m-TPEWP5), which exhibits aggregation-induced emission (AIE) property, is synthesized as the host molecule. An amphiphilic guest G is introduced to form a stable complex (HGSM) via non-covalent interactions. Subsequent copolymerization of HGSM with gelatin methacryloyl (GelMA) yields a hydrogel network (HGGelMA), which not only exhibits AIE characteristics but also enables encapsulation of the acceptor eosin Y (ESY), thereby resulting in the construction of an artificial light-harvesting system HGGelMA⊃ESY that serves as a biomimetic leaf. To emulate natural photosynthesis more closely and optimize the utilization of the collected energy, two organic reactions are performed within this artificial leaf: dehalogenation of bromoacetophenone derivatives and coupling of benzylamine. These reactions demonstrate remarkable catalytic activity and recycling ability during the photocatalytic process.
Collapse
Affiliation(s)
- Rongbo Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xueqi Tian
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China
| | - Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Tao Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Srikala Pangannaya
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Department of Chemistry, School of Humanities and Sciences, Gokaraju Rangaraju Institute of Engineering and Technology, Bachupally, Hyderabad, Telangana, 500090, India
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| |
Collapse
|
3
|
Jing Z, Liu S, Zhang X, Hong Y, Ma P, Wang J, Niu J. [Ru(bpy) 3] 2+ Derivatives-Incorporated POM@MOFs with Good Photocatalytic Activity for Visible-Light-Driven Oxidative Coupling of Amines to Imines. Inorg Chem 2025; 64:7832-7840. [PMID: 40196981 DOI: 10.1021/acs.inorgchem.5c01138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Two novel POM@MOFs, {H3Zn2.5(H2O)10[Ru(dcbpy)3][PMo11VIMoVO40]}·2H2O (RuZn-PMo) and {H3Ni2.5(H2O)12[Ru(dcbpy)3][PMo11VIMoVO40]}·5H2O (RuNi-PMo), have been synthesized through a traditional hydrothermal method. They are composed of [Ru(bpy)3]2+-derived hexa-carboxylate and Keggin-type anion [PMo11VIMoVO40]4-. In addition, their structures were well characterized by various spectroscopic methods. Under the irradiation of visible light (λ > 400 nm), RuZn-PMo and RuNi-PMo as heterogeneous photocatalysts showed efficient photocatalytic performance in the coupling reaction of amines, with TONs of 451 and 454, respectively. Moreover, RuZn-PMo exhibited excellent reusability and stability after three continuous reaction cycles. Besides, EPR measurements were performed to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Zhen Jing
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Sen Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xiaodong Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yumei Hong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
4
|
Li L, Liu Y, Wang J, Cai M, Ma P, Wang J, Niu J. Enhanced Oxidative Coupling of Thiols to Disulfides Using the Visible-Light-Responsive POM@MOF Constructed with Ru Metalloligands. Inorg Chem 2025; 64:6612-6620. [PMID: 40145581 DOI: 10.1021/acs.inorgchem.5c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
The photocatalytic oxidative coupling of thiols to disulfides by using visible light represents an economically viable and environmentally sustainable strategy. A novel POM@MOF photocatalyst (Ru-CdS-SiW) was synthesized through the encapsulation of Keggin-type [SiW12O40]4- within a MOF composed of Ru metalloligands and {Cd4S2O16} clusters. In this structure, the incorporation of POMs to the MOFs reduced the charge transport distance, facilitated the separation and transfer of photogenerated charges and holes, and prevented the recombination of electron-hole pairs. The Ru-CdS-SiW catalyst demonstrated exceptional catalytic performance, achieving a 98.1% yield in the S-S bond formation from 4-methylthiophenol coupling with an apparent quantum yield of 4.8% at 440 nm. Through comprehensive exploratory experiments and electron paramagnetic resonance (EPR) measurements, we elucidated the mechanism underlying the photoinduced oxidative coupling of thiols. Notably, this catalytic reaction operates under mild visible-light conditions and exhibits remarkable recyclability, presenting significant potential for applications in sensitive systems, such as protein disulfide bond formation.
Collapse
Affiliation(s)
- Luoning Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yanan Liu
- Puyang Institute of Technology, Henan University, Puyang, Henan 457000, P. R. China
| | - Jing Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Minzhen Cai
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
5
|
Zhang Z, Zhang X, Zhang B, Hu X, Wu J, Hou H. Highly Efficient Yolk-Shell Photocatalyst Constructed by Integration of Ni 2P and Cu 2O Nanoparticles to Defective Metal-Organic Frameworks for Visible-Light-Driven Amine Oxidation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19722-19733. [PMID: 40106671 DOI: 10.1021/acsami.5c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Realizing the directional migration of photogenerated carriers plays an important role in improving the photocatalytic performance. Meanwhile, light-driven oxidative coupling of benzylamine under ambient conditions with an inexpensive catalyst is highly desirable for the industrial field. Herein, via in situ synthesis, defect engineering, and photodeposition, a yolk-shell nanostructured photocatalyst, Ni2P@OH-NH2-UiO-66@Cu2O, featuring nickel phosphide (Ni2P) nanoparticles (NPs) trapped inside a defect engineered metal-organic framework (MOF, namely OH-NH2-UiO-66) and Cu2O NPs adhering on the surface of MOFs, has been rationally fabricated for the achievement of spatial separation of oxidation/reduction cocatalyst in photocatalytic reaction systems. The yolk-shell structure can effectively avoid the aggregation of the Ni2P and Cu2O NPs. Remarkably, the separation of electron collector Ni2P and hole collector Cu2O regulates the directional movement of the photogenerated carriers and effectively improves the electron-hole separation efficiency to generate abundant reactive superoxide radicals (•O2-) and hydroxyl radicals (•OH). Ni2P@OH-NH2-UiO-66@Cu2O achieves a conversion of 99% for the oxidative coupling of benzylamine into imine within 1 h at ambient temperature under visible-light irradiation. The present study provides an economical method to construct a MOF-based yolk-shell photocatalyst for the oxidative coupling of amines.
Collapse
Affiliation(s)
- Zhaozhen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiying Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Bin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaomeng Hu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jie Wu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hongwei Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
6
|
Yuan Z, Wang J, Li H, Li L, Ma P, Wang J, Niu J. Visible-Light-Responsive Tetranuclear Ir-Based Polyoxometalates Achieve Photocatalytic Baeyer-Villiger Oxidation of Ketones. Inorg Chem 2025; 64:5846-5855. [PMID: 40102192 DOI: 10.1021/acs.inorgchem.4c03410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Synthesizing efficient photocatalysts with a broad-spectrum response is crucial for improving solar energy utilization. In this work, we have constructed two examples of tetrameric Ir-based polyoxometalates by introducing an Ir ion. The introduction of Ir ions lowers the band gap energy, and the light absorption range is extended into the visible region. Both displayed satisfactory reactivity for the visible-light-catalyzed Baeyer-Villiger reaction of cyclohexanone, especially compound 1, which reacted up to 95.1% yield for 3 h with TON and TOF values of 951 and 510 h-1, respectively. Meanwhile, 1 also presents excellent cyclic and structural stability, and the yield can still reach 92.2% after five cyclic reactions.
Collapse
Affiliation(s)
- Zelong Yuan
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004 ,P. R. China
| | - Jing Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004 ,P. R. China
| | - Huafeng Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004 ,P. R. China
| | - Luoning Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004 ,P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004 ,P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004 ,P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004 ,P. R. China
| |
Collapse
|
7
|
Li L, Liu Y, Wang J, Cai M, Liu S, Ma P, Wang J, Niu J. Ru Metalloligands Participate in the Construction of POM@MOF for Enhancing the Visible Photoinduced Baeyer-Villiger Oxidation Reaction. Inorg Chem 2024; 63:24506-24516. [PMID: 39688152 DOI: 10.1021/acs.inorgchem.4c03064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Directed synthesis of high-efficiency visible photoinduced Baeyer-Villiger oxidation catalysts is of primary significance. Here, the isopolymolybdate anion [β-Mo8O26]4- is for the first time encapsulated with the photosensitive metalloligand [Ru(bpy)2(H2dcbpy)]2+ (bpy = 2,2'-bipyridine; H2dcbpy = 2,2'-bipyridine-5,5'-dicarboxylic acid) to synthesize polyoxometalate@metal-organic frameworks, {(CdDMF)2[Ru(bpy)2(dcbpy)]3([β-Mo8O26])}·5DMF (Ru-Mo8). The composite photocatalyst Ru-Mo8 not only has a light absorption of 700 nm but also shortens the photogenerated electron transfer distances and accelerates charge and proton transfer. Ru-Mo8 can perform the Baeyer-Villiger oxidation with high selectivity and up to 96.7% yield under visible light (λ > 400 nm) irradiation. The turnover number and turnover frequency of the reaction were computed to be 967 and 548 h-1, respectively, and the apparent quantum yield was 6.84% by 425 nm. Simultaneously, the radical mechanism of Baeyer-Villiger oxidation of Ru-Mo8 in the O2/benzaldehyde system under visible light (λ > 400 nm) irradiation was proposed.
Collapse
Affiliation(s)
- Luoning Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yanan Liu
- Puyang Institute of Technology, Henan University, Puyang, Henan 457000, P. R. China
| | - Jing Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Minzhen Cai
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Sen Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
8
|
Wang W, Liu S, Ma P, Wang J, Niu J. Self-Assembled 8-Ti-Containing Polyoxomolybdate for the Photocatalytic Hydrogen Evolution. Inorg Chem 2024; 63:20625-20632. [PMID: 39418323 DOI: 10.1021/acs.inorgchem.4c03255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
An S-shaped 8-Ti-containing polyoxomolybdate (NH4)Cs2Na6H3[Ti8(GeMo9O34)2(GeMo5O23)2]·44H2O (1) has been prepared under the one-pot hydrothermal method and further characterized. According to single-crystal X-ray, compound 1 consists of two {GeMo9O34} and two {GeMo5O23} segments, which are linked with a {Ti8O34} cluster. Moreover, the {GeMo5O23} fragment is rare and the first discovery, which enriches the lacunary Keggin-type family and offers the possibility of obtaining new structures. Among all of the reported polyoxomolybdates, compound 1 has the highest nuclearity of Ti centers. From the photocatalytic hydrogen evolution studies, compound 1 can be used as the heterogeneous catalyst with an H2 evolution rate of 2392.6 μmol g-1 h-1 under minimally optimized conditions.
Collapse
Affiliation(s)
- Wenyu Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Sen Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
9
|
Wang J, Li L, Liu Y, Yuan Z, Meng S, Ma P, Wang J, Niu J. Intensifying Photocatalytic Baeyer-Villiger Oxidation of Ketones with the Introduction of Ru Metalloligands and Bimetallic Units in POM@MOF. Inorg Chem 2024; 63:7325-7333. [PMID: 38602808 DOI: 10.1021/acs.inorgchem.4c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The synthesis of visible light-responsive and efficient photocatalysts toward green Baeyer-Villiger oxidation organic synthesis is of extraordinary significance. In this work, we have synthesized two examples of visible light responsive crystalline polyoxometalate@metal-organic framework materials Ru-NiMo and Ru-CoMo by introducing Ru metalloligands and {CdM3O12} bimetallic units (M = Ni or Co). This is the first report of metalloligand-modified polyoxometalate@metal-organic framework materials with bimetallic nodes, and the materials form a three-dimensional framework directly through coordination bonds between {CdM3O12} bimetallic units and metalloligands. In particular, Ru-NiMo can achieve efficient photocatalytic conversion of cyclohexanone to ε-caprolactone in yields as high as 95.5% under visible light excitation in the range of λ > 400 nm, achieving a turnover number and turnover frequency of 955 and 440 h-1, respectively, which are the best known photocatalysts for Baeyer-Villiger oxidation, while apparent quantum yield measured at 485 nm is 4.4%. Moreover, Ru-NiMo exhibited excellent structural stability and recyclability, producing a 90.8% yield after five cycles of recycling.
Collapse
Affiliation(s)
- Jing Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Luoning Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yanan Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
- Puyang Institute of Technology, Henan University, Puyang, Henan 457000, P. R. China
| | - Zelong Yuan
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Sha Meng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
10
|
Tang W, Liu Y, Jin Y, Wang Y, Shi W, Ma P, Niu J, Wang J. Photocatalytic Reduction of Nitrobenzene to Aniline by an Intriguing {Ru(C 6H 6)}-Based Heteropolytungstate. Inorg Chem 2024; 63:6260-6267. [PMID: 38517738 DOI: 10.1021/acs.inorgchem.3c04450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
In this paper, we have successfully synthesized a structurally novel heteropolytungstate via coordination of four {Ru(C6H6)} and trivacant {TeW9O33} clusters, formulated as Cs4Na2H2[Te2W20O72(H2O){(C6H6)Ru}4]·12H2O (1). Compound 1 inherited the strong absorption of [Ru(C6H6)Cl2]2 in the visible region and {TeW9O33} in the UV region, providing a good basis for photocatalysis. As expected, compound 1 showed good photocatalytic activity in the visible-light-driven reduction of nitrobenzene using N2H4·H2O as a reductant with a yield of 99.8%, a high turnover number (TON = 330), and a high turnover frequency (TOF = 24 h-1). The cyclic experiment of nitrobenzene reduction indicated that compound 1 was an effective and stable heterogeneous catalyst. Finally, the nitrobenzene reduction pathway was affirmed using condensation with azobenzene as a reaction intermediate based on control experiments.
Collapse
Affiliation(s)
- Wei Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yanan Liu
- Puyang Institute of Technology, Henan University, Puyang, Henan 457000, P. R. China
| | - Yuzhen Jin
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yuting Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Weixia Shi
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
11
|
Wang J, Liu Y, Yuan Z, Li L, Ma P, Wang J, Niu J. Visible-Light-Responsive Polyoxometalate@Metal-Organic Frameworks Involving Ir Metalloligands for Highly Selective Photocatalytic Oxidation of Sulfides to Sulfoxide. Chemistry 2024; 30:e202303401. [PMID: 38057690 DOI: 10.1002/chem.202303401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
The synthesis of highly efficient visible-light-responsive photocatalysts is fundamental to solving the problems of low efficiency and poor selectivity in photocatalytic organic synthesis reactions. We synthesized a crystalline polyoxometalate @metal-organic framework material {Zn4 (H2 O)8 [Ir(ppy)2 (dcbpy)]4 [SiW12 O40 ]} ⋅ 4H2 O (Ir-SiW) by self-assembly of Ir metalloligands with POMs. The introduction of Ir metalloligands extends the light absorbing range to visible light, improving the efficient utilization of solar energy. The transfer of photogenerated electrons from Ir metalloligands to SiW12 was observed under visible light irradiation, which boosted the carrier separation efficiency. The synergistic effect of the two components increased the photocatalytic thioether oxidation activity, and the product methyl phenyl sulfoxide for 2.5 h under visible light irradiation (λ >400 nm) reached 99.5 %, which was higher than those of other POM-based photocatalysts. Meanwhile, the yield of methyl phenyl sulfoxide was still higher than 97 % after three cycles, demonstrating the high stability and reusability of Ir-SiW.
Collapse
Affiliation(s)
- Jing Wang
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Yanan Liu
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
- Puyang Institute of Technology, Henan University, Puyang, Henan, 457000, P. R. China
| | - Zelong Yuan
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Luoning Li
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| |
Collapse
|
12
|
Yang MY, Zhang SB, Zhang M, Li ZH, Liu YF, Liao X, Lu M, Li SL, Lan YQ. Three-Motif Molecular Junction Type Covalent Organic Frameworks for Efficient Photocatalytic Aerobic Oxidation. J Am Chem Soc 2024; 146:3396-3404. [PMID: 38266485 DOI: 10.1021/jacs.3c12724] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Covalent organic frameworks (COFs), with the features of flexible structure regulation and easy introduction of functional groups, have aroused broad interest in the field of photocatalysis. However, due to the low light absorption intensity, low photoelectron conversion efficiency, and lack of suitable active sites, it remains a great challenge to achieve efficient photocatalytic aerobic oxidation reactions. Herein, based on reticular chemistry, we rationally designed a series of three-motif molecular junction type COFs, which formed dual photosensitizer coupled redox molecular junctions containing multifunctional COF photocatalysts. Significantly, due to the strong light adsorption ability of dual photosensitizer units and integrated oxidation and reduction features, the PY-BT COF exhibited the highest activity for photocatalytic aerobic oxidation. Especially, it achieved a photocatalytic benzylamine conversion efficiency of 99.9% in 2.5 h, which is much higher than that of the two-motif molecular junctions with only one photosensitizer or redox unit lacking COFs. The mechanism of selective aerobic oxidation was studied through comprehensive experiments and density functional theory calculations. The results showed that the photoinduced electron transfer occurred from PY and then through triphenylamine to BT. Furthermore, the thermodynamics energy for benzylamine oxidation on PY-BT COF was much lower than that for others, which confirmed the synergistic effect of dual photosensitizer coupled redox molecular junction COFs. This work provided a new strategy for the design of functional COFs with three-motif molecular junctions and also represented a new insight into the multifunctional COFs for organic catalytic reactions.
Collapse
Affiliation(s)
- Ming-Yi Yang
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Shuai-Bing Zhang
- School of Chemistry and Environment Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Mi Zhang
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Ze-Hui Li
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Yu-Fei Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Xing Liao
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Meng Lu
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
13
|
Song S, Yang M, He F, Zhang X, Gao Y, An B, Ding H, Gai S, Yang P. Multiple therapeutic mechanisms of pyrrolic N-rich g-C 3N 4 nanosheets with enzyme-like function in the tumor microenvironment. J Colloid Interface Sci 2023; 650:1125-1137. [PMID: 37473473 DOI: 10.1016/j.jcis.2023.06.177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 06/25/2023] [Indexed: 07/22/2023]
Abstract
Nanozyme-based synergistic catalytic therapies for tumors have attracted extensive research attention. However, the unsatisfactory efficiency and negative impact of the tumor microenvironment (TME) hinder its clinical applications. In this study, we provide an easy method to prepare transition metals loaded onto pyrrolic nitrogen-rich g-C3N4 (PN-g-C3N4) for forming metal-N4 sites. This N-rich material effectively transfers electrons from g-C3N4 to metal-N4 sites, promotes the oxidation-reduction reaction of metals with different valence states, and improves material reusability. Under TME conditions, copper ions loaded onto PN-g-C3N4 (Cu-PN-g-C3N4, CPC) can produce ·OH through a Fenton-like reaction for tumor inhibition. This Fenton-like reaction and tumor cell inhibition can be improved further by a photodynamic effect caused by light irradiation. We introduced upconversion nanoparticles (UCNPs) into CPC to obtain nano-enzymes (UCNPs@Cu-PN-g-C3N4, UCPC) for effectively penetrating the tissue, which emits light corresponding to the UV absorption region of CPC when excited with 980 nm near-infrared (NIR) light. The nanoplatform can reduce H2O2 concentration upon exposure to NIR light; this induces an increase in dissolved oxygen content and produces a higher supply of reactive oxygen species (ROS) for destroying tumor cells. Owing to the narrow bandgap (1.92 eV) of UCPC under 980 light irradiation, even under the condition of hypoxia, the excited electrons in the conduction band can reduce insoluble O2 through a single electron transfer process, thus effectively generating O2•-. Nanoenzyme materials with catalase properties produce three types of ROS (·OH, O2•- and 1O2) when realizing chemodynamic and photodynamic therapies. An excellent therapeutic effect was established by killing cells in vitro and the tumor-inhibiting effect in vivo, proving that the prepared nanoenzymes have an effective therapeutic effect and that the endogenous synergistic treatment of multiple treatment technologies can be realized.
Collapse
Affiliation(s)
- Shanshan Song
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Miao Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Xiao Zhang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, PR China;.
| | - Yijun Gao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Baichao An
- College of Sciences, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, PR China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| |
Collapse
|
14
|
Cao YD, Mu WX, Gong M, Fan LL, Han J, Liu H, Qi B, Gao GG. Enhanced catalysis of a vanadium-substituted Keggin-type polyoxomolybdate supported on the M 3O 4/C (M = Fe or Co) surface enables efficient and recyclable oxidation of HMF to DFF. Dalton Trans 2023; 52:16303-16314. [PMID: 37855372 DOI: 10.1039/d3dt02935b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
In the reaction of oxidizing 5-hydroxymethylfurfural (HMF), attaining high efficiency and selectivity in the conversion of HMF into DFF presents a challenge due to the possibility of forming multiple products. Polyoxometalates are considered highly active catalysts for HMF oxidation. However, the over-oxidation of products poses a challenge, leading to decreased purity and yield. In this work, metal-organic framework-derived Fe3O4/C and Co3O4/C were designed as carriers for the vanadium-substituted Keggin-type polyoxomolybdate H5PMo10V2O40·35H2O (PMo10V2). In this complex system, spinel oxides can effectively adsorb HMF molecules and cooperate with PMo10V2 to catalyze the aerobic oxidation of HMF. As a result, the as-prepared PMo10V2@Fe3O4/C and PMo10V2@Co3O4/C catalysts can achieve efficient conversion of HMF into DFF with almost 100% selectivity. Among them, PMo10V2@Fe3O4/C exhibits a higher conversion rate (99.1%) under milder reaction conditions (oxygen pressure of 0.8 MPa). Both catalysts exhibited exceptional stability and retained their activity and selectivity even after undergoing multiple cycles. Studies on mechanisms by in situ diffuse reflectance infrared Fourier transform spectroscopy and X-ray photoelectron spectroscopy revealed that the V5+ and Mo6+ in PMo10V2, together with the metal ions in the spinel oxides, act as active centers for the catalytic conversion of HMF. Therefore, it is proposed that PMo10V2 and M3O4/C (M = Fe, Co) cooperatively catalyze the transformation of HMF into DFF via a proton-coupled electron transfer mechanism. This study offers an innovative approach for designing highly selective and recyclable biomass oxidation catalysts.
Collapse
Affiliation(s)
- Yun-Dong Cao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Wen-Xia Mu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Mengdi Gong
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Lin-Lin Fan
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Jie Han
- School of Science and Technology, Hong Kong Metropolitan University, Homantin, Kowloon, Hong Kong, China
| | - Hong Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Bin Qi
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Guang-Gang Gao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| |
Collapse
|
15
|
Li QQ, Pan PH, Liu H, Zhou L, Zhao SY, Deng B, He YJ, Song JX, Liu P, Wang YY, Li JL. Incorporating a D-A-D-Type Benzothiadiazole Photosensitizer into MOFs for Photocatalytic Oxidation of Phenylsulfides and Benzylamines. Inorg Chem 2023; 62:17182-17190. [PMID: 37815498 DOI: 10.1021/acs.inorgchem.3c02212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Oxidation and removal of highly toxic sulfides and amines are particularly important for environmental and human security but remain challenging. Here, incorporating an excellent photosensitizer, donor-acceptor-donor (D-A-D)-type 4,4'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzoic (H2L), into metal-organic frameworks (MOFs) has been manifested to promote the charge separation, affording four three-dimensional (3D) MOFs (isostructural 1-Co/1-Zn with Co2/Zn2 units, and 2-Gd/2-Tb with Gd/Tb-cluster chains) as photocatalysts in the visible light-driven air-O2-mediated catalytic oxidation and removal of hazardous phenylsulfides and benzylamines. Impressively, structure-property correlation illustrated that the transition metal centers assembled in MOFs play an important role in the photocatalytic activity, and we can conclude that 1-Zn can be a robust heterogeneous catalyst possessing good light adsorption and fast charge separation in oxidation removal reactions of both benzylamines and phenylsulfides under visible light irradiation and room temperature with excellent activity/selectivity, stability, and reusability.
Collapse
Affiliation(s)
- Quan-Quan Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, People's Republic of China
| | - Peng-Hui Pan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Hua Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Li Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Shu-Ya Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Bing Deng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Yu-Jie He
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Jin-Xi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, People's Republic of China
| | - Ping Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Jian-Li Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| |
Collapse
|
16
|
Liu Y, Li L, Meng S, Wang J, Xu Q, Ma P, Wang J, Niu J. Fabrication of Polyoxometalate-Based Metal-Organic Frameworks Integrating Paddlewheel Rh 2(OAc) 4 for Visible-Light-Driven Oxidative Coupling of Amines. Inorg Chem 2023; 62:12954-12964. [PMID: 37531454 DOI: 10.1021/acs.inorgchem.3c01749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The development of visible-light-responsive, environmentally friendly, and reusable photocatalysts for organic oxidation reactions is of vital significance. Herein, four polyoxometalate-based metal-organic frameworks (POMOFs) were synthesized and systematically characterized by assembling the paddlewheel complex Rh2(OAc)4 and various polyoxometalates (POMs). Single-crystal X-ray diffraction analysis revealed that the four POMOFs were isomorphic and possessed rare structural features among the POMOFs, with POMs as nodes and Rh2(OAc)4 as linkers. As expected, the activities of the four POMOFs for the photocatalytic oxidative coupling of benzylamine were better than that of Rh2(OAc)4 or POMs individually, which was ascribed to the synergistic effect between them, and the intrinsic reasons for the difference in the activity were explained via electrochemical measurements. In particular, the product imine yield reached 96.1% with NaRh-SiW12 as the catalyst and a turnover number and a turnover frequency of 480.5 and 120.5 h-1, respectively, while the product yield remained as high as 92% after three repetitions, evidencing its high stability. Moreover, the higher activities of the four POMOFs for the selective epoxidation of various alkenes reaffirm the synergistic effect between Rh2(OAc)4 and POMs.
Collapse
Affiliation(s)
- Yanan Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
- Puyang Institute of Technology, Henan University, Puyang, Henan 457000, P. R. China
| | - Luoning Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Sha Meng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jing Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Qian Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
17
|
Liu Y, Wang J, Ji K, Meng S, Luo Y, Li H, Ma P, Niu J, Wang J. Construction of Polyoxometalate-based Metal−Organic Frameworks through Covalent Bonds for Enhanced Visible Light-Driven Coupling of Alcohols with Amines. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|