1
|
Zhu L, Liu Q, Zhang Y, Sun H, Chen S, Liang L, An S, Yang X, Zang L. Recent Advances in the Tunable Optoelectromagnetic Properties of PEDOTs. Molecules 2025; 30:179. [PMID: 39795235 PMCID: PMC11721937 DOI: 10.3390/molecules30010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Conducting polymers represent a crucial class of functional materials with widespread applications in diverse fields. Among these, poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives have garnered significant attention due to their distinctive optical, electronic, and magnetic properties, as well as their exceptional tunability. These properties often exhibit intricate interdependencies, manifesting as synergistic, concomitant, or antagonistic relationships. In optics, PEDOTs are renowned for their high transparency and unique photoelectric responses. From an electrical perspective, they display exceptional conductivity, thermoelectric, and piezoelectric performance, along with notable electrochemical activity and stability, enabling a wide array of electronic applications. In terms of magnetic properties, PEDOTs demonstrate outstanding electromagnetic shielding efficiency and microwave absorption capabilities. Moreover, these properties can be precisely tailored through molecular structure modifications, chemical doping, and composite formation to suit various application requirements. This review systematically examines the mechanisms underlying the optoelectromagnetic properties of PEDOTs, highlights their tunability, and outlines prospective research directions. By providing critical theoretical insights and technical references, this review aims to advance the application landscape of PEDOTs.
Collapse
Affiliation(s)
- Ling Zhu
- School of Pharmacy and Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.Z.); (Q.L.); (S.A.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Qi Liu
- School of Pharmacy and Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.Z.); (Q.L.); (S.A.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Yuqian Zhang
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Hui Sun
- Binzhou Testing Center, Binzhou 256600, China;
| | - Shuai Chen
- School of Pharmacy and Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.Z.); (Q.L.); (S.A.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Lishan Liang
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Siying An
- School of Pharmacy and Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.Z.); (Q.L.); (S.A.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Xiaomei Yang
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA;
| | - Ling Zang
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA;
| |
Collapse
|
2
|
Liu S, Huo B, Guo CY. Progress on Material Design and Device Fabrication via Coupling Photothermal Effect with Thermoelectric Effect. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3524. [PMID: 39063816 PMCID: PMC11278506 DOI: 10.3390/ma17143524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Recovery and utilization of low-grade thermal energy is a topic of universal importance in today's society. Photothermal conversion materials can convert light energy into heat energy, which can now be used in cancer treatment, seawater purification, etc., while thermoelectric materials can convert heat energy into electricity, which can now be used in flexible electronics, localized cooling, and sensors. Photothermoelectrics based on the photothermal effect and the Seebeck effect provide suitable solutions for the development of clean energy and energy harvesting. The aim of this paper is to provide an overview of recent developments in photothermal, thermoelectric, and, most importantly, photothermal-thermoelectric coupling materials. First, the research progress and applications of photothermal and thermoelectric materials are introduced, respectively. After that, the classification of different application areas of materials coupling photothermal effect with thermoelectric effect, such as sensors, thermoelectric batteries, wearable devices, and multi-effect devices, is reviewed. Meanwhile, the potential applications and challenges to be overcome for future development are presented, which are of great reference value in waste heat recovery as well as solar energy resource utilization and are of great significance for the sustainable development of society. Finally, the challenges of photothermoelectric materials as well as their future development are summarized.
Collapse
Affiliation(s)
| | | | - Cun-Yue Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (S.L.); (B.H.)
| |
Collapse
|
3
|
Kondapalli VKR, Akinboye OI, Zhang Y, Donadey G, Morrow J, Brittingham K, Raut AA, Khosravifar M, Al-Riyami B, Bahk JH, Shanov V. Three-Dimensional Graphene Sheet-Carbon Veil Thermoelectric Composite with Microinterfaces for Energy Applications. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38437159 DOI: 10.1021/acsami.3c19605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Over the years, various processing techniques have been explored to synthesize three-dimensional graphene (3DG) composites with tunable properties for advanced applications. In this work, we have demonstrated a new procedure to join a 3D graphene sheet (3DGS) synthesized by chemical vapor deposition (CVD) with a commercially available carbon veil (CV) via cold rolling to create 3DGS-CV composites. Characterization techniques such as scanning electron microscopy (SEM), Raman mapping, X-ray diffraction (XRD), electrical resistance, tensile strength, and Seebeck coefficient measurements were performed to understand various properties of the 3DGS-CV composite. Extrusion of 3DGS into the pores of CV with multiple microinterfaces between 3DGS and the graphitic fibers of CV was observed, which was facilitated by cold rolling. The extruded 3D graphene revealed pristine-like behavior with no change in the shape of the Raman 2D peak and Seebeck coefficient. Thermoelectric (TE) power generation and photothermoelectric responses have been demonstrated with in-plane TE devices of various designs made of p-type 3DGS and n-type CV couples yielding a Seebeck coefficient of 32.5 μV K-1. Unlike various TE materials, 3DGS, CV, and the 3DGS-CV composite were very stable at high relative humidity. The 3DGS-CV composite revealed a thin, flexible profile, good moisture and thermal stability, and scalability for fabrication. These qualities allowed it to be successfully tested for temperature monitoring of a Li-ion battery during charging cycles and for large-area temperature mapping.
Collapse
Affiliation(s)
| | - Oluwasegun Isaac Akinboye
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati 45221, Ohio United States
| | - Yu Zhang
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati 45221, Ohio United States
| | - Guillaume Donadey
- Unite de Formation de Chimie, University of Bordeaux, Talence 33405, Gironde France
| | - Justin Morrow
- Thermo Fisher Scientific, Madison 53711, Wisconsin United States
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati 45221, Ohio United States
| | - Kyle Brittingham
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati 45221, Ohio United States
| | - Ayush Arun Raut
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati 45221, Ohio United States
| | - Mahnoosh Khosravifar
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati 45221, Ohio United States
| | - Bashar Al-Riyami
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati 45221, Ohio United States
| | - Je-Hyeong Bahk
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati 45221, Ohio United States
| | - Vesselin Shanov
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati 45221, Ohio United States
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati 45221, Ohio United States
| |
Collapse
|
4
|
Liu Z, Tian B, Li Y, Guo Z, Zhang Z, Luo Z, Zhao L, Lin Q, Lee C, Jiang Z. Evolution of Thermoelectric Generators: From Application to Hybridization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304599. [PMID: 37544920 DOI: 10.1002/smll.202304599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Considerable thermal energy is emitted into the environment from human activities and equipment operation in the course of daily production. Accordingly, the use of thermoelectric generators (TEGs) can attract wide interest, and it shows high potential in reducing energy waste and increasing energy recovery rates. Notably, TEGs have aroused rising attention and been significantly boosted over the past few years, as the energy crisis has worsened. The reason for their progress is that thermoelectric generators can be easily attached to the surface of a heat source, converting heat energy directly into electricity in a stable and continuous manner. In this review, applications in wearable devices, and everyday life are reviewed according to the type of structure of TEGs. Meanwhile, the latest progress of TEGs' hybridization with triboelectric nanogenerator (TENG), piezoelectric nanogenerator (PENG), and photovoltaic effect is introduced. Moreover, prospects and suggestions for subsequent research work are proposed. This review suggests that hybridization of energy harvesting, and flexible high-temperature thermoelectric generators are the future trends.
Collapse
Affiliation(s)
- Zhaojun Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
| | - Bian Tian
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Shandong Province, Yantai City, Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 265503, China
| | - Yao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zijun Guo
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhongkai Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhifang Luo
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qijing Lin
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chengkuo Lee
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
5
|
Yang ZY, Jin XZ, Chen SY, Lei YZ, Wang Y. Designing Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate/Graphene Oxide/Graphene Nanosheet/Polyethylene Glycol Phase-Change Composites with Superior Thermal Management for Photo-thermoelectric Generators. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47111-47124. [PMID: 37768923 DOI: 10.1021/acsami.3c11161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Recently, growing interest in self-powered devices has led to the invention of new energy conversion devices. Photo-thermoelectric generators (PTEGs) have rapidly developed for their ability to harvest both light and thermal energy, but these devices are overly dependent on the continuity of energy input and cannot sustain output in an emergency situation. In the current study, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/graphene oxide (GO)/graphene nanosheets (GNPs)/polyethylene glycol (PEG) phase-change composites (PCCs) were prepared with freeze-drying and vacuum-filling processes to acquire materials suitable for imparting energy storage characteristics to PTEGs. The melting and crystallization enthalpies of the PCCs fabricated based on the PEDOT:PSS/GO/GNP aerogels can reach 211.5 and 207.6 J g-1, respectively, which increase by nearly 5% compared with pure PEG, and the growth rate of thermal conductivity of the composites is as high as 262.7% (1.12 W m-1 K-1). Meanwhile, the excellent photothermal properties and high-temperature shape stability that pure PEG does not possess can also be imparted to PCCs by the aerogels. The PTEG assembled with PCCs and thermoelectric components can achieve a continuous output of over 1500 s after 300 s of light irradiation. After integrating the output of the device during the lamp on/off period, it is found that the total output of the device during the light-off period (8.4 V and 9.6 mW) can far exceed its total output during the light-on period (2.7 V and 4.4 mW). This work provides guidance for modulating the performance of PCCs and giving PTEGs the ability to operate under emergency or extremely harsh conditions and the prepared PTEGs are highly promising for practical use.
Collapse
Affiliation(s)
- Zhen-Yu Yang
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Xin-Zheng Jin
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Shang-Yu Chen
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yan-Zhou Lei
- Analytical and Testing Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
6
|
Atinafu DG, Yun BY, Kim YU, Kim S. Nanopolyhybrids: Materials, Engineering Designs, and Advances in Thermal Management. SMALL METHODS 2023; 7:e2201515. [PMID: 36855164 DOI: 10.1002/smtd.202201515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/10/2023] [Indexed: 06/09/2023]
Abstract
The fundamental requirements for thermal comfort along with the unbalanced growth in the energy demand and consumption worldwide have triggered the development and innovation of advanced materials for high thermal-management capabilities. However, continuous development remains a significant challenge in designing thermally robust materials for the efficient thermal management of industrial devices and manufacturing technologies. The notable achievements thus far in nanopolyhybrid design technologies include multiresponsive energy harvesting/conversion (e.g., light, magnetic, and electric), thermoregulation (including microclimate), energy saving in construction, as well as the miniaturization, integration, and intelligentization of electronic systems. These are achieved by integrating nanomaterials and polymers with desired engineering strategies. Herein, fundamental design approaches that consider diverse nanomaterials and the properties of nanopolyhybrids are introduced, and the emerging applications of hybrid composites such as personal and electronic thermal management and advanced medical applications are highlighted. Finally, current challenges and outlook for future trends and prospects are summarized to develop nanopolyhybrid materials.
Collapse
Affiliation(s)
- Dimberu G Atinafu
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Beom Yeol Yun
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young Uk Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
7
|
Tang XH, Jin XZ, Zhang Q, Zhao Q, Yang ZY, Fu Q. Achieving Free-Standing PEDOT:PSS Solar Generators with Efficient All-in-One Photothermoelectric Conversion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23286-23298. [PMID: 37139664 DOI: 10.1021/acsami.3c02852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has attracted widespread attention in solar generation due to its unique all-in-one photothermoelectric effect. However, the poor photothermal conversion, low conductivity, and unsatisfied mechanical properties limit its practical application. Herein, ionic liquids (IL) were first used to improve the conductivity of PEDOT:PSS through ion exchange, then surface-charged nanoparticles SiO2-NH2 (SiO2+) were added to promote the dispersion of IL and as a thermal insulator to decrease thermal conductivity. It resulted in a largely enhanced electrical conductivity and decreased thermal conductivity of PEDOT:PSS simultaneously. The obtained PEDOT:PSS/Ionic Liquid/SiO2+ (P_IL_SiO2+) film generated an excellent photothermal conversion of 46.15 °C, which improved ∼134 and ∼82.3% compared with PEDOT:PSS and PEDOT:PSS/Ionic Liquid (P_IL) composites, respectively. In addition, the thermoelectric performance increased by ∼270% more than P_IL films. As a result, the photothermoelectric effect for the self-supported three-arm devices produced an enormous output current and power of ∼50 μA and 13.57 nW, respectively, which showed significant improvement compared with other PEDOT:PSS films reported in the literature. Furthermore, the devices demonstrated outstanding stability with an internal resistance variation of less than 5% after 2000 cycles of bending. Our research offered significant insights into the flexible, high-performance, all-in-one photothermoelectric integration.
Collapse
Affiliation(s)
- Xiao-Hong Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xin-Zheng Jin
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Qi Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Qian Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zhen-Yu Yang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
8
|
Wang J, Xie Z, Liu JA, Zhou R, Lu G, Yeow JTW. System design of large-area vertical photothermoelectric detectors based on carbon nanotube forests with MXene electrodes. NANOSCALE ADVANCES 2023; 5:1133-1140. [PMID: 36798493 PMCID: PMC9926910 DOI: 10.1039/d2na00895e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/24/2022] [Indexed: 06/18/2023]
Abstract
Photothermoelectric (PTE) detectors that combine photothermal and thermoelectric conversion have emerged in recent years. They can overcome bandgap limitations and achieve effective infrared detection. However, the development of PTE detectors and the related system design are in the early phases. Herein, we present vertical PTE detectors utilizing the active layer of carbon nanotube forests with MXenes acting as top electrodes. The detector demonstrates its capacity for sensitive infrared detection and rapid infrared response. We also investigated the relationship between photoresponse and different MXene electrode types as well as their thickness, which guides the PTE detector configuration design. Furthermore, we packed the PTE detectors with a polytetrafluoroethylene (PTFE, Teflon) cavity. The photoresponse is improved and the degradation is significantly delayed. We also applied this PTE detector system for non-destructive tracking (NDT) applications, where the photovoltage mapping pattern proves the viability of the imaging track. This work paves the way toward infrared energy harvesters and customized industrial NDT measurement.
Collapse
Affiliation(s)
- Jiaqi Wang
- Advanced Micro-/Nano- Devices Lab, Department of Systems Design Engineering, University of Waterloo 200 University Ave West Waterloo Ontario N2L 3G1 Canada +1-519-888-4567 ext. 32152
| | - Zhemiao Xie
- Advanced Micro-/Nano- Devices Lab, Department of Systems Design Engineering, University of Waterloo 200 University Ave West Waterloo Ontario N2L 3G1 Canada +1-519-888-4567 ext. 32152
| | - Jiayu Alexander Liu
- Advanced Micro-/Nano- Devices Lab, Department of Systems Design Engineering, University of Waterloo 200 University Ave West Waterloo Ontario N2L 3G1 Canada +1-519-888-4567 ext. 32152
| | - Rui Zhou
- Advanced Micro-/Nano- Devices Lab, Department of Systems Design Engineering, University of Waterloo 200 University Ave West Waterloo Ontario N2L 3G1 Canada +1-519-888-4567 ext. 32152
| | - Guanxuan Lu
- Advanced Micro-/Nano- Devices Lab, Department of Systems Design Engineering, University of Waterloo 200 University Ave West Waterloo Ontario N2L 3G1 Canada +1-519-888-4567 ext. 32152
| | - John T W Yeow
- Advanced Micro-/Nano- Devices Lab, Department of Systems Design Engineering, University of Waterloo 200 University Ave West Waterloo Ontario N2L 3G1 Canada +1-519-888-4567 ext. 32152
| |
Collapse
|
9
|
Li X, Guo Y, Zhang M, Zhang C, Niu R, Ma H, Sun Y. Colorable Light-Scattering Device Based on Polymer-Stabilized Ion-Doped Cholesteric Liquid Crystal and an Electrochromatic Layer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7184-7195. [PMID: 36701765 DOI: 10.1021/acsami.2c17770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bistable polymer-stabilized cholesteric liquid crystal (LC) devices have been extensively researched due to their energy-saving benefits. Compared to devices with merely transparent and light-scattering states, LC devices with controlled light absorption or changeable color functions are unquestionably more intriguing. In this paper, a polymer-stabilized ion-doped cholesteric LC and an electrochromic layer are used to fabricate a colorable device which can show four operating states: transparent, light-scattering, colored transparent, and colored light-scattering. The working principle and fabrication strategy are explained in detail. Based on the dielectric response of LC, the electrohydrodynamic effect of ion-doped LC, and the redox reaction of electrochromic materials, the transparent or light-scattering state and the colored or colorless state of the device can be regulated by controlling the alternating frequency and the direction of the electric field. The display performance related to the monomer, chiral dopant, and electrochromic layer is investigated. The content of monomer and chiral dopant affects the polymer network and pitch of cholesteric LC, which then affects the driving voltages and contrast ratio. The thickness of the electrochromic layer has a significant impact on the transmittance of the device's coloring and fading states. The sample with excellent operating states is obtained by optimizing the material and the construction, which can be widely applied in smart windows and energy-saving display devices.
Collapse
Affiliation(s)
- Xiaoshuai Li
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Yuqiang Guo
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, PR China
| | - Meishan Zhang
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Chi Zhang
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Rui Niu
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Hongmei Ma
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| | - Yubao Sun
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, PR China
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, PR China
| |
Collapse
|
10
|
Lan X, Liu Y, Xu J, Liu C, Liu P, Liu C, Zhou W, Jiang F. p-n hybrid bulk heterojunction enables enhanced photothermoelectric performance with UV-Vis-NIR light. NANOSCALE 2022; 14:18003-18009. [PMID: 36440658 DOI: 10.1039/d2nr05417e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Infrared light accounts for the vast majority of natural light energy, however, the challenge of converting infrared light directly into electricity is too difficult. The photothermoelectric (PTE) effect (connecting the photothermal (PT) and thermoelectric (TE) effects) provides a feasible solution for the indirect conversion of infrared light into electrical energy. Therefore, it is of great significance to actively seek and explore materials with good PT and TE performance to fully harvest infrared light energy. Here, we prepared an organic-inorganic hybrid bulk heterojunction film by combining poly(3,4-ethylene-dioxythiophene):polystyrenesulphonate (PEDOT:PSS) and ZnO nanowires (ZnO-NWs). This common composite strategy is able to utilize the ultra-wide spectrum ranging from ultraviolet-visible (UV-Vis) to near-infrared (NIR) light to realize light-to-electricity conversion based on the PTE effect. ZnO-NWs can not only increase the Seebeck coefficient of PEDOT:PSS, but also enhance the absorption of the hybrid film under the NIR light. Thereby, the enhancement of the photothermal-induced voltage was achieved due to the separation of generated electron-hole pairs in the built-in electric field induced by a photothermal gradient. This study provides a new suggestion for improving the PTE performance of the material and making better use of solar energy.
Collapse
Affiliation(s)
- Xiaoqi Lan
- Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science & Technology, Normal University, Nanchang, 330013, P.R. China.
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, 330013, P.R. China
| | - Youfa Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, 330013, P.R. China
- Department of Physics, Jiangxi Science & Technology Normal University, Nanchang, 330013, P.R. China.
| | - Jingkun Xu
- Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science & Technology, Normal University, Nanchang, 330013, P.R. China.
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, 330013, P.R. China
| | - Congcong Liu
- Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science & Technology, Normal University, Nanchang, 330013, P.R. China.
| | - Peipei Liu
- Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science & Technology, Normal University, Nanchang, 330013, P.R. China.
- Department of Physics, Jiangxi Science & Technology Normal University, Nanchang, 330013, P.R. China.
| | - Cheng Liu
- Department of Physics, Jiangxi Science & Technology Normal University, Nanchang, 330013, P.R. China.
| | - Weiqiang Zhou
- Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science & Technology, Normal University, Nanchang, 330013, P.R. China.
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, 330013, P.R. China
| | - Fengxing Jiang
- Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science & Technology, Normal University, Nanchang, 330013, P.R. China.
- Department of Physics, Jiangxi Science & Technology Normal University, Nanchang, 330013, P.R. China.
| |
Collapse
|