1
|
Cui Y, Yang S, Zhu J, Wang Z, Chen S, Qi J, Wang H. Dual-Engineering Tailored Co 3O 4 Hollow Microspheres Assembled by Nanosheets for Boosting Oxygen Evolution Reaction. Molecules 2025; 30:2181. [PMID: 40430354 DOI: 10.3390/molecules30102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/11/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
The development of efficient, low-cost electrocatalysts for the oxygen evolution reaction (OER) is crucial for advancing sustainable hydrogen production through water splitting. This study presents a dual-engineering strategy to enhance the OER performance of Co3O4 by synthesizing hollow microspheres assembled from nanosheets (HMNs) with abundant oxygen vacancies and highly active crystal facet exposure. Through a modified one-step hydrothermal process, Co3O4 HMNs with exposed (111) and (100) crystal facets were successfully fabricated, demonstrating superior OER activity compared to Co3O4 nanocubes (NCs) with only (100) facet exposure. The optimized Co3O4-5% HMNs exhibited a low overpotential of 330 mV at 10 mA cm-2 and a Tafel slope of 69 mV dec-1. The enhanced performance was attributed to the synergistic effects of crystal facet engineering and defect engineering, which optimized the Co-O bond energy, increased the number of active sites, and improved conductivity. The unique hollow structure further facilitated mass transport and prevented nanosheet stacking, exposing more edge sites for catalytic reactions. This work highlights the potential of geometric and electronic structure modulation in designing high-performance OER catalysts for sustainable energy applications.
Collapse
Affiliation(s)
- Yinghan Cui
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Shiduo Yang
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Jianqiang Zhu
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Zaidong Wang
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Sen Chen
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Wang
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| |
Collapse
|
2
|
Hu J, Tong L, Jia Y, Li Z, Yang H, Wang Y, Luo W, Li Y, Pang Y, Xiong S, Zhao ZL, Wang Q. Co-Motif-Engineered RuO 2 Nanosheets for Robust and Efficient Acidic Oxygen Evolution. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19734-19744. [PMID: 40106841 DOI: 10.1021/acsami.5c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The development of efficient and reliable acidic oxygen evolution reaction (OER) electrocatalysts represents a crucial step in the process of water electrolysis. RuO2, a benchmark OER catalyst, suffers from limited large-scale applicability due to its tendency toward the less stable lattice oxygen mechanism (LOM). This work reports the synthesis of Co-doped RuO2 nanosheets with a unique porous morphology composed of interconnected grains via a facile molten salt method. Co doping modulates the grain size, effectively increasing the specific surface area and introducing oxygen vacancies. These oxygen vacancies, coupled with the Co dopants, form Co-O(V) motifs that tune the electronic configuration of Ru. This structural engineering promotes a shift in the OER mechanism from the detrimental LOM pathway to the more efficient adsorbate evolution mechanism (AEM), significantly enhancing the stability of the RuO2 matrix in acidic environments. The optimized Co0.108-RuO2 catalyst exhibits a low overpotential of 214 mV at 10 mA cm-2 and remarkable stability over commercial RuO2 and undoped counterparts, owing to the synergistic effect of the increased surface area, Co-O(V) motifs, and favored AEM pathway. This strategy of utilizing Co doping to engineer morphology, electronic structure, and reaction mechanism offers a promising avenue for developing high-performance OER electrocatalysts.
Collapse
Affiliation(s)
- Jiandong Hu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Le Tong
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yanlin Jia
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Ziye Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Haowei Yang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Yang Wang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Wenhui Luo
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Yejun Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Yong Pang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Shiyun Xiong
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Zhi Liang Zhao
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan, Guangdong 528200, People's Republic of China
| | - Qi Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
3
|
Sui NLD, Lee JM. Optimization of 3D Metal-Based Assemblies for Efficient Electrocatalysis: Structural and Mechanistic Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410390. [PMID: 40095760 DOI: 10.1002/smll.202410390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/13/2025] [Indexed: 03/19/2025]
Abstract
The commercial utilization of low-dimensional catalysts has been hindered by their propensity for agglomeration and stacking, greatly minimizing their utilization of active sites. To circumvent this problem, low-dimensional materials can be assembled into systematic 3D architectures to synergistically retain the benefits of their constituent low-dimensional nanomaterials, with value-added bulk properties such as increased active surface area, improved charge transport pathways, and enhanced mass transfer, leading to higher catalytic activity and durability compared to their constituents. The hierarchical organization of low-dimensional building blocks within 3D structures also enables precise control over the catalyst's morphology, composition, and surface chemistry, facilitating tailored design for specific electrochemical applications. Despite the surge in 3D metal-based assemblies, there are no reviews encompassing the different types of metal-based 3D assemblies from low-dimensional nanomaterials for electrocatalysis. Herein, this review addresses this gap by investigating the various types of self-supported 3D assemblies and exploring how their electrocatalytic performance can be elevated through structural modifications and mechanistic studies to tailor them for various electrochemical reactions.
Collapse
Affiliation(s)
- Nicole L D Sui
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute (NEWRI), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 637141, Singapore
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
4
|
Zhang J, Gao M, Wang Y, Wei Y, Qi Y, Liu Q, Li X, Ma Q, Huang J, Feng Y. Light-induced charge transfer from a fullerene to a zeolitic imidazolate framework enhances alkaline electrocatalytic hydrogen production. NANOSCALE 2025; 17:2193-2199. [PMID: 39655515 DOI: 10.1039/d4nr04236k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
In the process of water electrolysis, the oxygen evolution reaction (OER) suffers from a high energy barrier, which has become a key factor restricting the large-scale commercial application of renewable energy technology. Therefore, it is necessary to develop a durable, efficient, low-cost and environmentally friendly OER electrocatalyst. In the present work, a photo-responsive fullerene (C60) was encapsulated in the cavity of cobalt-containing flake-like zeolitic imidazolate framework-67 (C60@F-ZIF-67). Benefiting from the light-induced charge/energy transfer from the fullerene carbon cage to the metal Co active sites, the as-synthesized C60@F-ZIF-67 exhibited remarkably enhanced OER activity under UV light irradiation. Specifically, the overpotential of 10 mA cm-2 for C60@F-ZIF-67 decreased from 465 mV in the dark to 324 mV under light in 1 M KOH, amounting to an activity improvement of approximately 30.32%. This work provides a new route for the design and construction of photo-assisted efficient electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Jun Zhang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Mengting Gao
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Ying Wang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Ying Wei
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Yirong Qi
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Qingqing Liu
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Xu Li
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Qunzhi Ma
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Jianfeng Huang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Yongqiang Feng
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| |
Collapse
|
5
|
Xu H, Xu Z, Wang K, Jin L, Liu Y, Chen J, Li L. Tungsten oxide-based electrocatalysts for energy conversion. Chem Commun (Camb) 2024; 60:13507-13517. [PMID: 39485081 DOI: 10.1039/d4cc04767b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The advancement of cutting-edge energy conversion technologies offers significant potential for addressing environmental challenges, enhancing energy security, improving economic competitiveness, and promoting resource conservation. This progress necessitates the development of advanced electrocatalysts. WOx demonstrates high intrinsic catalytic activity, excellent conductivity, an abundance of active sites, and remarkable stability, positioning it as a promising candidate for electrocatalytic reactions. Recently, there has been swift advancement in the development of WOx-based catalysts for various energy-conversion reactions. This review provides a thorough summary of recent developments in WOx-based catalysts for electrocatalytic reactions, emphasizing their multifunctional roles as active species, electron-transfer carriers, hydrogen spillover carriers, and microenvironment regulators. Moreover, it highlights the applications of WOx-based catalysts across different electrocatalytic reactions, with particular focus on the structure-activity relationship. Finally, the review discusses the challenges and future directions of these technologies, as well as key research areas necessary for achieving large-scale applications.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Zhili Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Kun Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Lei Jin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Yang Liu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Jie Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Le Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
6
|
Limon MSR, Ahmad Z. Heterogeneity in Point Defect Distribution and Mobility in Solid Ion Conductors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50948-50960. [PMID: 39263738 DOI: 10.1021/acsami.4c12128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Alkali metal anodes paired with solid ion conductors offer promising avenues for enhancing battery energy density and safety. To facilitate rapid ion transport crucial for fast charging and discharging of batteries, it is essential to understand the behavior of point defects in these conductors. In this study, we investigate the heterogeneity of defect distribution in two prototypical solid ion conductors, Li3OCl and Li2PO2N (LiPON), by quantifying the defect formation energy (DFE) as a function of distance from the surface and interface through first-principles simulations. To simulate defects at the electrode-electrolyte interface, we perform calculations of Li+ vacancy in Li3OCl near its interface with lithium metal. Our results reveal a significant difference between the bulk and surface/interface DFE which could lead to defect aggregation/depletion near the surface/interface. Interestingly, while Li3OCl has a lower surface DFE than the bulk in most cases, LiPON follows the opposite trend with a higher surface DFE compared to the bulk. Due to this difference between bulk and surface DFE, the defect density can be up to 14 orders of magnitude higher at surfaces compared to the bulk. Further, we reveal that the DFE transition from surface/interface to bulk is precisely characterized by an exponentially decaying function. By incorporating this exponential trend, we develop a revised model for the average behavior of defects in solid ion conductors that offers a more accurate description of the influence of grain sizes. Surface effects dominate for grain sizes ≲1 μm, highlighting the importance of surface defect engineering and the DFE function for accurately capturing ion transport in devices. We further explore the kinetics of defect redistribution by calculating the migration barriers for defect movement between bulk and surfaces. We find a highly asymmetric energy landscape for the lithium vacancies, exhibiting lower migration barriers for movement toward the surface compared to the bulk, while interstitial defects exhibit comparable kinetics between surface and bulk regions. These insights highlight the importance of considering both thermodynamic and kinetic factors in designing solid ion conductors for improved ion transport at surfaces and interfaces.
Collapse
Affiliation(s)
- Md Salman Rabbi Limon
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Zeeshan Ahmad
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
7
|
Ding C, Zhao Y, Qiao Z. Modification of carbon nanofibers for boosting oxygen electrocatalysis. Phys Chem Chem Phys 2024; 26:13606-13621. [PMID: 38682278 DOI: 10.1039/d3cp05904a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Oxygen electrocatalysis is a key process for many effective energy conversion techniques, which requires the development of high-performance electrocatalysts. Carbon nanofibers featuring good electronic conductivity, large specific surface area, high axial strength and modulus, and good resistance toward harsh environments have thus been recognized as reinforcements in oxygen electrocatalysis. This review summarizes the recent progress on carbon nanofibers as electrocatalysts for oxygen electrocatalysis, with special focus on the modulation of carbon nanofibers for further elevating their electrocatalytic performance, which includes morphological and structural engineering, surface and pore size distribution, defect engineering, and coupling with other electroactive materials. Additionally, the correlation between the geometrical/electronic structure of their active centers and electrocatalytic activity is systematically discussed. Finally, conclusions and perspectives of this interesting research field are presented, which we hope will provide guidance for the future fabrication of more advanced carbon-fiber-based electrocatalysts.
Collapse
Affiliation(s)
- Changming Ding
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China.
- Jiangsu Ruilante New Materials Co., Ltd, Yangzhou, 211400, China
| | - Yitao Zhao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China.
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province, 213164, China
- Jiangsu Key Laboratory of High-Performance Fiber Composites, JITRI-PGTEX Joint Innovation Center, PGTEX CHINA Co., Ltd., Changzhou, Jiangsu Province, 213164, China
| | - Zhiyong Qiao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China.
- Jiangsu Ruilante New Materials Co., Ltd, Yangzhou, 211400, China
| |
Collapse
|
8
|
Sun J, Qin Y, Niu X, Zhao R, Xu Z, Liu D, Zhao W, Guo L, Jiang N, Liu C, Zhang K, Zhang J, Wang Q. Ultrastable and highly active Co-vacancies-enriched IrCo bifunctional nanoalloys for proton exchange membrane water electrolysis. J Colloid Interface Sci 2024; 661:249-258. [PMID: 38301463 DOI: 10.1016/j.jcis.2024.01.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Exploring the electrocatalysts with high intrinsic activity and stability for both anode and cathode to tolerate the extremely acidic condition in proton exchange membrane water electrolyzer (PEMWE) is crucial for widespread industrial application. Herein, we constructed the bifunctional IrCox nanoalloys with abundant metal vacancies via the combination of chemical reduction and electrochemical treatment for overall water splitting. The developed IrCo0.13 exhibits ultra-low overpotentials of 238 mV for OER and 18.6 mV for HER at 10 mA cm-2 in 0.1 M HClO4, and achieves the exceptional stability of 1000 h for OER and 100 h for HER at 10 mA cm-2. Further, the cell voltage is only 1.68 V to reach a high current density of 1 A cm-2 in PEMWE with IrCo0.13 as the both cathode and anode catalytic layer, and it shows excellent corrosion resistance in acidic environment, evidenced by 415 h stable operation at 1 A cm-2. The strong electronic interactions in the Ir-Co atomic heterostructure and the in-situ generation of Co vacancies by electrochemical oxidation synergistically contribute to the enhanced activity and stability via optimizing the electronic structure of adjacent Ir active sites, enhancing the conductivity and electrochemical active surface area of the catalyst, accelerating charge transfer and kinetics. This work provides a new perspective for designing bifunctional catalysts for practical application in PEMWE.
Collapse
Affiliation(s)
- Jiuyi Sun
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yue Qin
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaopo Niu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Rong Zhao
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhihong Xu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Danni Liu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenli Zhao
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lili Guo
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Nan Jiang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chang Liu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Kaige Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junfeng Zhang
- Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China
| | - Qingfa Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China.
| |
Collapse
|
9
|
Zhang Z, Han L, Tao K. MnO x-decorated MOF-derived nickel-cobalt bimetallic phosphide nanosheet arrays for overall water splitting. Dalton Trans 2024; 53:1757-1765. [PMID: 38170799 DOI: 10.1039/d3dt03631f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Exploring non-noble metal dual-functional electrocatalysts with high activity and stability for water splitting is highly desirable. In this study, using zeolitic imidazolate framework-L (ZIF-L) nanoarrays as the precursor, manganese oxide-decorated porous nickel-cobalt phosphide nanosheet arrays have been prepared on nickel foam (denoted as MnOx/NiCoP/NF) through cation etching, phosphorization and electrodeposition, which are utilized as an efficient dual-functional electrocatalyst for overall water splitting. The hierarchical porous nanosheet arrays provide abundant active sites for the electrochemical process, while the MnOx modification induces strong interfacial interaction, benefiting charge transfer. Thus, the MnOx/NiCoP/NF exhibits excellent electrocatalytic activity toward the hydrogen evolution reaction (HER, overpotential of 93 mV at 10 mA cm-2), oxygen evolution reaction (OER, overpotential of 240 mV at 10 mA cm-2) and overall water splitting (cell voltage of 1.59 V at 10 mA cm-2). Furthermore, it shows superior stability during continuous overall water splitting for 200 h. This work provides a simple and effective approach for developing efficient non-noble metal dual-functional catalysts for overall water splitting.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.
| | - Lei Han
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.
| | - Kai Tao
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.
| |
Collapse
|
10
|
Wang C, Fei Z, Wang Y, Ren F, Du Y. Recent progress of Ni-based nanomaterials for the electrocatalytic oxygen evolution reaction at large current density. Dalton Trans 2024; 53:851-861. [PMID: 38054822 DOI: 10.1039/d3dt03636g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The precise design and development of high-performing oxygen evolution reaction (OER) for the production of industrial hydrogen gas through water electrolysis has been a widely studied topic. A profound understanding of the nature of electrocatalytic processes reveals that Ni-based catalysts are highly active toward OER that can stably operate at a high current density for a long period of time. Given the current gap between research and applications in industrial water electrolysis, we have completed a systematic review by constructively discussing the recent progress of Ni-based catalysts for electrocatalytic OER at a large current density, with special focus on the morphology and composition regulation of Ni-based electrocatalysts for achieving extraordinary OER performance. This review will facilitate future research toward rationally designing next-generation OER electrocatalysts that can meet industrial demands, thereby promoting new sustainable solutions for energy shortage and environment issues.
Collapse
Affiliation(s)
- Cheng Wang
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, P. R. China.
| | - Zhenghao Fei
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, P. R. China.
| | - Yanqing Wang
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, P. R. China.
| | - Fangfang Ren
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, P. R. China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
11
|
Qin Q, Jang H, Jiang X, Wang L, Wang X, Kim MG, Liu S, Liu X, Cho J. Constructing Interfacial Oxygen Vacancy and Ruthenium Lewis Acid-Base Pairs to Boost the Alkaline Hydrogen Evolution Reaction Kinetics. Angew Chem Int Ed Engl 2024; 63:e202317622. [PMID: 38061991 DOI: 10.1002/anie.202317622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Indexed: 01/10/2024]
Abstract
Simultaneous optimization of the energy level of water dissociation, hydrogen and hydroxide desorption is the key to achieving fast kinetics for the alkaline hydrogen evolution reaction (HER). Herein, the well-dispersed Ru clusters on the surface of amorphous/crystalline CeO2-δ (Ru/ac-CeO2-δ ) is demonstrated to be an excellent electrocatalyst for significantly boosting the alkaline HER kinetics owing to the presence of unique oxygen vacancy (VO ) and Ru Lewis acid-base pairs (LABPs). The representative Ru/ac-CeO2-δ exhibits an outstanding mass activity of 7180 mA mgRu -1 that is approximately 9 times higher than that of commercial Pt/C at the potential of -0.1 V (V vs RHE) and an extremely low overpotential of 21.2 mV at a geometric current density of 10 mA cm-2 . Experimental and theoretical studies reveal that the VO as Lewis acid sites facilitate the adsorption of H2 O and cleavage of H-OH bonds, meanwhile, the weak Lewis basic Ru clusters favor for the hydrogen desorption. Importantly, the desorption of OH from VO sites is accelerated via a water-assisted proton exchange pathway, and thus boost the kinetics of alkaline HER. This study sheds new light on the design of high-efficiency electrocatalysts with LABPs for the enhanced alkaline HER.
Collapse
Affiliation(s)
- Qing Qin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Haeseong Jang
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Korea
| | - Xiaoli Jiang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Liu Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xuefeng Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang, 37673, South Korea
| | - Shangguo Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xien Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jaephil Cho
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea
| |
Collapse
|
12
|
Cheng W, Yang H, Wang T, He X, Tian L, Li Z. Heteroatom Doping Promoting CoP for Driving Water Splitting. CHEM REC 2024; 24:e202300088. [PMID: 37098879 DOI: 10.1002/tcr.202300088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Indexed: 04/27/2023]
Abstract
CoP nanomaterials have been extensively regarded as one of the most promising electrocatalysts for overall water splitting due to their unique bifunctionality. Although the great promise for future applications, some important issues should also be addressed. Heteroatom doping has been widely acknowledged as a potential strategy for improving the electrocatalytic performance of CoP and narrowing the gap between experimental study and industrial applications. Recent years have witnessed the rapid development of heteroatom-doped CoP electrocatalysts for water splitting. Aiming to provide guidance for the future development of more effective CoP-based electrocatalysts, we herein organize a comprehensive review of this interesting field, with the special focus on the effects of heteroatom doping on the catalytic performance of CoP. Additionally, many heteroatom-doped CoP electrocatalysts for water splitting are also discussed, and the structure-activity relationship is also manifested. Finally, a systematic conclusion and outlook is well organized to provide direction for the future development of this interesting field.
Collapse
Affiliation(s)
- Wenjing Cheng
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Huimin Yang
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Tingjian Wang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Xiaoyan He
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Lin Tian
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| | - Zhao Li
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, PR China
| |
Collapse
|
13
|
Tao L, Huang B, Zhao Y. Low-Dimensional High-Entropy Alloys for Advanced Electrocatalytic Reactions. CHEM REC 2023; 23:e202300097. [PMID: 37236145 DOI: 10.1002/tcr.202300097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Low-dimensional high-entropy alloy (HEA) nanomaterials are widely employed as electrocatalysts for energy conversion reactions, due to their inherent advantages, including high electron mobility, rich catalytically active site, optimal electronic structure. Moreover, the high-entropy, lattice distortion, and sluggish diffusion effects also enable them to be promising electrocatalysts. A thorough understanding on the structure-activity relationships of low-dimensional HEA catalyst play a huge role in the future pursuit of more efficient electrocatalysts. In this review, we summarize the recent progress of low-dimensional HEA nanomaterials for efficient catalytic energy conversion. By systematically discussing the fundamentals of HEA and properties of low-dimensional nanostructures, we highlight the advantages of low-dimensional HEAs. Subsequently, we also present many low-dimensional HEA catalysts for electrocatalytic reactions, aiming to gain a better understanding on the structure-activity relationship. Finally, a series of upcoming challenges and issues are also thoroughly proposed as well as their future directions.
Collapse
Affiliation(s)
- Lei Tao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China
- Changzhou Sveck Photovoltaic New Material Co., Ltd, Changzhou, Jiangsu, 213200, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Baoyu Huang
- Changzhou Sveck Photovoltaic New Material Co., Ltd, Changzhou, Jiangsu, 213200, China
| | - Yitao Zhao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
14
|
Li L, Zhu Q, Han M, Tu X, Shen Y. MOF-derived single-atom catalysts for oxygen electrocatalysis in metal-air batteries. NANOSCALE 2023; 15:13487-13497. [PMID: 37563956 DOI: 10.1039/d3nr02548a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Electrocatalysts play a critical role in oxygen electrocatalysis, enabling great improvements for the future development and application of metal-air batteries. Single-atom catalysts (SACs) derived from metal-organic frameworks (MOFs) are promising catalysts for oxygen electrocatalysis since they are endowed with the merits of a distinctive electronic structure, a low-coordination environment, quantum size effect, and strong metal-support interaction. In addition, MOFs afford a desirable molecular platform for ensuring the synthesis of well-dispersed SACs, endowing them with remarkably high catalytic activity and durability. In this review, we focus on the current status of MOF-derived SACs used as catalysts for oxygen electrocatalysis, with special attention to MOF-derived strategies for the fabrication of SACs and their application in various metal-air batteries. Finally, to facilitate the future deployment of high-performing SACs, some technical challenges and the corresponding research directions are also proposed.
Collapse
Affiliation(s)
- Le Li
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu Province, China.
| | - Qianyi Zhu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu Province, China.
| | - Meijun Han
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu Province, China.
| | - Xiaobin Tu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu Province, China.
| | - Ying Shen
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, Jiangsu Province, China.
| |
Collapse
|
15
|
Yang L, Wang K, Jin L, Xu H, Chen H. Engineering metallenes for boosting electrocatalytic biomass-oxidation-assisted hydrogen evolution reaction. Dalton Trans 2023; 52:11378-11389. [PMID: 37551456 DOI: 10.1039/d3dt01562a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Metallenes exhibit great potential for catalytic reaction, particularly for the hydrogen evolution reaction (HER) and biomass oxidation reaction, due to their favorable electronic configurations, ultrahigh specific surface areas, and highly accessible surface atoms. Therefore, metallenes can function as bifunctional electrocatalysts to boost the energy-saving biomass-oxidation-assisted HER, and have attracted great interest. Given the growing importance of green hydrogen as an alternative energy source in recent years, it is timely and imperative to summarize the recent progress and current status of metallene-based catalysts for the biomass-oxidation-assisted HER. Here, we review the recent advances in metallenes in terms of composition and structural regulations including alloying, nonmetal doping, defect engineering, surface functionalization, and heterostructure engineering strategies and their applications in driving electrocatalytic HER, with special focus on biomass-oxidation-assisted hydrogen production. The underlying structure-activity relationship and mechanisms are also comprehensively discussed. Finally, we also propose the challenges and future directions of metallene-based catalysts for the applications in biomass-oxidation-assisted HER.
Collapse
Affiliation(s)
- Lida Yang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Kun Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Lie Jin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
16
|
Wang Z, Xu S, Mao Q, Deng K, Xu Y, Wang H, Yu H, Wang L. Polyethylenimine-Ethylenediamine-Induced Pd Metallene toward Alkaline Oxygen Reduction. Inorg Chem 2023; 62:13537-13543. [PMID: 37540794 DOI: 10.1021/acs.inorgchem.3c01975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Designing two-dimensional (2D) materials functionalized with organic molecules is an effective tactic to enhance catalytic performances for the oxygen reduction reaction (ORR). Herein, we synthesize Pd metallene with in situ modification of polyethylenimine-ethylenediamine (Pd@PEI-EDA metallene), in which PEI-EDA serves as both the structure-directing agent and modifier. Pd@PEI-EDA metallene has ample active sites and tuneable electronic structures due to ultrathin nanosheets with abundant wrinkles and interfacial structure. In contrast with commercial Pd/C and Pt/C, Pd@PEI-EDA metallene displays preferable catalytic ORR performance under alkaline conditions. This work offers an in situ interface engineering tactic for the preparation of 2D polymer-metal electrocatalysts to boost the ORR performance.
Collapse
Affiliation(s)
- Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shan Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
17
|
Ni S, Qu H, Xu Z, Zhu X, Chen L, Xing H, Wu X, Liu H, Yang L. Regulating the Spin State of Metal and Metal Carbide Heterojunctions for Efficient Oxygen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37466139 DOI: 10.1021/acsami.3c07955] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Developing high-performance electrocatalysts for oxygen evolution reaction (OER) is of importance for improving the overall efficiency of water splitting. Herein, the CoFe/(CoxFe1-x)3Mo3C heterojunction is purposely designed as an OER catalyst, which displays a low overpotential of 293 mV for affording a current density of 10 mA cm-2 and a small Tafel slope of 48 mV/dec. Various characterization results demonstrate that the significant work-function difference between CoFe and (CoxFe1-x)3Mo3C can induce interfacial charge redistribution, which results in the formation of Co and Fe sites with a high-spin state, thus stimulating the surface phase reconstruction of CoFe/(CoxFe1-x)3Mo3C to corresponding active oxyhydroxide. Meanwhile, the electrochemical leaching of Mo ions from the initial structure can contribute to the formation of defective sites, further benefiting OH- adsorption and surface oxidation. Moreover, the remaining CoFe can accelerate electron migration during the electrocatalytic process. This study presents new insights into constructing efficient OER electrocatalysts with an optimized spin-state configuration via interfacial engineering.
Collapse
Affiliation(s)
- Shan Ni
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongnan Qu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zihao Xu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyang Zhu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyan Chen
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifang Xing
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Wu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Huizhou Liu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Liangrong Yang
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| |
Collapse
|
18
|
Yue XZ, Tang P, Du X, Yi WJ, Liu ZY, Wang SJ, Yi SS. Al-Incorporated Cobalt-Layered Double Hydroxides for Enhanced Oxygen Evolution through Morphology and Electronic Structure Regulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11621-11630. [PMID: 36815776 DOI: 10.1021/acsami.2c15975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Layered double hydroxides (LDHs) are promising electrocatalytic materials for the oxygen evolution reaction (OER) due to their tunable composition and low cost. Here, we construct ultrathin Al-incorporated Co LDH nanosheets on carbon cloth (CC) by a facile hydrothermal strategy. Compared to Co LDH/CC, the optimized Co2Al1 LDH/CC displays significantly improved OER performance, characterized by low overpotentials of only 171 and 200 mV to reach current densities of 10 mA cm-2 in alkaline and neutral media, respectively, as well as good stability over an extended period. The introduced Al3+ and CC support play a synergistic role in steering the morphology of Co2Al1 LDH/CC while also increasing the electrochemical active sites. X-ray absorption fine spectra (XAFS) analyses uncover the critical role of Al in regulating the coordination environment of Co atoms, with evidence affording highly active Co oxidation states. Moreover, density functional theory (DFT) calculations confirmed that the Al3+ incorporated into Co LDH/CC can efficaciously modulate the electronic density of states of the d-band center of Co atoms, optimize the Gibbs free energies of intermediates toward OER, and thus accelerate the O2 evolution rate.
Collapse
Affiliation(s)
- Xin-Zheng Yue
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ping Tang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Du
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wen-Jing Yi
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhong-Yi Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shu-Juan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Sha-Sha Yi
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
19
|
Yin J, Wang C, Li J, Zhang K, Wu Z, Wang N, Du Y. In situ phosphoselenization induced heterointerface engineering endow NiSe 2/Ni 2P/FeSe 2 hollow nanocages with efficient water oxidation electrocatalysis performance. NANOSCALE 2023; 15:4523-4528. [PMID: 36757179 DOI: 10.1039/d2nr07019g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Exploiting Earth-abundant and highly effective electrocatalysts toward the oxygen evolution reaction (OER) is critical for boosting water splitting efficiency. Herein, we proposed a novel in situ phosphoselenization strategy to fabricate heterostructured NiSe2/Ni2P/FeSe2 (NiFePSe) nanocages with a modified electronic structure and well-defined nanointerfaces. Owing to the strong interfacial coupling and synergistic effect among the three components, the prepared NiFePSe nanocages exhibit superior OER performance with an ultralow overpotential of 242 mV at 10 mA cm-2 and a small Tafel slope of 55.8 mV dec-1 along with robust stability in 1 M KOH. Remarkably, the highly open 3D porous architecture, delicate internal voids, and numerous surface defects endow the NiFePSe nanocages with abundant active sites and enhanced electron mobility. In addition, the super-hydrophilic surface is conducive to facilitating mass transfer between the electrolyte and electrode and rapidly releasing the bubbles. This work may lead to new breakthroughs in the tuning of multi-component transition metal catalysts and the designing of highly active and durable materials for water splitting.
Collapse
Affiliation(s)
- Jiongting Yin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Kewang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ning Wang
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
20
|
Fang W, Dang J, Hu Y, Wu Y, Xin S, Chen B, Zhao H, Li Z. Electronic distribution tuning of vanadium-cobalt bimetallic MOFs for highly efficient hydrazine-assisted energy-saving hydrogen production. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2022.141682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Wang Y, Zhang C, Du X, Zhang X. Transition metal atom M (M = Fe, Co, Cu, Cr) doping and oxygen vacancy modulated M-Ni 5P 4-NiMOH nanosheets as multifunctional electrocatalysts for efficient overall water splitting and urea electrolysis reaction. Dalton Trans 2022; 51:14937-14944. [PMID: 36111629 DOI: 10.1039/d2dt02673b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is significant to develop reasonable and efficient hydrogen evolution reaction catalysts to alleviate the energy crisis, yet challenging to produce hydrogen through the electrolysis of water and urea. In this work, the dual control strategy of doping and vacancy creation was used to improve the electrocatalytic performance of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for the design of a multifunctional catalyst. A series of M-doped-Ni5P4/M-doped Ni(OH)2 (M = Fe, Co, Cu, Cr) hierarchical materials with abundant oxygen vacancies was constructed for the first time by hydrothermal and partial phosphating methods. The Co-doped-Ni5P4/Co-doped-Ni(OH)2 (Co-Ni5P4-NiCoOH) exhibited superior performance in HER, OER and urea oxidation reaction (UOR). Moreover, the electrode couple is fitted with two Co-Ni5P4-NiCoOH (C-NP-NCOH) electrodes to drive the current density of 10 mA cm-2; the necessary cell voltage was 1.57 V in 1.0 M KOH with 0.5 M urea for urea electrolysis and water electrolysis required a 1.6 V cell voltage in 1.0 M KOH electrolyte, which is one of the best catalytic activities reported so far. The experimental results suggest that the co-action of Co-doping and oxygen vacancies increases the specific surface area of the material, enhances the electronic conductivity and promotes the exposure of more active sites, thus improving the water splitting and urea electrolysis performances of the catalyst. Density functional theory analysis suggests that Co-Ni5P4-NiCoOH displays optimal adsorption energy of water and electrical conductivity, thus optimizing the adsorption/desorption of intermediates.
Collapse
Affiliation(s)
- Yanhong Wang
- School of Chemical Engineering and Technology, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Xueyuan road 3, Taiyuan 030051, People's Republic of China.
| | - Chenyi Zhang
- School of Chemical Engineering and Technology, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Xueyuan road 3, Taiyuan 030051, People's Republic of China.
| | - Xiaoqiang Du
- School of Chemical Engineering and Technology, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Xueyuan road 3, Taiyuan 030051, People's Republic of China.
| | - Xiaoshuang Zhang
- School of Science, North University of China, Xueyuan road 3, Taiyuan 030051, People's Republic of China
| |
Collapse
|