1
|
Zhao Z, Shen Y, Hu R, Xu D. Advances in flexible ionic thermal sensors: present and perspectives. NANOSCALE 2024; 17:187-213. [PMID: 39575937 DOI: 10.1039/d4nr03423f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Ionic thermal sensors (ITSs) represent a promising frontier in sensing technology, offering unique advantages over conventional electronic sensors. Comprising a polymer matrix and electrolyte, these sensors possess inherent flexibility, stretchability, and biocompatibility, allowing them to establish stable and intimate contact with soft surfaces without inducing mechanical or thermal stress. Through an ion migration/dissociation mechanism similar to biosensing, ITSs ensure low impedance contact and high sensitivity, especially in physiological monitoring applications. This review provides a comprehensive overview of ionic thermal sensing mechanisms, contrasting them with their electronic counterparts. Additionally, it explores the intricacy of the sensor architecture, detailing the roles of active sensing elements, stretchable electrodes, and flexible substrates. The decoupled sensing mechanisms for skin-inspired multimodal sensors are also introduced based on several representative examples. The latest applications of ITS are categorized into ionic skin (i-skin), healthcare, spatial thermal perception, and environment detection, regarding their materials, structures, and operation modes. Finally, the perspectives of ITS research are presented, emphasizing the significance of standardized sensing parameters and emerging requirements for practical applications.
Collapse
Affiliation(s)
- Zehao Zhao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China.
| | - Yun Shen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China.
| | - Run Hu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Applied Physics, Kyung Hee University, Yongin-Si, Gyeonggi-do 17104, Republic of Korea
| | - Dongyan Xu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China.
| |
Collapse
|
2
|
Jia S, Ma H, Gao S, Yang L, Sun Q. Thermoelectric Materials and Devices for Advanced Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405019. [PMID: 39392147 DOI: 10.1002/smll.202405019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Thermoelectrics (TEs), enabling the direct conversion between heat and electrical energy, have demonstrated extensive application potential in biomedical fields. Herein, the mechanism of the TE effect, recent developments in TE materials, and the biocompatibility assessment of TE materials are provided. In addition to the fundamentals of TEs, a timely and comprehensive review of the recent progress of advanced TE materials and their applications is presented, including wearable power generation, personal thermal management, and biosensing. In addition, the new-emerged medical applications of TE materials in wound healing, disease treatment, antimicrobial therapy, and anti-cancer therapy are thoroughly reviewed. Finally, the main challenges and future possibilities are outlined for TEs in biomedical fields, as well as their material selection criteria for specific application scenarios. Together, these advancements can provide innovative insights into the development of TEs for broader applications in biomedical fields.
Collapse
Affiliation(s)
- Shiyu Jia
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huangshui Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610017, China
| | - Qiang Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
3
|
Yang H, Wu M, Pan M, Zhou C, Sun Y, Huang P, Yang L, Liu J, Zeng H. Highly Stretchable, Transparent, Self-Healing Ion-Conducting Elastomers for Long-Term Reliable Human Motion Detection. Macromol Rapid Commun 2024; 45:e2400362. [PMID: 39078623 DOI: 10.1002/marc.202400362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/01/2024] [Indexed: 07/31/2024]
Abstract
The flexible electronic sensor is a critical component of wearable devices, generally requiring high stretchability, excellent transmittance, conductivity, self-healing capability, and strong adhesion. However, designing ion-conducting elastomers meeting all these requirements simultaneously remains a challenge. In this study, a novel approach is presented to fabricate highly stretchable, transparent, and self-healing ion-conducting elastomers, which are synthesized via photo-polymerization of two polymerizable deep eutectic solvents (PDESs) monomers, i.e., methacrylic acid (MAA)/choline chloride (ChCl) and itaconic acid (IA)/ChCl. The as-prepared ion-conducting elastomers possess outstanding properties, including high transparency, conductivity, and the capability to adhere to various substrates. The elastomers also demonstrate ultra-stretchability (up to 3900%) owing to a combination of covalent cross-linking and noncovalent cross-linking. In addition, the elastomers can recover up to 3250% strain and over 94.5% of their original conductivity after self-healing at room temperature for 5 min, indicating remarkable mechanical and conductive self-healing abilities. When utilized as strain sensors to monitor real-time motion of human fingers, wrist, elbow, and knee joints, the elastomers exhibit stable and strong repetitive electrical signals, demonstrating excellent sensing performance for large-scale movements of the human body. It is anticipated that these ion-conducting elastomers will find promising applications in flexible and wearable electronics.
Collapse
Affiliation(s)
- Haoyu Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Meng Wu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Mingfei Pan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Chengliang Zhou
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yongxiang Sun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Pan Huang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Lin Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Jifang Liu
- Cancer Center, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510700, P. R. China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| |
Collapse
|
4
|
Zhan W, Zhang J, Zhang Q, Ye Z, Li B, Zhang C, Yang Z, Xue L, Zhang Z, Ma F, Peng N, Lyu Y, Su Y, Liu M, Zhang X. Flexible iontronics with super stretchability, toughness and enhanced conductivity based on collaborative design of high-entropy topology and multivalent ion-dipole interactions. MATERIALS HORIZONS 2024; 11:4159-4170. [PMID: 38899460 DOI: 10.1039/d4mh00338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
All-solid-state ionic conductive elastomers (ASSICEs) are emerging as a promising alternative to hydrogels and ionogels in flexible electronics. Nevertheless, the synthesis of ASSICEs with concomitant mechanical robustness, superior ionic conductivity, and cost-effective recyclability poses a formidable challenge, primarily attributed to the inherent contradiction between mechanical strength and ionic conductivity. Herein, we present a collaborative design of high-entropy topological network and multivalent ion-dipole interaction for ASSICEs, and successfully mitigate the contradiction between mechanical robustness and ionic conductivity. Benefiting from the synergistic effect of this design, the coordination, de-coordination, and intrachain transfer of Li+ are effectively boomed. The resultant ASSICEs display exceptional mechanical robustness (breaking strength: 7.45 MPa, fracture elongation: 2621%, toughness: 107.19 MJ m-3) and impressive ionic conductivity (1.15 × 10-2 S m-1 at 25 °C). Furthermore, these ASSICEs exhibit excellent environmental stability (fracture elongation exceeding 1400% at 50 °C or -60 °C) and recyclability. Significantly, the application of these ASSICEs in a strain sensor highlights their potential in various fields, including human-interface communication, aerospace vacuum measurement, and medical balloon monitoring.
Collapse
Affiliation(s)
- Wang Zhan
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China.
| | - Jianrui Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qi Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Key Laboratory of Magnetic Medicine, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Engineering Research Center of Spin Quantum Sensor Chips, Universities of Shaanxi Province, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhilu Ye
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China.
| | - Boyang Li
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Cuiling Zhang
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China.
| | - Zihao Yang
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China.
| | - Li Xue
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China.
| | - Zeying Zhang
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China.
| | - Feng Ma
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Niancai Peng
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yi Lyu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yaqiong Su
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Engineering Research Center of Spin Quantum Sensor Chips, Universities of Shaanxi Province, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Ming Liu
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Engineering Research Center of Spin Quantum Sensor Chips, Universities of Shaanxi Province, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiaohui Zhang
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China.
| |
Collapse
|
5
|
Ou F, Xie T, Li X, Zhang Z, Ning C, Tuo L, Pan W, Wang C, Duan X, Liang Q, Gao W, Li Z, Zhao S. Liquid-free ionic conductive elastomers with high mechanical properties and ionic conductivity for multifunctional sensors and triboelectric nanogenerators. MATERIALS HORIZONS 2024; 11:2191-2205. [PMID: 38410914 DOI: 10.1039/d3mh02217j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Liquid-free ionic conductive elastomers (ICEs) are ideal materials for constructing flexible electronic devices by avoiding the limitations of liquid components. However, developing all-solid-state ionic conductors with high mechanical strength, high ionic conductivity, excellent healing, and recyclability remains a great challenge. Herein, a series of liquid-free polyurethane-based ICEs with a double dynamic crosslinked structure are reported. As a result of interactions between multiple dynamic bonds (multi-level hydrogen bonds, disulfide bonds, and dynamic D-A bonds) and lithium-oxygen bonds, the optimal ICE exhibited a high mechanical strength (1.18 MPa), excellent ionic conductivity (0.14 mS cm-1), desirable healing capacity (healing efficiency >95%), and recyclability. A multi-functional wearable sensor based on the novel ICE enabled real-time and rapid detection of various human activities and enabled recognizing writing signals and encrypted information transmission. A triboelectric nanogenerator based on the novel ICE exhibited an excellent open-circuit voltage of 464 V, a short-circuit current of 16 μA, a transferred charge of 50 nC, and a power density of 720 mW m-2, enabling powering of small-scale electronic products. This study provides a feasible strategy for designing flexible sensor products and healing, self-powered devices, with promising prospects for application in soft ionic electronics.
Collapse
Affiliation(s)
- Fangyan Ou
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
| | - Ting Xie
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
| | - Xinze Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
| | - Zhichao Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
| | - Chuang Ning
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
| | - Liang Tuo
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| | - Wenyu Pan
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
| | - Changsheng Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
| | - Xueying Duan
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
| | - Qihua Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
| | - Wei Gao
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Zequan Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Shuangliang Zhao
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
6
|
Pereira N, Afonso L, Salado M, Tubio CR, Correia DM, Costa CM, Lanceros-Mendez S. Ionic Thermoelectric Generators in Vertical and Planar Topologies Based on Fluorinated Polymer Hybrid Materials with Ionic Liquids. Macromol Rapid Commun 2024; 45:e2400041. [PMID: 38366845 DOI: 10.1002/marc.202400041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Indexed: 02/18/2024]
Abstract
Ionic thermoelectrics (TEs), in which voltage generation is based on ion migration, are suitable for applications based on their low cost, high flexibility, high ionic conductivity, and wide range of Seebeck coefficients. This work reports on the development of ionic TE materials based on the poly(vinylidene fluoride-trifluoroethylene), Poly(VDF-co-TrFE), as host polymer blended with different contents of the ionic liquid, IL, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMIM][TFSI]. The morphology, physico-chemical, thermal, mechanical, and electrical properties of the samples are evaluated together with the TE response. It is demonstrated that the IL acts as a nucleating agent for polymer crystallization. The mechanical properties and ionic conductivity values are dependent on the IL content. A high room temperature ionic conductivity of 0.008 S cm-1 is obtained for the sample with 60 wt% of [EMIM][TFSI] IL. The TE properties depend on both IL content and device topology-vertical or planar-the largest generated voltage range being obtained for the planar topology and the sample with 10 wt% of IL content, characterized by a Seebeck coefficient of 1.2 mV K-1. Based on the obtained maximum power density of 4.9 µW m-2, these materials are suitable for a new generation of TE devices.
Collapse
Affiliation(s)
- Nelson Pereira
- Centre of Physics Universities of Minho and Porto and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Luis Afonso
- Centre of Physics Universities of Minho and Porto and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Manuel Salado
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
| | - Carmen R Tubio
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
| | | | - Carlos M Costa
- Centre of Physics Universities of Minho and Porto and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Senentxu Lanceros-Mendez
- Centre of Physics Universities of Minho and Porto and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
7
|
Li HN, Zhang C, Yang HC, Liang HQ, Wang Z, Xu ZK. Solid-state, liquid-free ion-conducting elastomers: rising-star platforms for flexible intelligent devices. MATERIALS HORIZONS 2024; 11:1152-1176. [PMID: 38165799 DOI: 10.1039/d3mh01812a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Soft ionic conductors have emerged as a powerful toolkit to engineer transparent flexible intelligent devices that go beyond their conventional counterparts. Particularly, due to their superior capacities of eliminating the evaporation, freezing and leakage issues of the liquid phase encountered with hydrogels, organohydrogels and ionogels, the emerging solid-state, liquid-free ion-conducting elastomers have been largely recognized as ideal candidates for intelligent flexible devices. However, despite their extensive development, a comprehensive and timely review in this emerging field is lacking, particularly from the perspective of design principles, advanced manufacturing, and distinctive applications. Herein, we present (1) the design principles and intriguing merits of solid-state, liquid-free ion-conducting elastomers; (2) the methods to manufacture solid-state, liquid-free ion-conducting elastomers with preferential architectures and functions using advanced technologies such as 3D printing; (3) how to leverage solid-state, liquid-free ion-conducting elastomers in exploiting advanced applications, especially in the fields of flexible wearable sensors, bioelectronics and energy harvesting; (4) what are the unsolved scientific and technical challenges and future opportunities in this multidisciplinary field. We envision that this review will provide a paradigm shift to trigger insightful thinking and innovation in the development of intelligent flexible devices and beyond.
Collapse
Affiliation(s)
- Hao-Nan Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Chao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Hao-Cheng Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Hong-Qing Liang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
8
|
Chen L, Lou J, Rong X, Liu Z, Ding Q, Li X, Jiang Y, Ji X, Han W. Super-stretching and high-performance ionic thermoelectric hydrogels based on carboxylated bacterial cellulose coordination for self-powered sensors. Carbohydr Polym 2023; 321:121310. [PMID: 37739507 DOI: 10.1016/j.carbpol.2023.121310] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 09/24/2023]
Abstract
Self-powered sensors that do not require external power sources are crucial for next-generation wearable electronics. As environment-friendly ionic thermoelectric hydrogels can continuously convert the low-grade heat of human skin into electricity, they can be used in intelligent human-computer interaction applications. However, their low thermoelectric output power, cycling stability, and sensitivity limit their practical applications. This paper reports a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized carboxylated bacterial cellulose (TOBC) coordination double-network ionic thermoelectric hydrogel with lithium bis(trifluoromethane) sulfonimide (LiTFSI) as an ion provider for thermodiffusion, as LiTFSI exhibits excellent thermoelectric properties with a maximum power output of up to 538 nW at a temperature difference of 20 K. The interactions between the ions and the hydrogel matrix promote the selective transport of conducting ionic ions, producing a high Seebeck coefficient of 11.53 mV K-1. Hydrogen bonding within the polyacrylamide (PAAm) network and interactions within the borate ester bond within the TOBC confer excellent mechanical properties to the hydrogel such that the stress value at a tensile deformation of 3100 % is reaches 0.85 MPa. The combination of the high ionic thermovoltage and excellent mechanical properties ionic thermoelectric hydrogels provides an effective solution for the design and application of self-powered sensors based on hydrogels.
Collapse
Affiliation(s)
- Luzheng Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jiang Lou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Xuhui Rong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhuqing Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Qijun Ding
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xia Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yifei Jiang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Wenjia Han
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
9
|
Zeng W, Yang W, Chai L, Jiang Y, Deng L, Yang G. Liquid-Free, Self-Repairable, Recyclable, and Highly Stretchable Colorless Solid Ionic Conductive Elastomers for Strain/Temperature Sensors. Chemistry 2023; 29:e202301800. [PMID: 37496278 DOI: 10.1002/chem.202301800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
Solid-state ionic conductive elastomers (ICEs) can fundamentally overcome the disadvantages of hydrogels and ionogels (their liquid components tend to leak or evaporate), and are considered to be ideal materials for flexible ionic sensors. In this study, a liquid-free ionic polyurethane (PU) type conductive elastomer (ICE-2) was synthesized and studied. The PU type matrix with microphase separation endowed ICE-2 with excellent mechanical versatility. The disulfide bond exchange reaction in the hard phase and intermolecular hydrogen bonds contributed to damage repairing ability. ICE-2 exhibited good ionic conductivity (2.86×10-6 S/cm), high transparency (average transmittance >89 %, 400~800 nm), excellent mechanical properties (tensile strength of 3.06 MPa, elongation at break of 1760 %, and fracture energy of 14.98 kJ/m2 ), appreciable self-healing ability (healing efficiency >90 %), satisfactory environmental stability, and outstanding recyclability. The sensor constructed by ICE-2 could not only realize the perception of temperature changes, but also accurately and sensitively detect various human activities, including joint movements and micro-expression changes. This study provides a simple and effective strategy for the development of flexible and soft ionic conductors for sensors and human-machine interfaces.
Collapse
Affiliation(s)
- Wangyi Zeng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
- National Engineering Research Center of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wenhao Yang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
- National Engineering Research Center of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Liang Chai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
- National Engineering Research Center of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yanxin Jiang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
- National Engineering Research Center of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Longjiang Deng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
- National Engineering Research Center of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Guang Yang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
- National Engineering Research Center of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
10
|
Wang X, Zhao Z, Zhang M, Liang Y, Liu Y. Polyurethanes Modified by Ionic Liquids and Their Applications. Int J Mol Sci 2023; 24:11627. [PMID: 37511385 PMCID: PMC10380480 DOI: 10.3390/ijms241411627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Polyurethane (PU) refers to the polymer containing carbamate groups in its molecular structure, generally obtained by the reaction of isocyanate and alcohol. Because of its flexible formulation, diverse product forms, and excellent performance, it has been widely used in mechanical engineering, electronic equipment, biomedical applications, etc. Through physical or chemical methods, ionic groups are introduced into PU, which gives PU electrical conductivity, flame-retardant, and antistatic properties, thus expanding the application fields of PU, especially in flexible devices such as sensors, actuators, and functional membranes for batteries and gas absorption. In this review, we firstly introduced the characteristics of PU in chemical and microphase structures and their related physical and chemical performance. To improve the performance of PU, ionic liquids (ILs) were applied in the processing or synthesis of PU, resulting in a new type of PU called ionic PU. In the following part of this review, we mainly summarized the fabrication methods of IL-modified PUs via physical blending and the chemical copolymerization method. Then, we summarized the research progress of the applications for IL-modified PUs in different fields, including sensors, actuators, transistors, antistatic films, etc. Finally, we discussed the future development trends and challenges faced by IL-modified PUs.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhenjie Zhao
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Meiyu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yongri Liang
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yingdan Liu
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|