1
|
Baez Vasquez JF, Paiva AE, Singh S, Acosta-Beltrán S, Fernandez AA, Morris MA. Functionalizing Nonfunctional Surfaces: Creation of Metal Oxide Nanopatterns on High-Performance Polymers via Self-Assembly of PS- b-PEO. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24654-24664. [PMID: 40202904 PMCID: PMC12022950 DOI: 10.1021/acsami.5c04225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
High-performance polymers are pivotal for a wide range of applications due to their excellent mechanical, chemical, and thermal properties. This work introduces, for the first time, a block copolymer (BCP) self-assembly method to modify the surfaces of different high-performance polymers. Using highly ordered poly(styrene-b-ethylene oxide) (PS-b-PEO) thin films as templates, metallic oxide nanopillars (Al2O3, Ag2O, MgO, CaO, and TiO2) with a 20 nm average diameter were fabricated. These were created on high-performance polymer substrates, specifically, polyetheretherketone (PEEK), carbon fiber-reinforced polyetheretherketone (CFPEEK), and ultrahigh molecular weight polyethylene. This method addresses the low chemical activity of these polymeric substrates, offering a cost-effective, scalable solution to produce their surface functionalization. Characterization via atomic force microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy validate the structure and composition of the nanostructured surfaces. The significance of BCP self-assembly is emphasized as an effective and versatile approach for the nanoscale tailoring of surface properties in high-performance polymers. This process offers a straightforward method with low technological and energetic costs, paving the way for the extensive surface modification of large areas. The implications of this work extend to various sectors, including biomedical devices, sensors, and electronics, showcasing the broad applicability of this nanoscale tailoring technique.
Collapse
Affiliation(s)
| | - Aislan Esmeraldo Paiva
- AMBER Research Centre/School
of Chemistry, Trinity College Dublin, Dublin D02W085, Ireland
| | - Sajan Singh
- AMBER Research Centre/School
of Chemistry, Trinity College Dublin, Dublin D02W085, Ireland
| | - Sherly Acosta-Beltrán
- AMBER Research Centre/School
of Chemistry, Trinity College Dublin, Dublin D02W085, Ireland
| | | | - Michael A. Morris
- AMBER Research Centre/School
of Chemistry, Trinity College Dublin, Dublin D02W085, Ireland
| |
Collapse
|
2
|
Hamieh T. Exploring the Application of Advanced Chromatographic Methods to Characterize the Surface Physicochemical Properties and Transition Phenomena of Polystyrene- b-poly(4-vinylpyridine). Molecules 2024; 29:4812. [PMID: 39459180 PMCID: PMC11510071 DOI: 10.3390/molecules29204812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The linear diblock copolymer polystyrene-b-poly(4-vinylpyridine) (PS-P4VP) is an important copolymer recently used in many applications such as optoelectronics, sensors, catalysis, membranes, energy conversion, energy storage devices, photolithography, and biomedical applications. (1) Background: The surface thermodynamic properties of PS-P4VP copolymers are of great importance in many chemical and industrial processes. (2) Methods: The inverse gas chromatography (IGC) at infinite dilution was used for the experimental determination of the retention volumes of organic solvents adsorbed on copolymer surfaces as a function of temperature. This led to the variations in the free energy of interaction necessary to the evaluation of the London dispersive and polar acid-base surface energies, the polar enthalpy and entropy, the Lewis acid-base constants, and the transition temperatures of the PS-P4VP copolymer. (3) Results: The application of the thermal Hamieh model led to an accurate determination of the London dispersive surface energy of the copolymer that showed non-linear variations versus the temperature, highlighting the presence of two transition temperatures. It was observed that the Lewis acid-base parameters of the copolymer strongly depend on the temperature, and the Lewis base constant of the solid surface was shown to be higher than its acid constant. (4) Conclusions: An important effect of the temperature on the surface thermodynamic properties of PS-P4VP was proven and new surface correlations were determined.
Collapse
Affiliation(s)
- Tayssir Hamieh
- Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; ; Tel.: +31-6-5723-9324
- Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences, Lebanese University, Beirut P.O. Box 6573/14, Lebanon
- Institut de Science des Matériaux de Mulhouse, Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
| |
Collapse
|
3
|
Cheng X, Tempeler J, Danylyuk S, Böker A, Tsarkova L. Disclosing Topographical and Chemical Patterns in Confined Films of High-Molecular-Weight Block Copolymers under Controlled Solvothermal Annealing. Polymers (Basel) 2024; 16:1943. [PMID: 39000798 PMCID: PMC11243801 DOI: 10.3390/polym16131943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
The microphase separation of high-molecular-weight block copolymers into nanostructured films is strongly dependent on the surface fields. Both, the chain mobility and the effective interaction parameters can lead to deviations from the bulk morphologies in the structures adjacent to the substrate. Resolving frustrated morphologies with domain period L0 above 100 nm is an experimental challenge. Here, solvothermal annealing was used to assess the contribution of elevated temperatures of the vapor Tv and of the substrate Ts on the evolution of the microphase-separated structures in thin films symmetric of polystyrene-b-poly(2vinylpyridine) block copolymer (PS-PVP) with L0 about 120 nm. Pronounced topographic mesh-like and stripe patterns develop on a time scale of min and are attributed to the perforated lamella (PL) and up-standing lamella phases. By setting Tv/Ts combinations it is possible to tune the sizes of the resulting PL patterns by almost 10%. Resolving chemical periodicity using selective metallization of the structures revealed multiplication of the topographic stripes, i.e., complex segregation of the component within the topographic pattern, presumably as a result of morphological phase transition from initial non-equilibrium spherical morphology. Reported results reveal approaches to tune the topographical and chemical periodicity of microphase separation of high-molecular-weight block copolymers under strong confinement, which is essential for exploiting these structures as functional templates.
Collapse
Affiliation(s)
- Xiao Cheng
- Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
- School of Civil Engineering, Southeast University, Dongnandaxue Road 2, Jiangning District, Nanjing 211189, China
| | - Jenny Tempeler
- Fraunhofer Institute for Laser Technology (ILT), Steinbachstr. 15, 52074 Aachen, Germany
| | - Serhiy Danylyuk
- Fraunhofer Institute for Laser Technology (ILT), Steinbachstr. 15, 52074 Aachen, Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
| | - Larisa Tsarkova
- German Textile Research Center North-West (DTNW), Adlerstr. 1, 47798 Krefeld, Germany
| |
Collapse
|
4
|
Esmeraldo Paiva A, Gerlt MS, Läubli NF, Prochukhan N, Baez Vasquez JF, Kaminski Schierle GS, Morris MA. High Aspect Ratio Nanoscale Pores through BCP-Based Metal Oxide Masks and Advanced Dry Etching. ACS APPLIED MATERIALS & INTERFACES 2023; 15:57960-57969. [PMID: 37861980 PMCID: PMC10739579 DOI: 10.1021/acsami.3c09863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
The reliable and regular modification of the surface properties of substrates plays a crucial role in material research and the development of functional surfaces. A key aspect of this is the development of the surface pores and topographies. These can confer specific advantages such as high surface area as well as specific functions such as hydrophobic properties. Here, we introduce a combination of nanoscale self-assembled block-copolymer-based metal oxide masks with optimized deep reactive ion etching (DRIE) of silicon to permit the fabrication of porous topographies with aspect ratios of up to 50. Following the evaluation of our procedure and involved parameters using various techniques, such as AFM or SEM, the suitability of our features for applications relying on high light absorption as well as efficient thermal management is explored and discussed in further detail.
Collapse
Affiliation(s)
- Aislan Esmeraldo Paiva
- AMBER
Research Centre/School of Chemistry, Trinity
College Dublin, Dublin D02 CP49, Ireland
| | - Michael S. Gerlt
- Department
of Biomedical Engineering, Lund University, Lund 22363, Sweden
- Department
of Mechanical and Process Engineering, ETH
Zürich, Zürich 8092, Switzerland
| | - Nino F. Läubli
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.
| | - Nadezda Prochukhan
- AMBER
Research Centre/School of Chemistry, Trinity
College Dublin, Dublin D02 CP49, Ireland
| | | | | | - Michael A. Morris
- AMBER
Research Centre/School of Chemistry, Trinity
College Dublin, Dublin D02 CP49, Ireland
| |
Collapse
|
5
|
Singh S, Ghoshal T, Prochukhan N, Fernandez AA, Vasquez JF, Yadav P, Padmanabhan SC, Morris MA. Morphology Engineering of the Asymmetric PS- b-P4VP Block Copolymer: From Porous to Nanodot Oxide Structures. ACS APPLIED POLYMER MATERIALS 2023; 5:9612-9619. [PMID: 37970530 PMCID: PMC10644307 DOI: 10.1021/acsapm.3c02120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/17/2023]
Abstract
In the present work, we demonstrate the formation of oxide porous and nanodot structures from the same block copolymer (BCP) by the phase inversion of a BCP template. We investigated the effect of solvent annealing time on the ordering of asymmetric, cylinder forming, polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) BCP. Phase separation of PS-b-P4VP was achieved by solvent vapor annealing (SVA) in a solvent atmosphere that is (partially) selective to P4VP to initially generate hexagonally arranged, cylindrical arrays of the expected structure. The morphology of the BCP changed from P4VP hexagonally packed cylinders to an 'inverse' structure with PS cylinders embedded in a P4VP matrix. This suggests that selective swelling occurs over time such that the swollen P4VP phase becomes the majority volume component. Metal ions (Ga3+, In3+) were infiltrated into the BCP templates by a solution-mediated infiltration approach, followed by an ultraviolet-ozone treatment to remove the polymer and oxidize the metallic ions to their oxides. The findings show that a single BCP can be used to create both metal oxide arrays and porous structures of metal oxides by simply varying the duration of the solvent annealing process. The resulting structures were analyzed through several methods including scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy, and energy-dispersive X-ray spectroscopy. XPS analyses confirmed the complete elimination of the BCP template and the presence of metal oxides. This study provides important insights into the development of functional BCP materials with inverse structures.
Collapse
Affiliation(s)
- Sajan Singh
- AMBER Research Centre and
School of Chemistry, Trinity College Dublin, Dublin 2 D02AK60, Ireland
| | - Tandra Ghoshal
- AMBER Research Centre and
School of Chemistry, Trinity College Dublin, Dublin 2 D02AK60, Ireland
| | - Nadezda Prochukhan
- AMBER Research Centre and
School of Chemistry, Trinity College Dublin, Dublin 2 D02AK60, Ireland
| | | | | | - Pravind Yadav
- AMBER Research Centre and
School of Chemistry, Trinity College Dublin, Dublin 2 D02AK60, Ireland
| | - Sibu C. Padmanabhan
- AMBER Research Centre and
School of Chemistry, Trinity College Dublin, Dublin 2 D02AK60, Ireland
| | - Michael A. Morris
- AMBER Research Centre and
School of Chemistry, Trinity College Dublin, Dublin 2 D02AK60, Ireland
| |
Collapse
|
6
|
Mendoza C, Nirwan VP, Fahmi A. Nanofabrication of hybrid nanomaterials: Macroscopically aligned nanoparticles pattern via directed self‐assembly of block copolymers. J Appl Polym Sci 2022. [DOI: 10.1002/app.53409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Viraj Pratap Nirwan
- Faculty of Technology and Bionics Rhine‐Waal University of Applied Sciences Kleve Germany
| | - Amir Fahmi
- Faculty of Technology and Bionics Rhine‐Waal University of Applied Sciences Kleve Germany
| |
Collapse
|