1
|
Dutta SD, Hexiu J, Moniruzzaman M, Patil TV, Acharya R, Kim JS, Lim KT. Tailoring osteoimmunity and hemostasis using 3D-Printed nano-photocatalytic bactericidal scaffold for augmented bone regeneration. Biomaterials 2025; 316:122991. [PMID: 39662273 DOI: 10.1016/j.biomaterials.2024.122991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Bone hemorrhage, infection, and large bone defects following surgical treatment of traumatic bone injury have raised potential concerns, underscoring the urgent need to develop multifunctional therapeutic platforms that can effectively address traumatic bone regeneration. Advancements in three-dimensional (3D) printing technology have propelled the development of several engineering disciplines, such as tissue engineering. Nevertheless, 3D-printed frameworks with conventional materials often lack multifunctional capabilities to promote specific activities for diverse regeneration purposes. In this study, we developed a highly oxidized two-dimensional (2D) graphitic carbon nitride (Ox-gCN) as a nano-photocatalyst to reinforce alginate/gelatin (ALG)-based hydrogel scaffolds (ALG/CN) to achieve an anti-inflammatory and osteo-immunomodulatory niche with superior hemostatic ability for traumatic bone injury repair. Sulfuric acid oxidation enhances the oxygen-containing functional groups of the g-CN surface and promotes cell adhesion and differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) in vitro. Moreover, the excellent visible light-activated photocatalytic characteristics of the ALG/CN scaffold were used in antibacterial studies. In addition, the ALG/CN bio/nanocomposite scaffold facilitates M2 polarization of macrophages than did pristine ALG scaffolds. Furthermore, ALG/CN scaffold induced hBMSCs differentiation by upregulating ERK and MAPKs phosphorylation during osteo-immunomodulation. In a rat calvaria defect model, the fabricated ALG/CN scaffolds induced new bone formation through collagen deposition and activation of osteocalcin proteins without inflammation in vivo. These results highlight the potential of 3D-printed functionalized 2D carbon nitrides in regulating the bone immune microenvironment, which may be beneficial for developing advanced tissue constructs, especially for traumatic bone regeneration in clinical settings.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea; Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Jin Hexiu
- Department of Oral and Maxillofacial Surgery, Capital Medical University, Beijing-1000054, China
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jong Sung Kim
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 13120, Republic of Korea.
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
2
|
Ulagesan S, Krishnan S, Nam TJ, Choi YH. Development of oyster protein-enhanced scaffolds with seven-band grouper muscle satellite cells for cultured seafood production. Bioprocess Biosyst Eng 2025; 48:857-875. [PMID: 40119887 DOI: 10.1007/s00449-025-03148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
Cell-based aquaculture holds significant promise for revolutionizing the seafood industry by addressing the limitations of traditional fishing and aquaculture practices. In this study muscle cells from Seven-band grouper (SBG) Epinephelus septemfasciatus were isolated using an enzymatic digestion method. Initial cell attachment and growth were monitored, showing robust proliferation when cultured in L-15 medium supplemented with 10% fetal bovine serum (FBS) and basic fibroblast growth factor (bFGF). We assessed the biocompatibility and cytotoxicity of two protein sources, oyster protein (OP) and soy protein (SP), for their effects on grouper muscle cell viability and growth. OP demonstrated strong biocompatibility, effectively supporting cell viability and significantly promoting muscle cell proliferation. At a concentration of 10,000 µg/mL, OP increased muscle cell proliferation by up to 90% after 48 h of incubation. SP, however, exhibited dose-dependent cytotoxic effects, with reduced cell viability observed at higher concentrations (10,000 µg/mL) over 48 h. This comparative analysis indicates that OP maintains cellular health and enhances cell growth, while SP may limit cell viability at elevated concentrations. Following these findings, we prepared a scaffold using Alginate-κ-Carrageenan (Alg-κ-Car) combined with oyster protein (Alg-κ-Car-OP), which showed enhanced gelation and printability properties. 3D bioprinting of grouper muscle satellite cells (GMSC) within Alg-κ-Car-OP scaffolds resulted in higher cell viability than Alg-κ-Car scaffolds alone. Taste sensory analysis using an electronic tongue revealed distinct taste profiles, with Alg-κ-Car-OP-GMSC scaffolds exhibiting the highest umami score. Flavor analysis using flash gas chromatography and an electronic nose differentiated between scaffold types and protein samples, highlighting potential flavor markers. These findings underscore the potential of cell-based aquaculture, especially with OP-incorporated scaffolds, to meet the demand for sustainable and nutritious seafood alternatives. Further research is warranted to optimize production processes and explore commercial applications.
Collapse
Affiliation(s)
- Selvakumari Ulagesan
- Division of Fisheries Life Sciences, Pukyong National University, Nam-Gu, Busan, 48513, Republic of Korea
| | - Sathish Krishnan
- Institute of Fisheries Sciences, Pukyong National University, Gijang-Gun, Busan, 46041, Republic of Korea
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Gijang-Gun, Busan, 46041, Republic of Korea
| | - Youn-Hee Choi
- Division of Fisheries Life Sciences, Pukyong National University, Nam-Gu, Busan, 48513, Republic of Korea.
- Institute of Fisheries Sciences, Pukyong National University, Gijang-Gun, Busan, 46041, Republic of Korea.
| |
Collapse
|
3
|
Zha XJ, Wen C, Huang X, Ling TX, Li JB, Huang JG. Digital light processing 3D printing of high-fidelity and versatile hydrogels via in situ phase separation. J Mater Chem B 2025; 13:4630-4640. [PMID: 40123462 DOI: 10.1039/d5tb00106d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Recently, digital light processing (DLP) 3D printing has garnered significant interest for fabricating high-fidelity hydrogels. However, the intrinsic weak and loose network of hydrogels, coupled with uncontrollable light projection, leads to low printing resolution and restricts their broader applications. Herein, we propose a straightforward DLP 3D printing strategy utilizing in situ phase separation to produce high-fidelity, high-modulus, and biocompatible hydrogels. By selecting acrylamide monomers with poor compatibility within a polyvinyl pyrrolidone (PVP) network during polymerization, we create phase-separated domains within polyacrylamide (PAM) that effectively inhibit ultraviolet (UV) light transmission. This regulation of UV light distribution results in anhydrous inks with exceptional properties: ultra-high resolution (1.5 μm), ultra-high modulus (1043 MPa), and high strength (70.0 MPa). Upon hydration, the modulus and strength of the hydrogels decrease to approximately 4000 times those of the anhydrous gels, exhibiting high mechano-moisture sensitivity suitable for actuator applications. Additionally, the DLP 3D-printed hydrogels, featuring micro-scale structures, demonstrate good biocompatibility and facilitate nutrient transport for cell proliferation. This versatile DLP 3D printing strategy paves the way for the fabrication of high-fidelity and multifunctional hydrogels.
Collapse
Affiliation(s)
- Xiang-Jun Zha
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
- Department of Ultrasound, Medical Research Center, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, China
| | - Cheng Wen
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Xinyu Huang
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Ting-Xian Ling
- Orthopedic Research Institute & Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jian-Bo Li
- Department of Critical Care Medicine, West China Hospital of Sichuan University, 37 Guo Xue Xiang St, Chengdu 610041, Sichuan, China
| | - Ji-Gang Huang
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
4
|
Bhuiyan MHR, Yeasmen N, Orsat V. Plant-proteins based 3D meat analog printing: A review. Food Chem 2025; 482:144157. [PMID: 40187317 DOI: 10.1016/j.foodchem.2025.144157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/21/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
This review summarizes and critically analyze the scientific studies pertinent to three-dimensional printing of plant-proteins based meat-analog. Vegetable proteins, oils, and water are the major ingredients in formulating ink for three-dimensional printing of meat-analogs; while, hydrocolloid, enzyme, yeast, colorant, mineral, flavor, etc. are used as minor ingredients. Both ingredients and formulation modulate rheological properties of the ink, and consequently three-dimensional printing's performance and post-printing stability of the meat-analogs. Printing temperature, contact angle, nozzle height, nozzle diameter, layer height, and speed of nozzle movement are the most critical parameters that influence printing of meat-analogs. Air heating, baking, steaming, deep-fat frying, and microwave heating have been successfully used to finish-cook three-dimensional printed meat-analogs. Micro-structural characteristics and ingredient's distribution impact functionalities and stability of printed analogs. Safety aspects, legal frameworks, and sustainability issues should be taken as major concern. Future research directions pertinent to three-dimensional printing of plant-based meat-analog, have been identified.
Collapse
Affiliation(s)
- Md Hafizur Rahman Bhuiyan
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada; Department of Food Engineering and Technology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Nushrat Yeasmen
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada; Department of Food Engineering and Technology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Valérie Orsat
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
5
|
Li S, Zhang X, Wang J, Lu J, Li M, Zhang M, Panichayupakaranant P, Chen H. Double-crosslinked hydrogels and hydrogel beads formed by garlic protein hydrolysates for bioactive encapsulation and gastrointestinal delivery. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2643-2654. [PMID: 39548671 DOI: 10.1002/jsfa.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/14/2024] [Accepted: 10/26/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Garlic protein is one of the main components of garlic. It has several beneficial characteristics. This study aimed to characterize a double crosslinked hydrogel formed with alginate, calcium ions (Ca2+), and garlic protein hydrolysates (GPH), and to develop hydrogel beads for targeted delivery of bioactive constituents to the gastrointestinal tract. RESULTS The results indicated that the degree of GPH hydrolysis was approximately 3% following trypsin treatment. The inner structure of the double crosslinked hydrogel showed a honeycomb pattern, with solid-like gel rheology and improved texture properties at a 4% (w/v) GPH concentration. The GPH-based hydrogel beads demonstrated pH sensitivity, swelling in near-neutral and alkaline environments, and the encapsulated paclitaxel (PTX) exhibited an amorphous phase with preferential release in intestinal conditions. The GPH group also achieved greater drug encapsulation efficiency than a soy protein hydrolysate (SPH) group, and proteomic analysis suggested that lower molecular weight and peptide charge favored the formation of peptide-integrated double crosslinking hydrogels. CONCLUSION This work indicated that GPH was helpful and could inspire the development of drug delivery systems involving GPH with the required mechanical strength and target-release properties. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
- College of Basic Science, Tianjin Agricultural University, Tianjin, P. R. China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| | - Jingyang Lu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| | - Mingyue Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| | - Min Zhang
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin, P. R. China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, , Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
6
|
Piantino M, Muller Q, Nakadozono C, Yamada A, Matsusaki M. Towards more realistic cultivated meat by rethinking bioengineering approaches. Trends Biotechnol 2025; 43:364-382. [PMID: 39271415 DOI: 10.1016/j.tibtech.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Cultivated meat (CM) refers to edible lab-grown meat that incorporates cultivated animal cells. It has the potential to address some issues associated with real meat (RM) production, including the ethical and environmental impact of animal farming, and health concerns. Recently, various biomanufacturing methods have been developed to attempt to recreate realistic meat in the laboratory. We therefore overview recent achievements and challenges in the production of CM. We also discuss the issues that need to be addressed and suggest additional recommendations and potential criteria to help to bridge the gap between CM and RM from an engineering standpoint.
Collapse
Affiliation(s)
- Marie Piantino
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan
| | - Quentin Muller
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan
| | - Chika Nakadozono
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan; Shimadzu Analytical Innovation Research Laboratories, Osaka University, Osaka, Japan; Shimadzu Corporation, Kyoto, Japan
| | - Asuka Yamada
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan; Toppan Holdings Inc., Business Development Division, Technical Research Institute, Saitama, Japan
| | - Michiya Matsusaki
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan.
| |
Collapse
|
7
|
Krishnan S, Ulagesan S, Moon JS, Choi YH, Nam TJ. Establishment, characterization, and sensory characteristics (taste and flavor) of an immortalized muscle cell line from the seven-band grouper Epinephelus septemfasciatus: implications for cultured seafood applications. In Vitro Cell Dev Biol Anim 2025; 61:8-23. [PMID: 39302606 DOI: 10.1007/s11626-024-00971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
Grouper muscle satellite cells (GMSCs) from the seven-band grouper (Epinephelus septemfasciatus) were isolated, and their growth conditions were optimized (10% fetal bovine serum, 24°C, 10 ng/mL bFGF). The cells were immortalized at passage 14 and designated as grouper immortalized muscle satellite cells (GIMSCs). DNA barcoding confirmed the grouper origin of both GMSC and GIMSC lines. GIMSCs exhibited enhanced proliferation, accelerated differentiation, and robust myotube formation compared to pre-crisis GMSCs. Western blot analysis showed upregulation of key myogenic factors (Pax7, MyoD, MyoG) and structural proteins (Desmin) in GIMSC, indicating the differentiation potential. The immortalized GIMSC line maintained consistent morphology, growth rates, and viability across multiple passages. Biocompatibility studies showed GIMSCs were compatible with bio-inks (sodium alginate, gelatin, κ-carrageenan) at 250 to 10,000 µg/mL, retaining ~ 80% viability at the highest concentration. Taste sensory analysis revealed GMSCs had the highest umami and lowest saltiness and sourness, contrasting with the muscle of the seven-band grouper, which had higher saltiness and sourness. Flavor analysis identified pronounced fishy, hot fat, and ethereal flavors in the cells at higher level than in the muscle. These findings suggest GMSCs and GIMSCs are promising for producing cultured meat with enhanced umami taste and flavors, advancing cellular agriculture and sustainable food production.
Collapse
Affiliation(s)
- Sathish Krishnan
- Institute of Fisheries Sciences, Pukyong National University, Gijang-Gun, Busan, 46041, Republic of Korea
| | - Selvakumari Ulagesan
- Division of Fisheries Life Sciences, Pukyong National University, Nam-Gu, Busan, 48513, Republic of Korea
| | - Ji-Sung Moon
- Division of Fisheries Life Sciences, Pukyong National University, Nam-Gu, Busan, 48513, Republic of Korea
| | - Youn-Hee Choi
- Institute of Fisheries Sciences, Pukyong National University, Gijang-Gun, Busan, 46041, Republic of Korea.
- Division of Fisheries Life Sciences, Pukyong National University, Nam-Gu, Busan, 48513, Republic of Korea.
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Gijang-Gun, Busan, 46041, Republic of Korea.
| |
Collapse
|
8
|
Goodwin CM, Aimutis WR, Shirwaiker RA. A scoping review of cultivated meat techno-economic analyses to inform future research directions for scaled-up manufacturing. NATURE FOOD 2024; 5:901-910. [PMID: 39424999 DOI: 10.1038/s43016-024-01061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/10/2024] [Indexed: 10/21/2024]
Abstract
Techno-economic analyses offer insights into how industrial cultivated meat (CM) production could achieve price parity with conventional meat. These analyses use scaling practices, data and facility designs for related bioprocessing fields, including large (≥20,000 l) stirred tank bioreactors and suspension-tolerant, continuously available cell lines. This approach is inconsistent with most primary CM literature, which parallels bench-scale tissue engineering. TEAs published to date demonstrate that, under the current technological paradigm, CM is unlikely to be competitive with conventional meat. Scale-up feasibility may hinge on cost-saving areas such as use of plant-based media components, food-grade aseptic conditions and extensive scaling of related supply chains. Research must address knowledge gaps including serum-free differentiation, new bioreactor designs and facility design before CM can become a viable alternative to animal-based meat production.
Collapse
Affiliation(s)
- Corbin M Goodwin
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA
- Bezos Center for Sustainable Protein, North Carolina State University, Raleigh, NC, USA
| | - William R Aimutis
- Bezos Center for Sustainable Protein, North Carolina State University, Raleigh, NC, USA
- North Carolina Food Innovation Lab, North Carolina State University, Kannapolis, NC, USA
| | - Rohan A Shirwaiker
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA.
- Bezos Center for Sustainable Protein, North Carolina State University, Raleigh, NC, USA.
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA.
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
9
|
Gurel M, Rathod N, Cabrera LY, Voyton S, Yeo M, Ozogul F, Ozbolat IT. A narrative review: 3D bioprinting of cultured muscle meat and seafood products and its potential for the food industry. Trends Food Sci Technol 2024; 152:104670. [PMID: 39309029 PMCID: PMC11412102 DOI: 10.1016/j.tifs.2024.104670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The demand for meat and seafood products has been globally increasing for decades. To address the environmental, social, and economic impacts of this trend, there has been a surge in the development of three-dimensional (3D) food bioprinting technologies for lab-grown muscle food products and their analogues. This innovative approach is a sustainable solution to mitigate the environmental risks associated with climate change caused by the negative impacts of indiscriminative livestock production and industrial aquaculture. This review article explores the adoption of 3D bioprinting modalities to manufacture lab-grown muscle food products and their associated technologies, cells, and bioink formulations. Additionally, various processing techniques, governing the characteristics of bioprinted food products, nutritional compositions, and safety aspects as well as its relevant ethical and social considerations, were discussed. Although promising, further research and development is needed to meet standards and translate into several industrial areas, such as the food and renewable energy industries. In specific, optimization of animal cell culture conditions, development of serum-free media, and bioreactor design are essential to eliminate the risk factors but achieve the unique nutritional requirements and consumer acceptance. In short, the advancement of 3D bioprinting technologies holds great potential for transforming the food industry, but achieving widespread adoption will require continued innovation, rigorous research, and adherence to ethical standards to ensure safety, nutritional quality, and consumer acceptance.
Collapse
Affiliation(s)
- Mediha Gurel
- Biotechnology Research and Application Center, Cukurova University, 01330, Adana, Turkey
- Electronic and Automation Department, Bitlis Eren University, Bitlis, 13000, Turkey
| | - Nikheel Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post-graduate Institute of Post-harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Raigad, 402116, India
| | - Laura Y. Cabrera
- Rock Ethics Institute, Penn State University, University Park, 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
| | - Stephen Voyton
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
| | - Miji Yeo
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
| | - Fatih Ozogul
- Biotechnology Research and Application Center, Cukurova University, 01330, Adana, Turkey
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA
- Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, 17033, USA
- Penn State Cancer Institute, Penn State University, Hershey, PA, 17033, USA
- Department of Medical Oncology, Cukurova University, Adana, 01130, Turkey
| |
Collapse
|
10
|
Park S, Hong Y, Park S, Kim W, Gwon Y, Sharma H, Jang KJ, Kim J. Engineering Considerations on Large-Scale Cultured Meat Production. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:423-435. [PMID: 38062728 DOI: 10.1089/ten.teb.2023.0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
In recent decades, cultured meat has received considerable interest as a sustainable alternative to traditional meat products, showing promise for addressing the inherent problems associated with conventional meat production. However, current limitations on the scalability of production and extremely high production costs have prevented their widespread adoption. Therefore, it is important to develop novel engineering strategies to overcome the current limitations in large-scale cultured meat production. Such engineering considerations have the potential for advancements in cultured meat production by providing innovative and effective solutions to the prevailing challenges. In this review, we discuss how engineering strategies have been utilized to advance cultured meat technology by categorizing the production processes of cultured meat into three distinct steps: (1) cell preparation; (2) cultured meat fabrication; and (3) cultured meat maturation. For each step, we provide a comprehensive discussion of the recent progress and its implications. In particular, we focused on the engineering considerations involved in each step of cultured meat production, with specific emphasis on large-scale production.
Collapse
Affiliation(s)
- Sangbae Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
- Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co., Ltd, Gwangju, Republic of Korea
- Department of Biosystems Engineering, Seoul National University, Seoul, Republic of Korea
| | - Yeonggeol Hong
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Harshita Sharma
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Kyoung-Je Jang
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, Republic of Korea
- Smart Farm Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
- Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co., Ltd, Gwangju, Republic of Korea
| |
Collapse
|
11
|
Nurul Alam AMM, Kim CJ, Kim SH, Kumari S, Lee EY, Hwang YH, Joo ST. Scaffolding fundamentals and recent advances in sustainable scaffolding techniques for cultured meat development. Food Res Int 2024; 189:114549. [PMID: 38876607 DOI: 10.1016/j.foodres.2024.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/26/2024] [Accepted: 05/25/2024] [Indexed: 06/16/2024]
Abstract
In cultured meat (CM) production, Scaffolding plays an important role by aiding cell adhesion, growth, differentiation, and alignment. The existence of fibrous microstructure in connective and muscle tissues has attracted considerable interest in the realm of tissue engineering and triggered the interest of researchers to implement scaffolding techniques. A wide array of research efforts is ongoing in scaffolding technologies for achieving the real meat structure on the principality of biomedical research and to replace serum free CM production. Scaffolds made of animal-derived biomaterials are found efficient in replicating the extracellular matrix (ECM), thus focus should be paid to utilize animal byproducts for this purpose. Proper identification and utilization of plant-derived scaffolding biomaterial could be helpful to add diversified options in addition to animal derived sources and reduce in cost of CM production through scaffolds. Furthermore, techniques like electrospinning, modified electrospinning and 3D bioprinting should be focused on to create 3D porous scaffolds to mimic the ECM of the muscle tissue and form real meat-like structures. This review discusses recent advances in cutting edge scaffolding techniques and edible biomaterials related to structured CM production.
Collapse
Affiliation(s)
- A M M Nurul Alam
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea.
| | - Chan-Jin Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea.
| | - So-Hee Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea
| | - Swati Kumari
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea
| | - Eun-Yeong Lee
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea
| | - Young-Hwa Hwang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52852, Republic of Korea.
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea; Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52852, Republic of Korea.
| |
Collapse
|
12
|
Wang X, Wang M, Xu Y, Yin J, Hu J. A 3D-printable gelatin/alginate/ε-poly-l-lysine hydrogel scaffold to enable porcine muscle stem cells expansion and differentiation for cultured meat development. Int J Biol Macromol 2024; 271:131980. [PMID: 38821790 DOI: 10.1016/j.ijbiomac.2024.131980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 06/02/2024]
Abstract
The mass proliferation of seed cells and imitation of meat structures remain challenging for cell-cultured meat production. With excellent biocompatibility, high water content and porosity, hydrogels are frequently-studied materials for anchorage-dependent cell scaffolds in biotechnology applications. Herein, a scaffold based on gelatin/alginate/ε-Poly-l-lysine (GAL) hydrogel is developed for skeletal muscle cells, which has a great prospect in cell-cultured meat production. In this work, the hydrogel GAL-4:1, composed of gelatin (5 %, w/v), alginate (5 %, w/v) and ε-Poly-l-lysine (molar ratio vs. alginate: 4:1) is selected as cell scaffold based on Young's modulus of 11.29 ± 1.94 kPa, satisfactory shear-thinning property and suitable porous organized structure. The commercially available C2C12 mouse skeletal myoblasts and porcine muscle stem cells (PMuSCs), are cultured in the 3D-printed scaffold. The cells show strong ability of attachment, proliferation and differentiation after induction, showing high biocompatibility. Furthermore, the cellular bioprinting is performed with GAL-4:1 hydrogel and freshly extracted PMuSCs. The extracted PMuSCs exhibit high viability and display early myogenesis (desmin) on the 3D scaffold, suggesting the great potential of GAL hydrogel as 3D cellular constructs scaffolds. Overall, we develop a novel GAL hydrogel as a 3D-printed bioactive platform for cultured meat research.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Meiling Wang
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, PR China
| | - Yiqiang Xu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, PR China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, PR China.
| |
Collapse
|
13
|
Albrecht FB, Ahlfeld T, Klatt A, Heine S, Gelinsky M, Kluger PJ. Biofabrication's Contribution to the Evolution of Cultured Meat. Adv Healthc Mater 2024; 13:e2304058. [PMID: 38339837 PMCID: PMC11468272 DOI: 10.1002/adhm.202304058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Cultured Meat (CM) is a growing field in cellular agriculture, driven by the environmental impact of conventional meat production, which contributes to climate change and occupies ≈70% of arable land. As demand for meat alternatives rises, research in this area expands. CM production relies on tissue engineering techniques, where a limited number of animal cells are cultured in vitro and processed to create meat-like tissue comprising muscle and adipose components. Currently, CM is primarily produced on a small scale in pilot facilities. Producing a large cell mass based on suitable cell sources and bioreactors remains challenging. Advanced manufacturing methods and innovative materials are required to subsequently process this cell mass into CM products on a large scale. Consequently, CM is closely linked with biofabrication, a suite of technologies for precisely arranging cellular aggregates and cell-material composites to construct specific structures, often using robotics. This review provides insights into contemporary biomedical biofabrication technologies, focusing on significant advancements in muscle and adipose tissue biofabrication for CM production. Novel materials for biofabricating CM are also discussed, emphasizing their edibility and incorporation of healthful components. Finally, initial studies on biofabricated CM are examined, addressing current limitations and future challenges for large-scale production.
Collapse
Affiliation(s)
| | - Tilman Ahlfeld
- Technische Universität DresdenCentre for Translational BoneJoint and Soft Tissue Research01307DresdenGermany
| | - Annemarie Klatt
- Reutlingen UniversityReutlingen Research Institute72762ReutlingenGermany
| | - Simon Heine
- Reutlingen UniversityReutlingen Research Institute72762ReutlingenGermany
| | - Michael Gelinsky
- Technische Universität DresdenCentre for Translational BoneJoint and Soft Tissue Research01307DresdenGermany
| | | |
Collapse
|
14
|
Shi H, Zhang M, Mujumdar AS. 3D/4D printed super reconstructed foods: Characteristics, research progress, and prospects. Compr Rev Food Sci Food Saf 2024; 23:e13310. [PMID: 38369929 DOI: 10.1111/1541-4337.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Abstract
Super reconstructed foods (SRFs) have characteristics beyond those of real system in terms of nutrition, texture, appearance, and other properties. As 3D/4D food printing technology continues to be improved in recent years, this layered manufacturing/additive manufacturing preparation technology based on food reconstruction has made it possible to continuously develop large-scale manufacture of SRFs. Compared with the traditional reconstructed foods, SRFs prepared using 3D/4D printing technologies are discussed comprehensively in this review. To meet the requirements of customers in terms of nutrition or other characteristics, multi-processing technologies are being combined with 3D/4D printing. Aspects of printing inks, product quality parameters, and recent progress in SRFs based on 3D/4D printing are assessed systematically and discussed critically. The potential for 3D/4D printed SRFs and the need for further research and developments in this area are presented and discussed critically. In addition to the natural materials which were initially suitable for 3D/4D printing, other derivative components have already been applied, which include hydrogels, polysaccharide-based materials, protein-based materials, and smart materials with distinctive characteristics. SRFs based on 3D/4D printing can retain the characteristics of deconstruction and reconstruction while also exhibiting quality parameters beyond those of the original material systems, such as variable rheological properties, on-demand texture, essential printability, improved microstructure, improved nutrition, and more appealing appearance. SRFs with 3D/4D printing are already widely used in foods such as simulated foods, staple foods, fermented foods, foods for people with special dietary needs, and foods made from food processingbyproducts.
Collapse
Affiliation(s)
- Hao Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| |
Collapse
|
15
|
Chen ZX, Zha XJ, Xia YK, Ling TX, Xiong J, Huang JG. 3D Foaming Printing Biomimetic Hierarchically Macro-Micronanoporous Hydrogels for Enhancing Cell Growth and Proliferation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10813-10821. [PMID: 38359411 DOI: 10.1021/acsami.3c19556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Hydrogel, recognized as a promising biomaterial for tissue engineering, possesses notable characteristics, including high water uptake, an interconnected porous structure, and excellent permeability. However, the intricate task of fabricating a hierarchically macro-micronanoporous structure, essential for providing adequate space for nutrient diffusion and cell growth within hydrogels, remains a formidable challenge. In response to these challenges, this study introduces a sustainable and straightforward three-dimensional (3D) foaming printing strategy to produce hierarchically macro-micronanoporous hydrogels (HPHs) without the utilization of porogens and post-etching process. This method entails the controlled generation of air bubbles within the hydrogels through the application of optimal mechanical stirring rates. Subsequent ultraviolet (UV) cross-linking serves to effectively stabilize the macropores within the HPHs. The resulting hierarchically macro-micronanoporous structures demonstrate a substantial improvement in the viability, adhesion, and proliferation of human umbilical vein endothelial cells (HUVECs) when incubated with the hydrogels. These findings present a significant advancement in the fabrication of hierarchically macro-micronanoporous hydrogels, with potential applications in the fields of tissue engineering and organoid development.
Collapse
Affiliation(s)
- Zhuo-Xi Chen
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xiang-Jun Zha
- Liver Transplant center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, 610041 Chengdu, Sichuan, China
| | - Yong-Kang Xia
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ting-Xian Ling
- Orthopedic Research Institute & Department of Orthopedics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jing Xiong
- Institute of Advance Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Ji-Gang Huang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
16
|
Fan G, Li Y, Ye Q, Niu Q, Zhao X, Chen L, Gu Q, Zhang Y, Wei X, Wu S, Wu Q, Wu Y. Animal-derived free hydrolysate in animal cell culture: Current research and application advances. J Tissue Eng 2024; 15:20417314241300388. [PMID: 39649943 PMCID: PMC11624555 DOI: 10.1177/20417314241300388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/01/2024] [Indexed: 12/11/2024] Open
Abstract
Fetal bovine serum (FBS) plays a crucial role in the composition of animal cell culture medium. However, conventional serum-based medium face numerous challenges. The use of animal-derived free hydrolysate (ADFH) has garnered significant attention in research and applications as a viable alternative to FBS-containing medium in animal cell culture. This article provides a comprehensive overview of the effects, mechanisms of action, and applications of ADFH in animal cell culture. ADFH serves as an effective substitute for FBS-containing medium, enhancing various cellular processes, including cell proliferation, viability, protein synthesis, production, survival, and stability. Several mechanisms of action for ADFH have been elucidated through scientific investigations, such as nutrient provision, activation of signaling pathways, regulation of protein synthesis and folding, protection against oxidative damage and apoptosis, as well as cell cycle regulation. Researches and applications of ADFH represent a promising approach to overcoming the limitations of FBS-containing medium and advancing the field of animal cell culture. This review provides a theoretical foundation for promoting the development of sustainable and alternative hydrolysates, as well as the continued progress of animal cell culture.
Collapse
Affiliation(s)
- Guanghan Fan
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinghua Ye
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinya Niu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Zhao
- Guangdong Kehuan Biological Science and Technology Co. Ltd., Guangzhou, Guangdong, China
| | - Ling Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qihui Gu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Youxiong Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xianhu Wei
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuwei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
17
|
Yu J, Wang L, Zhang Z. Plant-Based Meat Proteins: Processing, Nutrition Composition, and Future Prospects. Foods 2023; 12:4180. [PMID: 38002236 PMCID: PMC10670130 DOI: 10.3390/foods12224180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The growing need for plant-based meat alternatives promotes the rapid progress of the food industry. Processing methods employed in plant-based meat production are critical to preserving and enhancing their nutritional content and health benefits, directly impacting consumer acceptance. Unlike animal-based food processing, the efficiency of protein extraction and processing methods plays a crucial role in preserving and enriching the nutritional content and properties. To better understand the factors and mechanisms affecting nutrient composition during plant-based meat processing and identify key processing steps and control points, this work describes methods for extracting proteins from plants and processing techniques for plant-based products. We investigate the role of nutrients and changes in the nutrients during plant protein product processing. This article discusses current challenges and prospects.
Collapse
Affiliation(s)
- Jialing Yu
- College of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK;
| | - Liyuan Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhaowei Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
18
|
Dutta SD, Ganguly K, Hexiu J, Randhawa A, Moniruzzaman M, Lim KT. A 3D Bioprinted Nanoengineered Hydrogel with Photoactivated Drug Delivery for Tumor Apoptosis and Simultaneous Bone Regeneration via Macrophage Immunomodulation. Macromol Biosci 2023; 23:e2300096. [PMID: 37087681 DOI: 10.1002/mabi.202300096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Indexed: 04/24/2023]
Abstract
One of the significant challenges in bone tissue engineering (BTE) is the healing of traumatic tissue defects owing to the recruitment of local infection and delayed angiogenesis. Herein, a 3D printable multi-functional hydrogel composing polyphenolic carbon quantum dots (CQDs, 100 µg mL-1 ) and gelatin methacryloyl (GelMA, 12 wt%) is reported for robust angiogenesis, bone regeneration and anti-tumor therapy. The CQDs are synthesized from a plant-inspired bioactive molecule, 1, 3, 5-trihydroxybenzene. The 3D printed GelMA-CQDs hydrogels display typical shear-thinning behavior with excellent printability. The fabricated hydrogel displayed M2 polarization of macrophage (Raw 264.7) cells via enhancing anti-inflammatory genes (e.g., IL-4 and IL10), and induced angiogenesis and osteogenesis of human bone mesenchymal stem cells (hBMSCs). The bioprinted hBMSCs are able to produce vessel-like structures after 14 d of incubation. Furthermore, the 3D printed hydrogel scaffolds also show remarkable near infra-red (NIR) responsive properties under 808 nm NIR light (1.0 W cm-2 ) irradiation with controlled release of antitumor drugs (≈49%) at pH 6.5, and thereby killing the osteosarcoma cells. Therefore, it is anticipated that the tissue regeneration and healing ability with therapeutic potential of the GelMA-CQDs scaffolds may provide a promising alternative for traumatic tissue regeneration via augmenting angiogenesis and accelerated immunomodulation.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jin Hexiu
- Department of Oral and Maxillofacial Surgery, Capital Medical University, Beijing, China
| | - Aayushi Randhawa
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 100069, Republic of Korea
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 1342, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 100069, Republic of Korea
| |
Collapse
|
19
|
Samandari M, Saeedinejad F, Quint J, Chuah SXY, Farzad R, Tamayol A. Repurposing biomedical muscle tissue engineering for cellular agriculture: challenges and opportunities. Trends Biotechnol 2023; 41:887-906. [PMID: 36914431 PMCID: PMC11412388 DOI: 10.1016/j.tibtech.2023.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 03/13/2023]
Abstract
Cellular agriculture is an emerging field rooted in engineering meat-mimicking cell-laden structures using tissue engineering practices that have been developed for biomedical applications, including regenerative medicine. Research and industrial efforts are focused on reducing the cost and improving the throughput of cultivated meat (CM) production using these conventional practices. Due to key differences in the goals of muscle tissue engineering for biomedical versus food applications, conventional strategies may not be economically and technologically viable or socially acceptable. In this review, these two fields are critically compared, and the limitations of biomedical tissue engineering practices in achieving the important requirements of food production are discussed. Additionally, the possible solutions and the most promising biomanufacturing strategies for cellular agriculture are highlighted.
Collapse
Affiliation(s)
| | - Farnoosh Saeedinejad
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, USA
| | - Jacob Quint
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, USA
| | - Sharon Xin Ying Chuah
- Food Science and Human Nutrition Department, Florida Sea Grant and Global Food Systems Institute, University of Florida, Gainesville, FL, USA
| | - Razieh Farzad
- Food Science and Human Nutrition Department, Florida Sea Grant and Global Food Systems Institute, University of Florida, Gainesville, FL, USA.
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
20
|
de León EHP, Valle-Pérez AU, Khan ZN, Hauser CA. Intelligent and Smart Biomaterials for Sustainable 3D Printing Applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023. [DOI: 10.1016/j.cobme.2023.100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Chakrabarty P, Illath K, Kar S, Nagai M, Santra TS. Combinatorial physical methods for cellular therapy: Towards the future of cellular analysis? J Control Release 2023; 353:1084-1095. [PMID: 36538949 DOI: 10.1016/j.jconrel.2022.12.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
The physical energy activated techniques for cellular delivery and analysis is one of the most rapidly expanding research areas for a variety of biological and biomedical discoveries. These methods, such as electroporation, optoporation, sonoporation, mechanoporation, magnetoporation, etc., have been widely used in delivering different biomolecules into a range of primary and patient-derived cell types. However, the techniques when used individually have had limitations in delivery and co-delivery of diverse biomolecules in various cell types. In recent years, a number of studies have been performed by combining the different membrane disruption techniques, either sequentially or simultaneously, in a single study. The studies, referred to as combinatorial, or hybrid techniques, have demonstrated enhanced transfection, such as efficient macromolecular and gene delivery and co-delivery, at lower delivery parameters and with high cell viability. Such studies can open up new and exciting avenues for understanding the subcellular structure and consequently facilitate the development of novel therapeutic strategies. This review consequently aims at summarising the different developments in hybrid therapeutic techniques. The different methods discussed include mechano-electroporation, electro-sonoporation, magneto-mechanoporation, magnetic nanoparticles enhanced electroporation, and magnetic hyperthermia studies. We discuss the clinical status of the different methods and conclude with a discussion on the future prospects of the combinatorial techniques for cellular therapy and diagnostics.
Collapse
Affiliation(s)
- Pulasta Chakrabarty
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Srabani Kar
- Department of Physics, Indian Institute of Science Education and Research, Tirupati, India
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi, Japan
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|