1
|
Hu G, Yang C, Yi H, Li J, Wang Z, Wang Z, Yang W, Hu Y. Preparation of polylactic acid/chitosan oligosaccharide films loaded metal-organic framework composite L-theanine and eugenol and its antibacterial and antioxidant properties. Food Chem 2025; 486:144580. [PMID: 40345039 DOI: 10.1016/j.foodchem.2025.144580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025]
Abstract
In this study, based on the porous characteristics of the metal-organic framework, the inclusion complex of L-theanine (L-the) and Eugenol (Eug) was prepared, and polylactic acid (PLA)/chitosan oligosaccharide (CSO) was used as polymer scaffold to fabricate fibrous films by electrospinning. The results showed that with the addition of inclusion complexes, the solution viscosity and the diameter of the fiber increased, the thermal stability improved, hydrophobicity enhanced, water vapor permeability reduced, mechanical properties destroyed, and brittleness increased. The surface of the plate inhibition zone showed a high inhibition effect on Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Botrytis cinerea (B. cinerea). With the increase of inclusion complexes' concentration, the fiber film could effectively inhibit the mildew of fruits, reduce the loss of Vitamin C (VC) and total phenol contents (TPC), and significantly prolong the storage period of fruits, having an excellent fruit preservative effect.
Collapse
Affiliation(s)
- Guoxing Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, China
| | - Chen Yang
- University of California, San Diego, La Jolla, USA
| | - Hui Yi
- College of Electrical Engineering and Control Science, Nanjing Tech University, China
| | - Jixiang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, China
| | - Zhi Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, China
| | - Ziteng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, China
| | - Wenge Yang
- School of Pharmaceutical Sciences, Nanjing Tech University, China.
| | - Yonghong Hu
- College of Food Science and Light Industry, Nanjing Tech University, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, China
| |
Collapse
|
2
|
Yan K, Xing J, Guo X, Yang C, Wang W, Wang D. Concurrent effects and dynamic wetting abilities of nanometals anchored redox-active Janus nanoarchitectures on cotton fabric for sustainable catalysis and disinfection. Int J Biol Macromol 2025; 292:139243. [PMID: 39740708 DOI: 10.1016/j.ijbiomac.2024.139243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/24/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Designing an ideal catalyst with antifouling performance and enhanced conversion efficiency can prevent microbial or dye contamination and protect the active phase of the catalysts at the triple-phase interface during disinfection processes. Herein, we developed an Lous-leaf-inspired nanometal anchored redox-active Janus nanoarchitecture with dynamic wetting abilities and synergistic catalytic/antibacterial performances. Specifically, the redox-active hydrophilic polydopamine (PDA) was used to mediate the localized self-assembly and nucleation of Ag on a cotton fabric without using other reductants. This catalyst coating features a superficial Janus nanoarchitecture and context-dependent hydrophobic surface, resulting in a charge- and/or air bubble-involved spontaneous wetting phenomenon for contamination droplet during catalytic reactions. Their synergistically enhanced catalytic degradation of industrial dyes and free radical scavenging abilities were validated. The PDA@Ag modified fabric exhibited excellent washing resistance, achieving >99 % antibacterial performance against E. coli after being washed 20 times. The proof-of-concept for an optimal catalyst and protective coating has been demonstrated with multiple anti-fouling strategies such as a self-cleaning/anti-adhesion surface, enhanced photothermal effect and antibacterial properties. Eventually, this rationally designed Janus nanoarchitecture interface was supposed to address the trade-off issues commonly encountered at the droplet-based triple-phase interfacial reaction with a dynamic changed active phase and excellent catalytic/antibacterial performances.
Collapse
Affiliation(s)
- Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China.
| | - Jiaxin Xing
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Xiaoming Guo
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Chenguang Yang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Wenwen Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China.
| |
Collapse
|
3
|
Zhao X, Li Y, Chen K, Huang W, Luo F, Wang X, Qin Y. Completely Flexible Self-Powered Pressure Sensor Based on Electrospinning and Electrochemical Reaction for Dynamic/Static Stimuli Detecting. ACS Sens 2025; 10:1011-1022. [PMID: 39964735 DOI: 10.1021/acssensors.4c02824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The proliferation of novel technologies like virtual reality, health monitoring has sparked a surge in demand for wearable devices, electronic skin, and other cutting-edge technologies. Flexible pressure sensors serve as essential components that have attracted considerable interest. Most current flexible pressure sensors require external power sources and have complex structures, presenting obstacles when utilized on the surface of the human body. This study introduces a flexible pressure sensor based on electrospinning and electrochemical reactions, which does not require external power source while demonstrating excellent sensing capabilities. It is important to note that the sensor, owing to the fully spun fabrication process, demonstrates superior breathability compared to cotton fabrics. The sensor sensitivity can reach up to 143 mV/kPa, with a wide operating range of 0 to 400 kPa, it exhibits remarkable recognition capabilities for both static and dynamic forces. Additionally, the sensor features a short response time of 50 ms for the rising edge and 40 ms for the falling edge, allowing it to accurately detect the pressure applied under repeated stimuli ranging from 1 to 8 Hz. Furthermore, efforts have been made to employ the sensor in the development of a human motion and health monitoring system, further exploring its potential within the application of electronic skin technology. This research introduces a novel perspective for the advancement of future intelligent devices.
Collapse
Affiliation(s)
- Xuanmo Zhao
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650000, China
| | - Ying Li
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650000, China
| | - Kedi Chen
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650000, China
| | - Weichen Huang
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650000, China
| | - Fanchen Luo
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650000, China
| | - Xi Wang
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650000, China
| | - Yafei Qin
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650000, China
| |
Collapse
|
4
|
Zhang B, Li X, Lin Y, Cheng N, Jiao W, Wang X, Yu J, Ding B. Optimization of Bio-Based Polyurethane Elastic Nanofibrous Membrane via Electrospinning for Waterproof and Breathable Applications. Polymers (Basel) 2025; 17:486. [PMID: 40006148 PMCID: PMC11859813 DOI: 10.3390/polym17040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Bio-based polyurethane (BPU) offers excellent biocompatibility and outstanding elasticity, providing vast potential for the development of next-generation waterproof and breathable materials. However, achieving stable and uniform electrospinning of BPU remains a significant challenge. Herein, BPU with superior electrospinning performance was synthesized using poly(butylene sebacate), poly(trimethylene ether glycol), ethylene glycol, and methylene diphenyl diisocyanate (MDI) as raw materials. BPU nanofibrous membranes were successfully fabricated using solutions of varying concentrations (12 wt%, 16 wt%, 20 wt%, and 24 wt%), and their morphology, mechanical properties, hydrophobicity, and breathability were systematically analyzed. The nanofibrous membrane prepared with 20 wt% BPU solution exhibited optimal fiber morphology and mechanical properties, with a tensile strength of 15.6 MPa and an elongation at break of 440.8%. In contrast, lower concentrations (12 wt% and 16 wt%) resulted in insufficient fiber formation, leading to poorer performance, while higher concentrations (24 wt%) significantly reduced fiber uniformity, negatively impacting the overall performance. Additionally, the nanofibrous membrane produced from the 20 wt% BPU solution demonstrated significant hydrophobicity and breathability, with a water contact angle of 133.2°, hydrostatic pressure of 48.2 kPa, and breathability of 12.6 kg·m2·d-1. These findings suggest that BPU nanofibrous membranes produced via electrospinning hold great potential for application in functional textiles.
Collapse
Affiliation(s)
- Bin Zhang
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xueqin Li
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yanyan Lin
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Ningbo Cheng
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Wenling Jiao
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xianfeng Wang
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
5
|
Zhao J, Chen L, Ma A, Bai X, Zeng Y, Liu D, Liu B, Zhang W, Tang S. Recent advances in coaxial electrospun nanofibers for wound healing. Mater Today Bio 2024; 29:101309. [PMID: 39558931 PMCID: PMC11570975 DOI: 10.1016/j.mtbio.2024.101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/28/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024] Open
Abstract
The skin is the body's primary immune barrier, defending it against pathogenic invasion. Skin injuries impose a significant physiological burden on patients, making effective wound management essential. Dressings are commonly employed in wound care, and electrospun nanofiber dressings are a research hotspot owing to their ease of fabrication, cost-effectiveness, and structural similarity to the extracellular matrix. Coaxial electrospinning offers considerable advantages in drug delivery, fiber structure transformation, and enhanced interaction with the host. These attributes make coaxial electrospun materials promising candidates for precision and personalized wound dressings in medical treatments. This review provides a comprehensive overview of wound healing and its influencing factors. It also outlines coaxial electrospinning's production principles and benefits in wound dressings. Guided by the factors affecting wound healing, coaxial electrospun nanofiber dressings have different application modalities. Furthermore, we discuss the current limitations and future directions for enhancing the current coaxial electrospun dressing technologies.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Liyun Chen
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Aiwei Ma
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Xujue Bai
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Yating Zeng
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Daojun Liu
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, China
| | - Bo Liu
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| |
Collapse
|
6
|
Ni H, Zhang X, Yu J, Zhao C, Si Y. Phase-Changeable Metafabric Enables Dynamic Subambient Humidity and Thermal Regulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62654-62663. [PMID: 39474935 DOI: 10.1021/acsami.4c12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
A promising approach to prevent heat- and cold-related illnesses is the integration of zero-energy input control technology into personal thermal management (PTM) systems while reducing energy consumption. However, achieving optimal wearing comfort while maintaining subambient metabolic temperatures using thermally regulating materials without an energy supply remains challenging. In this study, we provide a simple and reliable methodology to produce a phase-changeable metafabric made of thermoplastic polyurethane and phase change capsule (PCC) particles with high moisture permeability and thermal comfort. This approach skillfully incorporates spray-formed PCC particles into a three-dimensional nanofibrous aggregate, forming a stable self-entangled network structure in a single step through simultaneous humidity-assisted electrospraying and electrospinning processes. Additionally, the metafabric demonstrates prominent water resistance and superhydrophobicity, which are attributed to the integration of PCC particles and nanofibers, resulting in the formation of a microporous/nanoporous structure resembling the surface of a lotus leaf. As a result, the phase-changeable metafabric shows an active and passive thermal control performance, with a water vapor transmittance rate of 13.1 kg m-2 d-1 and a phase change enthalpy of 115.05 J g-1 even after 100 thermal cycles. Furthermore, it displays excellent waterproofing capability, characterized by a water contact angle of 158.7° and the ability to withstand a high hydrostatic pressure of 87 kPa. In addition, the metafabric exhibits a good mechanical performance, boasting a tensile strength of 10.5 MPa. Overall, the proposed economical metafabric is an exemplary candidate material for next-generation PTM systems.
Collapse
Affiliation(s)
- Haiyan Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian Province 350108, China
| | - Xuan Zhang
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Cunyi Zhao
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
7
|
Tang M, Song X, Wang C, Jiang L, Zhou Y, Wang Y, Zhu J, Wang Y, Gao J, He X, Xu H. Interfacial Polarization Strategy to Electroactive Poly(lactic acid) Nanofibers for Humidity-Resistant Respiratory Protection and Machine Learning-Assisted Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45078-45090. [PMID: 39155485 DOI: 10.1021/acsami.4c12653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The advancement of intelligent and biodegradable respiratory protection equipment is pivotal in the realm of human health engineering. Despite significant progress, achieving a balance between efficient filtration and intelligent monitoring remains a great challenge, especially under conditions of high relative humidity (RH) and high airflow rate (AR). Herein, we proposed an interfacial stereocomplexation (ISC) strategy to facilitate intensive interfacial polarization for poly(lactic acid) (PLA) nanofibrous membranes, which were customized for machine learning-assisted respiratory diagnosis. Theoretical principles underlying the facilitated formation of the electroactive phase and aligned PLA chains were quantitatively depicted in the ISC-PLA nanofibers, contributing to the increased dielectric constant and surface potential (as high as 2.2 and 5.1 kV, respectively). Benefiting from the respiration-driven triboelectric mechanisms, the ISC-PLA demonstrated a high PM0.3 filtration efficiency of over 99% with an ultralow pressure drop (75 Pa), even in challenging circumstances (95 ± 5% RH, AR of 85 L/min). Furthermore, we implemented the ISC-PLA with multifunction respiratory monitoring (response time of 0.56 s and recovery time of 0.25 s) and wireless transmission technology, yielding a high recognition rate of 83% for personal breath states. This innovation has practical implications for health management and theoretical advancements in respiratory protection equipment.
Collapse
Affiliation(s)
- Mengke Tang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xinyi Song
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Cunmin Wang
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Liang Jiang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yuhong Zhou
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yuanchunzhi Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jintuo Zhu
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Yanqing Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 272100, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| |
Collapse
|
8
|
Chen YJ, Fang CY, Huang YW, Hsu TF, Tang NT, Tsai HP, Lee RH, Lin SH, Hsuen HW, Lin KYA, Yang H. White Roman Goose Feather-Inspired Unidirectionally Inclined Conical Structure Arrays for Switchable Anisotropic Self-Cleaning. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36840-36850. [PMID: 38954505 DOI: 10.1021/acsami.4c09082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
White Roman goose (Anser anser domesticus) feathers, comprised of oriented conical barbules, are coated with gland-secreted preening oils to maintain a long-term nonwetting performance for surface swimming. The geese are accustomed to combing their plumages with flat bills in case they are contaminated with oleophilic substances, during which the amphiphilic saliva spread over the barbules greatly impairs their surface hydrophobicities and allows the trapped contaminants to be anisotropically self-cleaned by water flows. Particularly, the superhydrophobic behaviors of the goose feathers are recovered as well. Bioinspired by the switchable anisotropic self-cleaning functionality of white Roman geese, superhydrophobic unidirectionally inclined conical structures are engineered through the integration of a scalable colloidal self-assembly technology and a colloidal lithographic approach. The dependence of directional sliding properties on the shape, inclination angle, and size of conical structures is systematically investigated in this research. Moreover, their switchable anisotropic self-cleaning functionalities are demonstrated by Sudan blue II/water (0.01%) separation performances. The white Roman goose feather-inspired coatings undoubtedly offer a new concept for developing innovative applications that require directional transportation and the collection of liquids.
Collapse
Affiliation(s)
- You-Jie Chen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Cai-Yin Fang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yun-Wen Huang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ting-Fang Hsu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Nien-Ting Tang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hui-Ping Tsai
- Department of Civil Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Rong-Ho Lee
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shin-Hua Lin
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hsiang-Wen Hsuen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung 40227, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Hongta Yang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
9
|
Zhi C, Shi S, Wu H, Si Y, Zhang S, Lei L, Hu J. Emerging Trends of Nanofibrous Piezoelectric and Triboelectric Applications: Mechanisms, Electroactive Materials, and Designed Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401264. [PMID: 38545963 DOI: 10.1002/adma.202401264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Over the past few decades, significant progress in piezo-/triboelectric nanogenerators (PTEGs) has led to the development of cutting-edge wearable technologies. Nanofibers with good designability, controllable morphologies, large specific areas, and unique physicochemical properties provide a promising platform for PTEGs for various advanced applications. However, the further development of nanofiber-based PTEGs is limited by technical difficulties, ranging from materials design to device integration. Herein, the current developments in PTEGs based on electrospun nanofibers are systematically reviewed. This review begins with the mechanisms of PTEGs and the advantages of nanofibers and nanodevices, including high breathability, waterproofness, scalability, and thermal-moisture comfort. In terms of materials and structural design, novel electroactive nanofibers and structure assemblies based on 1D micro/nanostructures, 2D bionic structures, and 3D multilayered structures are discussed. Subsequently, nanofibrous PTEGs in applications such as energy harvesters, personalized medicine, personal protective equipment, and human-machine interactions are summarized. Nanofiber-based PTEGs still face many challenges such as energy efficiency, material durability, device stability, and device integration. Finally, the research gap between research and practical applications of PTEGs is discussed, and emerging trends are proposed, providing some ideas for the development of intelligent wearables.
Collapse
Affiliation(s)
- Chuanwei Zhi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Hanbai Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Shuai Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Leqi Lei
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
10
|
Zhang H, Zhang X, Li F, Zhao X. Constructing spherical-beads-on-string structure of electrospun membrane to achieve high vapor flux in membrane distillation. WATER RESEARCH 2024; 256:121605. [PMID: 38626613 DOI: 10.1016/j.watres.2024.121605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Hydrophobic membranes with a reentrant-like structure have shown high hydrophobicity and high anti-wetting properties in membrane distillation (MD). Here, PVDF spherical-beads-on-string (SBS) fibers were electrospun on nonwoven fabric and used in the MD process. Such a reentrant-like structure was featured with fine fibers, a low ratio of bead length to bead diameter, and high bead frequency. It was revealed that the SBS-structured membranes exhibited an exceptional capability for vapor flux, due to the formation of a network of more interconnected macropores than that of fibers and fusiform-beads-on-string structures, ensuring unimpeded vapor diffusion. In the desalination of formulated seawater (3.5 wt.% NaCl solution), a vapor flux of 61 ± 3 kg m-2 h-1 with a salt rejection of >99.98 % was achieved at a feed temperature of 60 °C. Furthermore, this SBS structured membrane showed satisfactory seawater desalination performance with a stable flux of 40 kg m-2 h-1 over a 27 h MD process. These findings suggest a viable approach for fabricating SBS-structured membranes that significantly enhance vapor flux in MD for desalination applications. Besides, the hydrophobic membranes with SBS structure can be prepared by single-step electrospinning, and it is facile to scale-up manufacture. This strategy holds promise for advancing the development of high-performance MD membranes tailored for efficient seawater desalination processes.
Collapse
Affiliation(s)
- Honglong Zhang
- Lab of Environmental Science & Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Xue Zhang
- Lab of Environmental Science & Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Fuzhi Li
- Lab of Environmental Science & Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Xuan Zhao
- Lab of Environmental Science & Technology, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
11
|
Zhi C, Zhang S, Wu H, Ming Y, Shi S, Io WF, Meng S, Si Y, Fei B, Hao J, Hu J. Perovskite Nanocrystals Induced Core-Shell Inorganic-Organic Nanofibers for Efficient Energy Harvesting and Self-Powered Monitoring. ACS NANO 2024; 18:9365-9377. [PMID: 38517349 DOI: 10.1021/acsnano.3c09935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The emerging field of wearable electronics requires power sources that are flexible, lightweight, high-capacity, durable, and comfortable for daily use, which enables extensive use in electronic skins, self-powered sensing, and physiological health monitoring. In this work, we developed the core-shell and biocompatible Cs2InCl5(H2O)@PVDF-HFP nanofibers (CIC@HFP NFs) by one-step electrospinning assisted self-assembly method for triboelectric nanogenerators (TENGs). By adopting lead-free Cs2InCl5(H2O) as an inducer, CIC@HFP NFs exhibited β-phase-enhanced and self-aligned nanocrystals within the uniaxial direction. The interface interaction was further investigated by experimental measurements and molecular dynamics, which revealed that the hydrogen bonds between Cs2InCl5(H2O) and PVDF-HFP induced automatically well-aligned dipoles and stabilized the β-phase in the CIC@HFP NFs. The TENG fabricated using CIC@HFP NFs and nylon-6,6 NFs exhibited significant improvement in output voltage (681 V), output current (53.1 μA) and peak power density (6.94 W m-2), with the highest reported output performance among TENGs based on halide-perovskites. The energy harvesting and self-powered monitoring performance were further substantiated by human motions, showcasing its ability to charge capacitors and effectively operate electronics such as commercial LEDs, stopwatches, and calculators, demonstrating its promising application in biomechanical energy harvesting and self-powered sensing.
Collapse
Affiliation(s)
- Chuanwei Zhi
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong S.A.R, China
| | - Shuai Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong S.A.R, China
| | - Hanbai Wu
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong S.A.R, China
| | - Yang Ming
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Hong Kong S.A.R, China
| | - Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong S.A.R, China
| | - Weng-Fu Io
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong S.A.R, China
| | - Shuo Meng
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong S.A.R, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong S.A.R, China
| | - Bin Fei
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Hong Kong S.A.R, China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong S.A.R, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong S.A.R, China
- City University of Hong Kong, Shenzhen Research Institute, 518057, Shenzhen, P. R. China
| |
Collapse
|
12
|
Shi S, Ming Y, Wu H, Zhi C, Yang L, Meng S, Si Y, Wang D, Fei B, Hu J. A Bionic Skin for Health Management: Excellent Breathability, In Situ Sensing, and Big Data Analysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306435. [PMID: 37607262 DOI: 10.1002/adma.202306435] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/11/2023] [Indexed: 08/24/2023]
Abstract
Developing an intelligent wearable system is of great significance to human health management. An ideal health-monitoring patch should possess key characteristics such as high air permeability, moisture-wicking function, high sensitivity, and a comfortable user experience. However, such a patch that encompasses all these functions is rarely reported. Herein, an intelligent bionic skin patch for health management is developed by integrating bionic structures, nano-welding technology, flexible circuit design, multifunctional sensing functions, and big data analysis using advanced electrospinning technology. By controlling the preparation of nanofibers and constructing bionic secondary structures, the resulting nanofiber membrane closely resembles human skin, exhibiting excellent air/moisture permeability, and one-side sweat-wicking properties. Additionally, the bionic patch is endowed with a high-precision signal acquisition capabilities for sweat metabolites, including glucose, lactic acid, and pH; skin temperature, skin impedance, and electromyographic signals can be precisely measured through the in situ sensing electrodes and flexible circuit design. The achieved intelligent bionic skin patch holds great potential for applications in health management systems and rehabilitation engineering management. The design of the smart bionic patch not only provides high practical value for health management but also has great theoretical value for the development of the new generation of wearable electronic devices.
Collapse
Affiliation(s)
- Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yang Ming
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - Hanbai Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chuanwei Zhi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Liangtao Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, 518055, China
| | - Shuo Meng
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Dong Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- College of Textile Science and Engineering, Key Laboratory of Eco-Textile Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Bin Fei
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
13
|
Zhu C, Zheng J, Fu J. Electrospinning Nanofibers as Stretchable Sensors for Wearable Devices. Macromol Biosci 2024; 24:e2300274. [PMID: 37653597 DOI: 10.1002/mabi.202300274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Wearable devices attract great attention in intelligent medicine, electronic skin, artificial intelligence robots, and so on. However, boundedness of traditional sensors based on rigid materials unconstrained self-multilayer structure assembly and dense substrate in stretchability and permeability limits their applications. The network structure of the elastomeric nanofibers gives them excellent air permeability and stretchability. By introducing metal nanofillers, intrinsic conductive polymers, carbon materials, and other methods to construct conductive paths, stretchable conductors can be effectively prepared by elastomeric nanofibers, showing great potential in the field of flexible sensors. This perspective briefly introduces the representative preparations of conductive thermoplastic polyurethane, nylon, and hydrogel nanofibers by electrospinning and the application of integrated electronic devices in biological signal detection. The main challenge is to unify the stretchability and conductivity of the fiber structure.
Collapse
Affiliation(s)
- Canjie Zhu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Jingxia Zheng
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Jun Fu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| |
Collapse
|
14
|
Pan D, Hu J, Wang B, Xia X, Cheng Y, Wang C, Lu Y. Biomimetic Wearable Sensors: Emerging Combination of Intelligence and Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303264. [PMID: 38044298 PMCID: PMC10837381 DOI: 10.1002/advs.202303264] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/03/2023] [Indexed: 12/05/2023]
Abstract
Owing to the advancement of interdisciplinary concepts, for example, wearable electronics, bioelectronics, and intelligent sensing, during the microelectronics industrial revolution, nowadays, extensively mature wearable sensing devices have become new favorites in the noninvasive human healthcare industry. The combination of wearable sensing devices with bionics is driving frontier developments in various fields, such as personalized medical monitoring and flexible electronics, due to the superior biocompatibilities and diverse sensing mechanisms. It is noticed that the integration of desired functions into wearable device materials can be realized by grafting biomimetic intelligence. Therefore, herein, the mechanism by which biomimetic materials satisfy and further enhance system functionality is reviewed. Next, wearable artificial sensory systems that integrate biomimetic sensing into portable sensing devices are introduced, which have received significant attention from the industry owing to their novel sensing approaches and portabilities. To address the limitations encountered by important signal and data units in biomimetic wearable sensing systems, two paths forward are identified and current challenges and opportunities are presented in this field. In summary, this review provides a further comprehensive understanding of the development of biomimetic wearable sensing devices from both breadth and depth perspectives, offering valuable guidance for future research and application expansion of these devices.
Collapse
Affiliation(s)
- Donglei Pan
- College of Light Industry and Food EngineeringGuangxi UniversityNanningGuangxi530004China
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Jiawang Hu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Bin Wang
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Xuanjie Xia
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Yifan Cheng
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Cheng‐Hua Wang
- College of Light Industry and Food EngineeringGuangxi UniversityNanningGuangxi530004China
| | - Yuan Lu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| |
Collapse
|
15
|
Si Y, Yang J, Wang D, Shi S, Zhi C, Huang K, Hu J. Bioinspired Hierarchical Multi-Protective Membrane for Extreme Environments via Co-Electrospinning-Electrospray Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304705. [PMID: 37653612 DOI: 10.1002/smll.202304705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/27/2023] [Indexed: 09/02/2023]
Abstract
Extreme environments can cause severe harm to human health, and even threaten life safety. Lightweight, breathable clothing with multi-protective functions would be of great application value. However, integrating multi-protective functions into nanofibers in a facile way remains a great challenge. Here, a one-step co-electrospinning-electrospray strategy is developed to fabricate a superhydrophobic multi-protective membrane (S-MPM). The water contact angle of S-MPM can reach up to 164.3°. More importantly, S-MPM can resist the skin temperature drop (11.2 °C) or increase (17.2 °C) caused by 0 °C cold or 70 °C hot compared with pure electrospun membrane. In the cold climate (-5 °C), the anti-icing time of the S-MPM is extended by 2.52 times, while the deicing time is only 1.45 s due to the great photothermal effect. In a fire disaster situation, the total heat release and peak heat release rate values of flame retarded S-MPM drop sharply by 24.2% and 69.3%, respectively. The S-MPM will serve as the last line of defense for the human body and has the potential to trigger a revolution in the practical application of next-generation functional clothing.
Collapse
Affiliation(s)
- Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Jieqiong Yang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Dong Wang
- Jiangsu Engineering Research Centre for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu, 214122, China
| | - Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Chuanwei Zhi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Kaisong Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| |
Collapse
|
16
|
Lei L, Wang D, Shi S, Yang J, Su J, Wang C, Si Y, Hu J. Toward low-emissivity passive heating: a supramolecular-enhanced membrane with warmth retention. MATERIALS HORIZONS 2023; 10:4407-4414. [PMID: 37475666 DOI: 10.1039/d3mh00768e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Maintaining a reasonably stable body temperature is vital for a variety of human activities in an energy-conservation strategy. However, it is well-known that metal-like materials, utilized as radiative reflectors, severely restrict wearability properties, thus posing a tremendous obstacle in personal thermal management (PTM) systems. Herein, we designed a supramolecular-enhanced membrane (SupraEM) acting as a mid-infrared (MIR) reflector to solve the conundrum of warmth-wearability performance. Benefiting from the low-emissivity of decorating titanium carbide (MXene) and the formation of supramolecular interactions, the prototyped polyvinylidene difluoride&Polyurethane/MXene (PVDF&PU/MXene) SupraEM demonstrated a low-emissivity of 0.246 and reinforced mechanical performance, resulting in an evenly higher temperature retention of 8 °C in comparison to the pristine hybrid membrane counterpart, and compared with a commercial textile that is three times thicker, it also exhibited higher temperature retention of 6.2 °C. This work demonstrates the wearability of decorated MXene without sacrificing its temperature retention, overcoming a major bottleneck that has plagued MXene as a thermoregulatory material for PTM systems.
Collapse
Affiliation(s)
- Leqi Lei
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong.
| | - Dong Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong.
- Key Laboratory of Eco-Textile, College of Textiles and Clothing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong.
| | - Jieqiong Yang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong.
| | - Jing Su
- Key Laboratory of Eco-Textile, College of Textiles and Clothing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Cong Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong.
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong.
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
17
|
Zhao Y, Zhang Z, Zhang Y, Huang Y, Chen Y, Chen B, Kang W, Ju J. Fabrication of PS/PVDF-HFP Multi-Level Structured Micro/Nano Fiber Membranes by One-Step Electrospinning. MEMBRANES 2023; 13:807. [PMID: 37887979 PMCID: PMC10608412 DOI: 10.3390/membranes13100807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Recently, the multi-level interwoven structured micro/nano fiber membranes with coarse and fine overlaps have attracted lots of attention due to their advantages of high surface roughness, high porosity, good mechanical strength, etc., but their simple and direct preparation methods still need to be developed. Herein, the multi-level structured micro/nano fiber membranes were prepared novelly and directly by a one-step electrospinning technique based on the principle of micro-phase separation caused by polymer incompatibility using polystyrene (PS) and polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP) as raw materials. It was found that different spinning fluid parameters and various spinning process parameters will have a significant impact on its morphology and structures. Under certain conditions (the concentration of spinning solution is 18 wt%, the mass ratio of PS to PVDF-HFP is 1:7, the spinning voltage is 30 kV, and the spinning receiving distance is 18 cm), the PS/PVDF-HFP membrane with optimal multi-level structured micro/nano fiber membranes could be obtained, which present an average pore size of 4.38 ± 0.10 μm, a porosity of 78.9 ± 3.5%, and a water contact angle of 145.84 ± 1.70°. The formation mechanism of micro/nano fiber interwoven structures was proposed through conductivity and viscosity tests. In addition, it was initially used as a separation membrane material in membrane distillation, and its performance was preliminarily explored. This paper provides a theoretical and experimental basis for the research and development of an efficient and feasible method for the preparation of multi-level micro/nano fiber membranes.
Collapse
Affiliation(s)
- Yixia Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (Y.Z.); (Z.Z.); (Y.Z.); (Y.H.); (Y.C.); (B.C.)
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Shandong Chambroad Holding Group Co., Ltd., Economic Development Zone of Boxing County, Binzhou 256500, China
| | - Zehao Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (Y.Z.); (Z.Z.); (Y.Z.); (Y.H.); (Y.C.); (B.C.)
| | - Yan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (Y.Z.); (Z.Z.); (Y.Z.); (Y.H.); (Y.C.); (B.C.)
| | - Yuting Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (Y.Z.); (Z.Z.); (Y.Z.); (Y.H.); (Y.C.); (B.C.)
| | - Yanfei Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (Y.Z.); (Z.Z.); (Y.Z.); (Y.H.); (Y.C.); (B.C.)
| | - Bofei Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (Y.Z.); (Z.Z.); (Y.Z.); (Y.H.); (Y.C.); (B.C.)
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (Y.Z.); (Z.Z.); (Y.Z.); (Y.H.); (Y.C.); (B.C.)
| | - Jingge Ju
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (Y.Z.); (Z.Z.); (Y.Z.); (Y.H.); (Y.C.); (B.C.)
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Shandong Chambroad Holding Group Co., Ltd., Economic Development Zone of Boxing County, Binzhou 256500, China
| |
Collapse
|
18
|
Zhang H, Zhao X. Enhanced Anti-Wetting Methods of Hydrophobic Membrane for Membrane Distillation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300598. [PMID: 37219004 PMCID: PMC10427381 DOI: 10.1002/advs.202300598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/24/2023] [Indexed: 05/24/2023]
Abstract
Increasing issues of hydrophobic membrane wetting occur in the membrane distillation (MD) process, stimulating the research on enhanced anti-wetting methods for membrane materials. In recent years, surface structural construction (i.e., constructing reentrant-like structures), surface chemical modification (i.e., coating organofluorides), and their combination have significantly improved the anti-wetting properties of the hydrophobic membranes. Besides, these methods change the MD performance (i.e., increased/decreased vapor flux and increased salt rejection). This review first introduces the characterization parameters of wettability and the fundamental principles of membrane surface wetting. Then it summarizes the enhanced anti-wetting methods, the related principles, and most importantly, the anti-wetting properties of the resultant membranes. Next, the MD performance of hydrophobic membranes prepared by different enhanced anti-wetting methods is discussed in desalinating different feeds. Finally, facile and reproducible strategies are aspired for the robust MD membrane in the future.
Collapse
Affiliation(s)
- Honglong Zhang
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| | - Xuan Zhao
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
19
|
Shi S, Si Y, Li Z, Meng S, Zhang S, Wu H, Zhi C, Io WF, Ming Y, Wang D, Fei B, Huang H, Hao J, Hu J. An Intelligent Wearable Filtration System for Health Management. ACS NANO 2023; 17:7035-7046. [PMID: 36994837 DOI: 10.1021/acsnano.3c02099] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
To develop intelligent wearable protection systems is of great significance to human health engineering. An ideal intelligent air filtration system should possess reliable filtration efficiency, low pressure drop, healthcare monitoring function, and man-machine interactive capability. However, no existing intelligent protection system covers all these essential aspects. Herein, we developed an intelligent wearable filtration system (IWFS) via advanced nanotechnology and machine learning. Based on the triboelectric mechanism, the fabricated IWFS exhibits a long-lasting high particle filtration efficiency and bacteria protection efficiency of 99% and 100%, respectively, with a low-pressure drop of 5.8 mmH2O. Correspondingly, the charge accumulation of the optimized IWFS (87 nC) increased to 3.5 times that of the pristine nanomesh, providing a significant enhancement of the particle filtration efficiency. Theoretical principles, including the enhancement of the β-phase and the lower surface potential of the modified nanomesh, were quantitatively investigated by molecular dynamics simulation, band theory, and Kelvin probe force microscopy. Furthermore, we endowed the IWFS with a healthcare monitoring function and man-machine interactive capability through machine learning and wireless transmission technology. Crucial physiological signals of people, including breath, cough, and speaking signals, were detected and classified, with a high recognition rate of 92%; the fabricated IWFS can collect healthcare data and transmit voice commands in real time without hindrance by portable electronic devices. The achieved IWFS not only has practical significance for human health management but also has great theoretical value for advanced wearable systems.
Collapse
Affiliation(s)
- Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong S.A.R., China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong S.A.R., China
| | - Zihua Li
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, 999077, Hong Kong S.A.R., China
| | - Shuo Meng
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong S.A.R., China
| | - Shuai Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong S.A.R., China
| | - Hanbai Wu
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong S.A.R., China
| | - Chuanwei Zhi
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong S.A.R., China
| | - Weng-Fu Io
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong S.A.R., China
| | - Yang Ming
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, 999077, Hong Kong S.A.R., China
| | - Dong Wang
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong S.A.R., China
- College of Textile Science and Engineering, Key Laboratory of Eco-Textile, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bin Fei
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, 999077, Hong Kong S.A.R., China
| | - Haitao Huang
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong S.A.R., China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong S.A.R., China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong S.A.R., China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
20
|
Lei L, Shi S, Wang D, Meng S, Dai JG, Fu S, Hu J. Recent Advances in Thermoregulatory Clothing: Materials, Mechanisms, and Perspectives. ACS NANO 2023; 17:1803-1830. [PMID: 36727670 DOI: 10.1021/acsnano.2c10279] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Personal thermal management (PTM) is a promising approach for maintaining the thermal comfort zone of the human body while minimizing the energy consumption of indoor buildings. Recent studies have reported the development of numerous advanced textiles that enable PTM systems to regulate body temperature and are comfortable to wear. Herein, recent advancements in thermoregulatory clothing for PTM are discussed. These advances in thermoregulatory clothing have focused on enhancing the control of heat dissipation between the skin and the localized environment. We primarily summarize research on advanced clothing that controls the heat dissipation pathways of the human body, such as radiation- and conductance-controlled clothing. Furthermore, adaptive clothing such as dual-mode textiles, which can regulate the microclimate of the human body, as well as responsive textiles that address both thermal performance (warming and/or cooling) and wearability are discussed. Finally, we include a discussion on significant challenges and perspectives in this field, including large-scale production, smart textiles, bioinspired clothing, and AI-assisted clothing. This comprehensive review aims to further the development of sustainably manufactured advanced clothing with superior thermal performance and outstanding wearability for PTM in practical applications.
Collapse
Affiliation(s)
- Leqi Lei
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong SAR, China
| | - Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong SAR, China
| | - Dong Wang
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong SAR, China
- Key Laboratory of Eco-Textile, College of Textiles and Clothing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu214122, China
| | - Shuo Meng
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong SAR, China
| | - Jian-Guo Dai
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - Shaohai Fu
- Key Laboratory of Eco-Textile, College of Textiles and Clothing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu214122, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong SAR, China
| |
Collapse
|
21
|
Gong X, Yin X, Wang F, Liu X, Yu J, Zhang S, Ding B. Electrospun Nanofibrous Membranes: A Versatile Medium for Waterproof and Breathable Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205067. [PMID: 36403221 DOI: 10.1002/smll.202205067] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Waterproof and breathable membranes that prevent liquid water penetration, while allowing air and moisture transmission, have attracted significant attention for various applications. Electrospun nanofiber materials with adjustable pore structures, easily tunable wettability, and good pore connectivity, have shown significant potential for constructing waterproof and breathable membranes. Herein, a systematic overview of the recent progress in the design, fabrication, and application of waterproof and breathable nanofibrous membranes is provided. The various strategies for fabricating the membranes mainly including one-step electrospinning and post-treatment of nanofibers are given as a starting point for the discussion. The different design concepts and structural characteristics of each type of waterproof and breathable membrane are comprehensively analyzed. Then, some representative applications of the membranes are highlighted, involving personal protection, desalination, medical dressing, and electronics. Finally, the challenges and future perspectives associated with waterproof and breathable nanofibrous membranes are presented.
Collapse
Affiliation(s)
- Xiaobao Gong
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Xia Yin
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Fei Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Xiaoyan Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| |
Collapse
|