1
|
Qin Y, Chen X, Willner I. Nucleic Acid-Modified Nanoparticles for Cancer Therapeutic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500843. [PMID: 40420627 DOI: 10.1002/smll.202500843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/20/2025] [Indexed: 05/28/2025]
Abstract
Nanomaterials including metal or metal oxide nanoparticles, carbonous nanomaterial (e.g., carbon dots) or metal-organic framework nanoparticles provide porous, catalytically active surfaces and functional interfaces for binding of ions or molecular agents. By the conjugation of nucleic acids to the nanoparticles, hybrid nanostructures revealing emerging multimodal catalytic/photocatalytic activities, high loading capacities, and effective targeted cell permeation efficacies are formed. The review article exemplifies the application of nucleic acid-modified nanoparticles conjugates for therapeutic treatment of cancer cells. Stimuli-responsive reconfiguration of nucleic acid strands and the specific recognition and catalytic function of oligonucleotides associated with porous, catalytic, and photocatalytic nanoparticles yield hybrid composites demonstrating cooperative synergistic properties for medical applications. The targeted chemodynamic, photodynamic, photothermal and chemotherapeutic treatment of cancer cells by the oligonucleotide/nanoparticle conjugates is addressed. In addition, the application of oligonucleotide/nanoparticle conjugates for gene therapy treatment of cancer cells is discussed.
Collapse
Affiliation(s)
- Yunlong Qin
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Xinghua Chen
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
2
|
Chen X, Wu Y, Qin Y, Carmieli R, Popov I, Gutkin V, Fan C, Willner I. Molecularly Imprinted Polyaniline-Coated Cu-Zeolitic Imidazolate Framework Nanoparticles: Uricase-Mimicking "Polynanozyme" Catalyzing Uric Acid Oxidation. ACS NANO 2025; 19:9981-9993. [PMID: 40043252 PMCID: PMC11924329 DOI: 10.1021/acsnano.4c16272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
One of the drawbacks of nanozyme catalytic functions rests in their moderate catalytic activities due to the lack of effective binding sites concentrating the reaction substrate at the nanozyme catalytic interface. Methods to concentrate the substrates at the catalytic interface are essential to improving nanozyme functions. The present study addresses this goal by designing uric acid (UA) molecular-imprinted polyaniline (PAn)-coated Cu-zeolitic imidazolate framework (Cu-ZIF) nanoparticles as superior nanozymes, "polynanozymes", catalyzing the H2O2 oxidation of UA to allantoin (peroxidase activity) or the aerobic, uricase mimicking, oxidation of UA to allantoin (oxidase activity). While bare Cu-ZIF nanoparticles reveal only peroxidase activity and the nonimprinted PAn-coated Cu-ZIF nanoparticles reveal inhibited peroxidase activity, the molecular-imprinted PAn-coated Cu-ZIF nanoparticles reveal a 6.1-fold enhanced peroxidase activity, attributed to the concentration of the UA substrate at the catalytic nanoparticle interface. Moreover, the catalytic aerobic oxidation of UA to allantoin by the imprinted PAn-coated Cu-ZIF nanoparticles is lacking in the bare particles, demonstrating the evolved catalytic functions in the molecularly imprinted polynanozymes. Mechanistic characterization of the system reveals that within the UA molecular imprinting process of the PAn coating, Cu+ reactive units are generated within the Cu-ZIF nanoparticles, and these provide reactive sites for generating O2-• as an intermediate agent guiding the oxidase activities of the nanoparticles. The study highlights the practical utility of molecular-imprinted polynanozymes in catalytic pathways lacking in the bare nanozymes, thus broadening the scope of nanozyme systems.
Collapse
Affiliation(s)
- Xinghua Chen
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yi Wu
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- School
of Chemistry and Chemical Engineering, Nanjing
University of Science and Technology, Nanjing 210094, China
| | - Yunlong Qin
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Inna Popov
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Vitaly Gutkin
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
3
|
Zhang J, Xu X, Wei H, Wu D, Zeng L. Pt/Pd dual-modified porphyrin metal-organic frameworks for NIR-II photothermal-enhanced photodynamic/catalytic therapy. J Colloid Interface Sci 2025; 678:42-52. [PMID: 39180847 DOI: 10.1016/j.jcis.2024.08.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Photodynamic therapy (PDT) and catalytic therapy were promising treatment modes, but tumor hypoxia and poor catalytic activity severely limited their efficacies. Herein, using a porphyrin metal-organic framework (PCN-224) as nanocarrier, a platinum/palladium (Pt/Pd) dual-modified PCN-224 nanoprobe (PCN-224-Pt@Pd) with strong peroxidase (POD)/catalase (CAT)-like activities was developed, achieving photothermal-promoted PDT/catalytic therapy. Compared with single ultrasmall Pt modifying, CAT-like activity of Pt/Pd dual-modifying increased oxygen concentration from 6.24 to 9.35 mg/L, which improved singlet oxygen (1O2) yield from 63.8 % to 82.9 %. Moreover, POD-like activity of Pt/Pd dual-modifying significantly accelerated hydroxyl radicals (·OH) generation. Importantly, PCN-224-Pt@Pd possessed near-infrared II (NIR-II) photothermal effect with a high efficiency (55.6 %), which further promoted ·OH production. Under combined therapy of PCN-224-Pt@Pd, the cell survival rate greatly reduced to 5.8 %, and the tumors were cured, suggesting NIR-II photothermal-enhanced PDT/catalytic therapy.
Collapse
Affiliation(s)
- Jiahe Zhang
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, PR China
| | - Xingguo Xu
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, PR China
| | - Haiying Wei
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, PR China
| | - Di Wu
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, PR China.
| | - Leyong Zeng
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding 071002, PR China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Baoding 071002, PR China.
| |
Collapse
|
4
|
Nasir A, Rehman MU, Khan T, Husn M, Khan M, Khan A, Nuh AM, Jiang W, Farooqi HMU, Bai Q. Advances in nanotechnology-assisted photodynamic therapy for neurological disorders: a comprehensive review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:84-103. [PMID: 38235991 DOI: 10.1080/21691401.2024.2304814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Neurological disorders such as neurodegenerative diseases and nervous system tumours affect more than one billion people throughout the globe. The physiological sensitivity of the nervous tissue limits the application of invasive therapies and leads to poor treatment and prognosis. One promising solution that has generated attention is Photodynamic therapy (PDT), which can potentially revolutionise the treatment landscape for neurological disorders. PDT attracted substantial recognition for anticancer efficacy and drug conjugation for targeted drug delivery. This review thoroughly explained the basic principles of PDT, scientific interventions and advances in PDT, and their complicated mechanism in treating brain-related pathologies. Furthermore, the merits and demerits of PDT in the context of neurological disorders offer a well-rounded perspective on its feasibility and challenges. In conclusion, this review encapsulates the significant potential of PDT in transforming the treatment landscape for neurological disorders, emphasising its role as a non-invasive, targeted therapeutic approach with multifaceted applications.
Collapse
Affiliation(s)
- Abdul Nasir
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mujeeb Ur Rehman
- Department of Zoology, Islamia College University, Peshawar, Pakistan
| | - Tamreez Khan
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
| | - Mansoor Husn
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Manzar Khan
- Department of Zoology, Hazara University Mansehra, Mansehra, Pakistan
| | - Ahmad Khan
- Department of Psychology, University of Karachi, Karachi, Pakistan
| | - Abdifatah Mohamed Nuh
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Jiang
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Qain Bai
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Liu S, Qu H, Mao Y, Yao L, Yan L, Dong B, Zheng L. Nanozyme-integrated alcogel colorimetric sensor for rapid and on-site detection of tert-butyl hydroquinone. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133962. [PMID: 38452679 DOI: 10.1016/j.jhazmat.2024.133962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Tert-butyl hydroquinone (TBHQ) stand as one of the most widely used antioxidants in food and daily chemical products. Rapid and sensitive monitoring of TBHQ holds considerable importance in safeguarding human health due to its potential risks. In this study, we devised an alcogel-based colorimetric sensor enabling the portable and visual detection of TBHQ. The Ce-UiO-66 nanozyme exhibiting remarkable oxidase-like activity, was synthesized and characterized, facilitating the catalysis of TBHQ oxidation to 2-tert-butyl-1,4-benzoquinone (TBBQ). The ensuing chromogenic reaction between TBBQ and ethylenediamine produced a stable and colored product, serving as a reliable indicator for the rapid and specific detection of TBHQ. Building upon this discovery, a portable and low-cost colorimetric sensor was fashioned by integrating the nanozyme into κ-carrageenan alcogel, thereby enabling on-site TBHQ detection via a smartphone-based sensing platform. The colorimetric sensor exhibited a detection limit of 0.8 μg mL-1, demonstrating robust performance across various matrices such as edible oils, cosmetics, and surface water. Recoveries ranged from 84.9 to 95.5%, with the sensor's accuracy further validated through gas chromatography-mass spectrometry. Our study presents an effective approach to rapid and convenient monitoring of TBHQ, exhibiting good extensibility and practicability.
Collapse
Affiliation(s)
- Shuai Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ling Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Baolei Dong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
6
|
Luo Y, Huang Y, Gong L, Wang M, Xia Z, Hu L. Accelerating the Phosphatase-like Activity of Uio-66-NH 2 by Catalytically Inactive Metal Ions and Its Application for Improved Fluorescence Detection of Cardiac Troponin I. Anal Chem 2024; 96:2684-2691. [PMID: 38305207 DOI: 10.1021/acs.analchem.3c05499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Compared with natural enzymes, nanozymes usually exhibit much lower catalytic activities, which limit the sensitivities of nanozyme-based immunoassays. Herein, several metal ions without enzyme-like activities were engineered onto Uio-66-NH2 nanozyme through postsynthetic modification. The obtained Mn+@Uio-66-NH2 (Mn+ = Zn2+, Cd2+, Co2+, Ca2+and Ni2+) exhibited improved phosphatase-like catalytic activities. In particular, a 12-fold increase in the catalytic efficiency (kcat/Km) of Uio-66-NH2 was observed after the modification with Zn2+. Mechanism investigations indicate that both the amino groups and oxygen-containing functional groups in Uio-66-NH2 are the binding sites of Zn2+, and the modified Zn2+ ions on Uio-66-NH2 serve as the additional catalytic sites for improving the catalytic performance. Furthermore, the highly active Zn2+@Uio-66-NH2 was used as a nanozyme label to develop a fluorescence immunoassay method for the detection of cardiac troponin I (cTnI). Compared with pristine Uio-66-NH2, Zn2+@Uio-66-NH2 can widen the linear range by 1 order of magnitude (from 10 pg/mL-1 μg/mL to 1 pg/mL-1 μg/mL) and also lower the detection limit by 5 times (from 4.7 pg/mL to 0.9 pg/mL).
Collapse
Affiliation(s)
- Yuefei Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yusha Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Longcheng Gong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Min Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhining Xia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Lianzhe Hu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| |
Collapse
|
7
|
Qin Y, Ouyang Y, Wang J, Chen X, Sohn YS, Willner I. Transient Dynamic Operation of G-Quadruplex-Gated Glucose Oxidase-Loaded ZIF-90 Metal-Organic Framework Nanoparticle Bioreactors. NANO LETTERS 2023; 23:8664-8673. [PMID: 37669541 PMCID: PMC10540265 DOI: 10.1021/acs.nanolett.3c02542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/27/2023] [Indexed: 09/07/2023]
Abstract
Glucose oxidase-loaded ZIF-90 metal-organic framework nanoparticles conjugated to hemin-G-quadruplexes act as functional bioreactor hybrids operating transient dissipative biocatalytic cascaded transformations consisting of the glucose-driven H2O2-mediated oxidation of Amplex-Red to resorufin or the glucose-driven generation of chemiluminescence by the H2O2-mediated oxidation of luminol. One system involves the fueled activation of a reaction module leading to the temporal formation and depletion of the bioreactor conjugate operating the nickase-guided transient biocatalytic cascades. The second system demonstrates the fueled activation of a reaction module yielding a bioreactor conjugate operating the exonuclease III-dictated transient operation of the two biocatalytic cascades. The temporal operations of the bioreactor circuits are accompanied by kinetic models and computational simulations enabling us to predict the dynamic behavior of the systems subjected to different auxiliary conditions.
Collapse
Affiliation(s)
- Yunlong Qin
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Yu Ouyang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Jianbang Wang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Xinghua Chen
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Yang Sung Sohn
- The
Institute of Life Science, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
8
|
Liu S, Qu H, Mao Y, Yao L, Dong B, Zheng L. Ce(IV)-coordinated organogel-based assay for on-site monitoring of propyl gallate with turn-on fluorescence signal. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132001. [PMID: 37429188 DOI: 10.1016/j.jhazmat.2023.132001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Propyl gallate (PG) is a commonly used synthetic phenolic antioxidant in foodstuffs and industrial products. Due to the potential health risk of PG, rapid and on-site detection in food and environment samples are important to guarantee human health. Herein, we demonstrated rapid monitoring of PG by a fluorescence turn-on strategy based on a specific fluorogenic reaction between PG and polyethyleneimine (PEI). Specifically, Ce4+ with oxidase-mimicking activity oxidized PG to its oxides, which then reacted with PEI through the Michael addition to generate the fluorescent compound. The proposed fluorogenic reaction had good specificity for PG, which could distinguish PG from other phenolic antioxidants and interferences. Furthermore, portable and low-cost organogel test kits were prepared using poly(ethylene glycol) diacrylate for quantitative and on-site detection of PG via a smartphone-based sensing platform. The organogel-based assay detection limit was 1.0 μg mL-1 with recoveries ranging from 80.2% to 106.2% in edible oils and surface water. Suitability of the developed assay was also validated by high-performance liquid chromatography. Our study provides an effective fluorescent approach to rapid, specific, and convenient monitoring of PG, which is useful for diminishing the risk of PG exposure.
Collapse
Affiliation(s)
- Shuai Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Baolei Dong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
9
|
Qin Y, Ouyang Y, Willner I. Nucleic acid-functionalized nanozymes and their applications. NANOSCALE 2023; 15:14301-14318. [PMID: 37646290 DOI: 10.1039/d3nr02345a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Nanozymes are inorganic, organic and metal-organic framework nanoparticles that reveal catalytic functions by emulating native enzyme activities. Recently, these nanozymes have attracted growing scientific interest, finding diverse analytical and medical applications. However, the catalytic activities and functions of nanozymes are limited, due to the lack of substrate binding sites that concentrate on the substrate at the catalytic site (molarity effect), introduce substrate specificity and allow functional complexity of the catalysts (cascaded, switchable and cooperative catalysis). The modification of nanozymes with functional nucleic acids provides means to overcome these limitations and engineer nucleic acid/nanozyme hybrids for diverse applications. This is exemplified with the synthesis of aptananozymes, which are supramolecular aptamer-modified nanozymes. Aptananozymes exhibit combined specific binding and catalytic properties that drive diverse chemical transformations, revealing enhanced catalytic activities, as compared to the separated nanozyme/aptamer constituents. Relationships of structure-catalytic functions in the aptananozyme constructs are demonstrated. In addition, modification of nanozymes exhibiting multimodal catalytic functions with aptamers allows the engineering of nanozyme-based bioreactors for cascaded catalysis. Also, the functionalization of reactive oxygen species (ROS)-generating nanozymes with cancer cell-recognizing aptamers yields aptananozymes for targeted chemodynamic treatment of cancer cells and cancer tumors elicited in mice. Finally, nucleic acid-modified enzyme (glucose oxidase)-loaded metal-organic framework nanoparticles yield switchable biocatalytic nanozymes that drive the ON/OFF biocatalyzed oxidation of Amplex Red, dopamine or the generation of chemiluminescence. Herein, future challenges of the topic are addressed.
Collapse
Affiliation(s)
- Yunlong Qin
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Yu Ouyang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
10
|
Li Z, Wang J, Willner B, Willner I. Topologically Triggered Dynamic DNA Frameworks. Isr J Chem 2023. [DOI: 10.1002/ijch.202300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Zhenzhen Li
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Jianbang Wang
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Bilha Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Itamar Willner
- The Institute of Chemistry The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
11
|
Bhatt P, Solra M, Chaudhury SI, Rana S. Metal Coordination-Driven Supramolecular Nanozyme as an Effective Colorimetric Biosensor for Neurotransmitters and Organophosphorus Pesticides. BIOSENSORS 2023; 13:277. [PMID: 36832043 PMCID: PMC9954067 DOI: 10.3390/bios13020277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Analytical methods for detecting neurotransmitters (NTs) and organophosphorus (OP) pesticides with high sensitivity are vitally necessary for the rapid identification of physical, mental, and neurological illnesses, as well as to ensure food safety and safeguard ecosystems. In this work, we developed a supramolecular self-assembled system (SupraZyme) that exhibits multi-enzymatic activity. SupraZyme possesses the ability to show both oxidase and peroxidase-like activity, which has been employed for biosensing. The peroxidase-like activity was used for the detection of catecholamine NTs, epinephrine (EP), and norepinephrine (NE) with a detection limit of 6.3 µM and 1.8 µM, respectively, while the oxidase-like activity was utilized for the detection of organophosphate pesticides. The detection strategy for OP chemicals was based on the inhibition of acetylcholine esterase (AChE) activity: a key enzyme that is responsible for the hydrolysis of acetylthiocholine (ATCh). The corresponding limit of detection of paraoxon-methyl (POM) and methamidophos (MAP) was measured to be 0.48 ppb and 15.8 ppb, respectively. Overall, we report an efficient supramolecular system with multiple enzyme-like activities that provide a versatile toolbox for the construction of sensing platforms for the colorimetric point-of-care detection of both NTs and OP pesticides.
Collapse
|