1
|
Tian X, Kim SM, Yoo JY, Jo MS, Yoon JB, Seo MH. Perfectly Spatial and Shape-Controllable Nanocrack Lithography via Localized Compressive-Shear Stress Coupling. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24513-24525. [PMID: 40269469 DOI: 10.1021/acsami.4c20778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Cracking-assisted nanofabrication techniques have gained widespread applications across diverse engineering fields for the creation of nanoscale features, valued for their simplicity, cost-effectiveness, and high resolution. However, conventional methods often struggle to control the density, shape, and uniformity of nanocracks due to random stress concentrations caused by material defects and uncontrolled mechanical stress distribution during nanocrack formation. To address these limitations, we developed a highly reliable and reproducible nanocrack patterning method capable of creating large-scale, customizable nanocrack patterns on flexible substrates via the compressive-shear stress coupling effect. Our approach utilizes photolithography-based microphotoresist structures and simultaneous bending and pressing to induce highly localized stresses at the corners of the structures, facilitating the formation of nanocracks. This method enables precise spatial and shape control of nanocrack patterns in functional materials on flexible substrates. For example, in platinum films on polymer substrates, we achieved a uniform and consistent average nanocrack spacing of 40 μm with a standard deviation as low as 0.1 μm across 100 parallel nanocracks. The technique is versatile and can be applied to various functional materials, such as copper and indium tin oxide. We further showed the creation of diverse curved and closed-shape nanocracks, including zigzag, wave, square, circle, parallelogram, and cross shapes, in copper thin films. Finally, we applied this method to various engineering fields to demonstrate its efficacy, including strain sensors with gauge factors of approximately 380, a three-dimensional pressure sensor array capable of reliably measuring pressures below 0.1 N, and nanowire patterning with highly uniform spacing (40 ± 0.5 μm) on polymer substrates that offered both flexibility and transparency.
Collapse
Affiliation(s)
- Xu Tian
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| | - Sang-Min Kim
- Department of Information Convergence Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jae-Young Yoo
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16417, Republic of Korea
| | - Min-Seung Jo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Bio-Integrated Electronics, Northwestern University, 2145, Sheridan Road, Evanston, Illinois 60208, United States of America
| | - Jun-Bo Yoon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Min-Ho Seo
- Department of Information Convergence Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
- School of Biomedical Convergence Engineering, College of Information & Biomedical Engineering, Pusan National University, 49, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do 43241, Republic of Korea
| |
Collapse
|
2
|
Song C, Lee H, Park C, Lee B, Kim J, Park C, Lai CH, Cho SJ. Advances in Crack-Based Strain Sensors on Stretchable Polymeric Substrates: Crack Mechanisms, Geometrical Factors, and Functional Structures. Polymers (Basel) 2025; 17:941. [PMID: 40219330 PMCID: PMC11991081 DOI: 10.3390/polym17070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
This review focuses on deepening the structural understanding of crack-based strain sensors (CBSS) on stretchable and flexible polymeric substrates and promoting sensor performance optimization. CBSS are cutting-edge devices that purposely incorporate cracks into their functional elements, thereby achieving high sensitivity, wide working ranges, and rapid response times. To optimize the performance of CBSS, systematic research on the structural characteristics of cracks is essential. This review comprehensively analyzes the key factors determining CBSS performance such as the crack mechanism, geometrical factors, and functional structures and proposes optimization strategies grounded in these insights. In addition, we explore the potential of numerical analysis and machine learning to offer novel perspectives for sensor optimization. Following this, we introduce various applications of CBSS. Finally, we discuss the current challenges and future prospects in CBSS research, providing a roadmap for next-generation technologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Seong J. Cho
- Department of Mechanical Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; (C.S.); (H.L.); (C.P.); (B.L.); (J.K.); (C.P.); (C.H.L.)
| |
Collapse
|
3
|
Ahmad M, Shukla D, Zhu Y, Velev OD. Biodegradable Chitosan-Based Stretchable Electronics with Recyclable Silver Nanowires. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17316-17329. [PMID: 39968770 DOI: 10.1021/acsami.4c20193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The combination of biodegradability and biocompatibility makes chitosan a principal bioresourced material in biomedical engineering, wearable technology, and medical diagnostics, particularly for integration in human interfaces for soft electronic applications. However, this requires the introduction of soft electronic circuits with the capability of recycling the functional materials, while biodegrading the substrate. This paper presents the development and characterization of biodegradable soft circuits that are constructed using stretchable and flexible substrates from plasticized chitosan and conductive functional wiring from recyclable silver nanowires (AgNWs). The chitosan substrate demonstrates tunable mechanical properties with a maximum stretchability of ∼116%, in addition to desirable characteristics such as transparency, breathability, and controlled degradation. The plasticizing effect of glycerol reduces the rigidity associated with pure chitosan and imparts flexibility and stretchability to the AgNW-chitosan-glycerol (AgNW-Chi-Gly) composite. The AgNWs embedded in the Chi-Gly matrix are highly conductive, and their functionality in soft electronic devices such as strain sensors and electromyography (EMG) sensors is demonstrated. We show that the soft chitosan-based substrates can be subject to biodegradation at the end of their operational lifespan. The AgNWs can be recycled and reused, enhancing the overall sustainability of such soft electronic devices.
Collapse
Affiliation(s)
- Mesbah Ahmad
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Darpan Shukla
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
4
|
Zhao S, Liu D, Yan F. Wearable Resistive-Type Stretchable Strain Sensors: Materials and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413929. [PMID: 39648537 DOI: 10.1002/adma.202413929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/01/2024] [Indexed: 12/10/2024]
Abstract
The rapid advancement of wearable electronics over recent decades has led to the development of stretchable strain sensors, which are essential for accurately detecting and monitoring mechanical deformations. These sensors have widespread applications, including movement detection, structural health monitoring, and human-machine interfaces. Resistive-type sensors have gained significant attention due to their simple design, ease of fabrication, and adaptability to different materials. Their performance, evaluated by metrics like stretchability and sensitivity, is influenced by the choice of strain-sensitive materials. This review offers a comprehensive comparison and evaluation of different materials used in resistive strain sensors, including metal and semiconductor films, low-dimensional materials, intrinsically conductive polymers, and gels. The review also highlights the latest applications of resistive strain sensors in motion detection, healthcare monitoring, and human-machine interfaces by examining device physics and material characteristics. This comparative analysis aims to support the selection, application, and development of resistive strain sensors tailored to specific applications.
Collapse
Affiliation(s)
- Sanqing Zhao
- Department of Applied Physics, Research Center for Organic Electronics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Dapeng Liu
- Department of Applied Physics, Research Center for Organic Electronics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Feng Yan
- Department of Applied Physics, Research Center for Organic Electronics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| |
Collapse
|
5
|
Meng Q, Chi T, Guo S, Razbin M, Wu S, He S, Han S, Peng S. Highly sensitive strain sensors with ultra-low detection limit based on pre-defined serpentine cracks. MATERIALS HORIZONS 2025; 12:178-189. [PMID: 39466650 DOI: 10.1039/d4mh01136h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Flexible and stretchable strain sensors have garnered significant interest due to their potential applications in various fields including human health monitoring and human-machine interfaces. Previous studies have shown that strain sensors based on microcracks can exhibit both high sensitivity and a wide sensing range by manipulating the opening and closing of randomly generated cracks within conductive thin films. However, the uncontrolled nature of microcrack formation can cause a drift in the sensor's performance over time, affecting its accuracy and reliability. In this study, by pre-defining the cracks, we introduce a novel resistive strain sensor with high sensitivity, excellent linearity, an ultra-low detection limit, and robustness against off-axis deformation. The sensor operates on a simple mechanism involving the modulation of ohmic contact within intricately designed conductive serpentine curves, which are encapsulated by pre-stretched thin films. This design facilitates a high gauge factor of 495, exceptional linearity (R2 > 0.98), and an ultra-low detection threshold of 0.01% strain. Moreover, it maintains performance integrity during off-axis deformations such as bending and twisting, features that are indispensable for accurately monitoring human motion. To explore practical applications, a driving scenario was simulated where a sensor array was positioned on the driver's neck. The sensor output was analyzed using machine learning algorithms to successfully determine the presence of driver fatigue. This demonstration underlines the potential of our sensor technology in applications ranging from healthcare monitoring to wearable biomechanical systems and human-machine interfaces.
Collapse
Affiliation(s)
- Qingshi Meng
- College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China.
| | - Tengfei Chi
- College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China.
| | - Shuang Guo
- Health Service Department, Northern Theatre General Hospital, Shenyang, 110016, China
| | - Milad Razbin
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shuying Wu
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shuai He
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Sensen Han
- College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China.
| | - Shuhua Peng
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
6
|
Wu S, Kim D, Tang X, King MW, Zhu Y. Encapsulated stretchable amphibious strain sensors. MATERIALS HORIZONS 2024; 11:5070-5080. [PMID: 39105300 PMCID: PMC11472868 DOI: 10.1039/d4mh00757c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
Soft and stretchable strain sensors have found wide applications in health monitoring, motion tracking, and robotic sensing. There is a growing demand for strain sensors in amphibious environments, such as implantable sensors, wearable sensors for swimmers/divers, and underwater robotic sensors. However, developing a sensitive, stretchable, and robust amphibious strain sensor remains challenging. This work presents an encapsulated stretchable amphibious strain sensor. The conductive layer, made of silver nanowires embedded below the surface of polydimethylsiloxane, was sandwiched by two layers of thermoplastic polyurethane. Periodic sharp cuts were introduced to change the direction of flow from across the sensor to along the conductive path defined by the opening cracks. The crack advancing and opening is controlled by a unique combination of weak/strong interfaces within the sandwich structure. The cut design and the interfacial interactions between the layers were investigated. The strain sensor exhibited a high gauge factor up to 289, a linear sensing response, a fast response time (53 ms), excellent robustness against over-strain, and stability after 16 000 loading cycles and 20 days in an aqueous saline solution. The functionality of this amphibious strain sensor was demonstrated by tracking the motion of a robotic fish, undertaking language recognition underwater, and monitoring the blood pressure of a porcine aorta. This illustrates the promising potential for this strain sensor for both underwater use and surgically implantable applications.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Doyun Kim
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Xiaoqi Tang
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695, USA
| | - Martin W King
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
7
|
Li Y, Zhang Z, Du S, Zong S, Ning Z, Yang F. Highly Sensitive Biomimetic Crack Pressure Sensor with Selective Frequency Response. ACS Sens 2024; 9:3057-3065. [PMID: 38808653 DOI: 10.1021/acssensors.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
High-sensitivity sensors in practical applications face the issue of environmental noise interference, requiring additional noise reduction circuits or filtering algorithms to improve the signal-to-noise ratio (SNR). To address this issue, this study proposes a biomimetic crack pressure sensor with selective frequency response based on hydrogel dampers. The core of this research is to construct a biomimetic crack pressure sensor with selective frequency response using the high-pass filtering characteristics of gelatin-chitosan hydrogels. This design, inspired by the slit sensilla and stratum corneum structure of spider legs, delves into the material properties and principles of hydrogel dampers, exploring their application in biomimetic crack pressure sensors, including parameter selection, structural design, and performance optimization. By delving into the nuanced characteristics and working principles of hydrogel dampers, their integration in biomimetic crack pressure sensors is examined, focusing on aspects like parameter selection, structural engineering, and performance enhancement to selectively sieve out low-frequency noise and transmit target vibrational signals. Experimental results demonstrate that this innovative sensor, while suppressing low-frequency vibration signals, can selectively detect high-frequency signals with high sensitivity. At different vibration frequencies, the relative change in resistance exceeds 200%, and the sensor sensitivity is 7 × 104 kPa-1. Furthermore, this sensor was applied to human voice detection, and the corresponding results verified its frequency-selective performance evidently. This study not only proposes a new design for pressure sensors but also offers fresh insights into the application of biomimetic crack pressure sensors in intricate environments.
Collapse
Affiliation(s)
- Yan Li
- School of Mechanical and Electrical Engineering, China University of Mining and Technology─Beijing, Beijing 100083, China
| | - Zongzheng Zhang
- School of Mechanical and Electrical Engineering, China University of Mining and Technology─Beijing, Beijing 100083, China
| | - Songlin Du
- School of Mechanical and Electrical Engineering, China University of Mining and Technology─Beijing, Beijing 100083, China
| | - Sicheng Zong
- School of Mechanical and Electrical Engineering, China University of Mining and Technology─Beijing, Beijing 100083, China
| | - Zijun Ning
- School of Mechanical and Electrical Engineering, China University of Mining and Technology─Beijing, Beijing 100083, China
| | - Fuling Yang
- School of Mechanical and Electrical Engineering, China University of Mining and Technology─Beijing, Beijing 100083, China
| |
Collapse
|
8
|
Hong S, Zhang H, Lee J, Yu T, Cho S, Park T, Walsh J, Ji Y, Kim JJ, Lee H, Kim DR, Xu B, Lee CH. Spongy Ag Foam for Soft and Stretchable Strain Gauges. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26613-26623. [PMID: 38728055 DOI: 10.1021/acsami.4c04719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Strain gauges, particularly for wearable sensing applications, require a high degree of stretchability, softness, sensitivity, selectivity, and linearity. They must also steer clear of challenges such as mechanical and electrical hysteresis, overshoot behavior, and slow response/recovery times. However, current strain gauges face challenges in satisfying all of these requirements at once due to the inevitable trade-offs between these properties. Here, we present an innovative method for creating strain gauges from spongy Ag foam through a steam-etching process. This method simplifies the traditional, more complex, and costly manufacturing techniques, presenting an eco-friendly alternative. Uniquely, the strain gauges crafted from this method achieve an unparalleled gauge factor greater than 8 × 103 at strains exceeding 100%, successfully meeting all required attributes without notable trade-offs. Our work includes systematic investigations that reveal the intricate structure-property-performance relationship of the spongy Ag foam with practical demonstrations in areas such as human motion monitoring and human-robot interaction. These breakthroughs pave the way for highly sensitive and selective strain gauges, showing immediate applicability across a wide range of wearable sensing applications.
Collapse
Affiliation(s)
- Seokkyoon Hong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Haozhe Zhang
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22903-1738, United States
| | - Junsang Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Tianhao Yu
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Seungse Cho
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Taewoong Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julia Walsh
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yuhyun Ji
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Joshua Jeremiah Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Baoxing Xu
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22903-1738, United States
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Center for Implantable Devices, Purdue University, West Lafayette, Indiana 47907, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Chen Q, Cao Y, Lu Y, Akram W, Ren S, Niu L, Sun Z, Fang J. Hybrid Piezoelectric/Triboelectric Wearable Nanogenerator Based on Stretchable PVDF-PDMS Composite Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6239-6249. [PMID: 38272672 DOI: 10.1021/acsami.3c15760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Hybrid piezoelectric/triboelectric nanogenerators combine the merits of piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs), possessing enhanced electrical output and sensitivity. However, the structures of the majority of hybrid nanogenerators are rather complex in integrating both functions, limiting their practical application in wearable electronics. Herein, we propose to construct a piezoelectric/triboelectric hybrid nanogenerator (PT-NG) with a simple structure based on a composite film to simultaneously achieve the coupling of piezoelectric charge generation and triboelectrification with improved energy conversion efficiency. The composite film consists of electrospun PVDF nanofibers embedded in the surface of the PDMS film, which not only forms a rough nanomorphology on the surface of PDMS but also provides structural protection to the PVDF nanofibers by PDMS during compressive deformation. The results have shown that the PT-NG can generate much higher electrical outputs than individual TENG and PENG devices. The PT-NG devices exhibit a high level of mechanical-to-electrical energy conversion efficiency with superior performance in charging capacitors and functioning as self-powered wearable sensors for the detection of different signals from finger movement, the recognition of various gestures, and the monitoring of respiration. More importantly, the composite device possesses an impressive structure durability, maintaining its layered structure over 5000 testing cycles without noticing any obvious damage on the nanofibers or detachment between the layers. Our results have demonstrated that the combining of piezoelectric nanofibers and triboelectric substrate is an efficient way to fabricate highly efficient energy harvesting devices for intelligent identification and health monitoring.
Collapse
Affiliation(s)
- Qian Chen
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yuying Cao
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yan Lu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Wasim Akram
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Song Ren
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Li Niu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhe Sun
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
Bo R, Xu S, Yang Y, Zhang Y. Mechanically-Guided 3D Assembly for Architected Flexible Electronics. Chem Rev 2023; 123:11137-11189. [PMID: 37676059 PMCID: PMC10540141 DOI: 10.1021/acs.chemrev.3c00335] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 09/08/2023]
Abstract
Architected flexible electronic devices with rationally designed 3D geometries have found essential applications in biology, medicine, therapeutics, sensing/imaging, energy, robotics, and daily healthcare. Mechanically-guided 3D assembly methods, exploiting mechanics principles of materials and structures to transform planar electronic devices fabricated using mature semiconductor techniques into 3D architected ones, are promising routes to such architected flexible electronic devices. Here, we comprehensively review mechanically-guided 3D assembly methods for architected flexible electronics. Mainstream methods of mechanically-guided 3D assembly are classified and discussed on the basis of their fundamental deformation modes (i.e., rolling, folding, curving, and buckling). Diverse 3D interconnects and device forms are then summarized, which correspond to the two key components of an architected flexible electronic device. Afterward, structure-induced functionalities are highlighted to provide guidelines for function-driven structural designs of flexible electronics, followed by a collective summary of their resulting applications. Finally, conclusions and outlooks are given, covering routes to achieve extreme deformations and dimensions, inverse design methods, and encapsulation strategies of architected 3D flexible electronics, as well as perspectives on future applications.
Collapse
Affiliation(s)
- Renheng Bo
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Shiwei Xu
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Youzhou Yang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Yihui Zhang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| |
Collapse
|
11
|
Wang T, Qiu Z, Li H, Lu H, Gu Y, Zhu S, Liu GS, Yang BR. High Sensitivity, Wide Linear-Range Strain Sensor Based on MXene/AgNW Composite Film with Hierarchical Microcrack. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304033. [PMID: 37649175 DOI: 10.1002/smll.202304033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/02/2023] [Indexed: 09/01/2023]
Abstract
Stretchable strain sensors suffer the trade-off between sensitivity and linear sensing range. Developing sensors with both high sensitivity and wide linear range remains a formidable challenge. Different from conventional methods that rely on the structure design of sensing nanomaterial or substrate, here a heterogeneous-surface strategy for silver nanowires (AgNWs) and MXene is proposed to construct a hierarchical microcrack (HMC) strain sensor. The heterogeneous surface with distinct differences in cracks and adhesion strengths divides the sensor into two regions. One region contributes to high sensitivity through penetrating microcracks of the AgNW/MXene composite film during stretching. The other region maintains conductive percolation pathways to provide a wide linear sensing range through network microcracks. As a result, the HMC sensor exhibits ultrahigh sensitivity (gauge factor ≈ 244), broad linear range (ɛ = 60%, R2 ≈ 99.25%), and fast response time (<30 ms). These merits are confirmed in the detection of large and subtle human motions and digital joint movement for Morse coding. The manipulation of cracks on the heterogeneous surface provides a new paradigm for designing high-performance stretchable strain sensors.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhiguang Qiu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Haichuan Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, College of Science & Engineering, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Hao Lu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yifan Gu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Simu Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Gui-Shi Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, College of Science & Engineering, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
12
|
Huang X, Liu L, Lin YH, Feng R, Shen Y, Chang Y, Zhao H. High-stretchability and low-hysteresis strain sensors using origami-inspired 3D mesostructures. SCIENCE ADVANCES 2023; 9:eadh9799. [PMID: 37624897 PMCID: PMC10456843 DOI: 10.1126/sciadv.adh9799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
Stretchable strain sensors are essential for various applications such as wearable electronics, prosthetics, and soft robotics. Strain sensors with high strain range, minimal hysteresis, and fast response speed are highly desirable for accurate measurements of large and dynamic deformations of soft bodies. Current stretchable strain sensors mostly rely on deformable conducting materials, which often have difficulties in achieving these properties simultaneously. In this study, we introduce capacitive strain sensor concepts based on origami-inspired three-dimensional mesoscale electrodes formed by a mechanically guided assembly process. These sensors exhibit up to 200% stretchability with 1.2% degree of hysteresis, <22 ms response time, small sensing area (~5 mm2), and directional strain responses. To showcase potential applications, we demonstrate the use of distributed strain sensors for measuring multimodal deformations of a soft continuum arm.
Collapse
Affiliation(s)
- Xinghao Huang
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Liangshu Liu
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yung Hsin Lin
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Rui Feng
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Yiyang Shen
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Yuanning Chang
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Hangbo Zhao
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
13
|
Du C, Wang Y, Kang Z. Auxetic Kirigami Metamaterials upon Large Stretching. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19190-19198. [PMID: 37026970 DOI: 10.1021/acsami.3c00946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Auxetic kirigami metamaterials (KMs) attain negative Poisson's ratios with periodic slender cuts on thin sheets. The existing thin auxetic KMs forfeit auxeticity under large tensions because their auxeticity mainly arises from in-plane deformation, but out-of-plane buckling could arise to cause large deviations, and thicker KMs would suffer from stress failure. This paper proposes a novel family of KMs that can realize and retain auxeticity for up to 0.50 applied strains by fully exploiting out-of-plane buckling in the design model. Numerical and experimental results show that the designed KMs possess unique properties that are not exhibited by existing KMs, including a wide range of negative Poisson's ratios with designable variation modes under different applied strains, sheet thickness-insensitive auxeticity, and excellent shape recoverability. A potential application is exemplified with a scenario that they are designed as a stretchable display without image distortions under large tensions. The proposed auxetic KMs open new opportunities for the design of specific functional devices in areas of compliant robotics, bio-medical devices, and flexible electronics.
Collapse
Affiliation(s)
- Chen Du
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
| | - Yiqiang Wang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
| | - Zhan Kang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|