1
|
Yu T, Ding Q, Wang N, Zhang S, Cheng Z, Zhao C, Li Q, Ding C, Liu W. Cranial repair-promoting effect of oxidised sodium alginate/amino gelatine injectable hydrogel loaded with deer antler blood peptides. Int J Biol Macromol 2025; 305:141116. [PMID: 39956235 DOI: 10.1016/j.ijbiomac.2025.141116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
This study aimed to enhance the treatment of bone defects and increase peptide bioavailability. To achieve this, antioxidant-active peptides (DBPs) were extracted from deer antler blood and incorporated into an oxidised sodium alginate/amino gelatine injectable hydrogel (OSA/N-Gel). This bioscaffold was created through the Schiff base reaction, resulting in the development of an injectable hydrogel comprising OSA, amino gelatine, and deer antler blood peptides (OSA/N-Gel/DBP). OSA/N-Gel/DBP is characterised by a loose and porous structure that enhances nutrient flow and confers good degradability, enabling the gradual release of DBP to meet the long-lasting treatment requirements for bone repair. In vitro, 5-Ethynyl-2'-deoxyuridine (EDU), alkaline phosphatase (ALP), and Alizarin Red S (ARS) staining showed the pro-proliferative and pro-mineralising abilities of OSA/N-Gel and OSA/N-Gel/DBP on osteoblasts (MC3T3). OSA/N-Gel/DBP effectively promoted the expression of osteogenesis-related genes, such as ALP and vascular endothelial growth factor (CD31), and deposition of collagen (COL-1), and activated the wingless-related integration site (Wnt) signalling pathway, thereby promoting bone regeneration. The effect of OSA/N-Gel/DBP was significantly superior to that of the OSA/N-Gel group, indicating that DBP has good osteogenic properties. We successfully repaired bone defects and broadened the application of antler blood, thereby providing a novel approach to treating bone defects.
Collapse
Affiliation(s)
- Taojing Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhiqiang Cheng
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin Agricultural University, Changchun 130118, China; College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Chunli Zhao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Qingjie Li
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
2
|
Yuan W, Ferreira LDA, Khade R, Diniz I, Ansari S, Moshaverinia A. Enhanced Osteogenic Differentiation of hMSCs Using BMP@ZIF-8-Loaded GelMA Nanocomposite Hydrogels with Controlled BMP-2 Release. ACS OMEGA 2025; 10:10826-10834. [PMID: 40160775 PMCID: PMC11947814 DOI: 10.1021/acsomega.4c06577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
Hydrogels are highly versatile materials with immense potential for tissue engineering and regenerative medicine owing to their biocompatibility, tunable mechanical properties, and ability to mimic the natural extracellular matrix. Their 3D porous structure allows for the encapsulation and delivery of bioactive molecules, making them ideal candidates for drug delivery systems. In tissue repair, particularly for bone regeneration, hydrogels can serve as carriers that release therapeutic agents in a controlled manner, thus enhancing the healing process. Zeolitic Imidazolate Framework-8 (ZIF-8) nanoparticles and recombinant human Bone Morphogenetic Protein (rhBMP-2) molecules were incorporated solely (ZIF@GelMA) or in association (BMP@ZIF@GelMA) into gelatin modified by a methacryloyl hydrogel (GelMA) to investigate its physical and osteogenic properties. Hydrogels were characterized by Scanning Electron Microscopy and rheological tests. We analyzed hydrogel degradation and the BSA release profile of BMP@ZIF@GelMA samples throughout 0, 1, 3, 7, 14, and 28 days. Cell adhesion and bone formation markers were analyzed for hydrogel-encapsulated human dental pulp cells by using immunocytochemistry and molecular analysis. ZIF@GelMA and BMP@ZIF@GelMA exhibited a porous and viscoelastic structure with increased storage modulus when rhBMP2 was present. BSA@ZIF@GelMA showed a balanced degradation rate and a controlled release of BSA. The ZIF@GelMA upregulated the expression of cell adhesion and bone formation genes, and when BMP-2 was introduced, the levels of markers were remarkably elevated. BMP@ZIF@GelMA hydrogel presents several favorable factors to promote cellular adhesion and bone regeneration, thus encouraging further prospects for advanced therapeutic applications in tissue repair.
Collapse
Affiliation(s)
- Weihao Yuan
- Weintraub
Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Luiza de Almeida
Queiroz Ferreira
- Weintraub
Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
- Department
of Restorative Dentistry, School of Dentistry,
Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Ronit Khade
- Weintraub
Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Ivana Diniz
- Weintraub
Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
- Department
of Restorative Dentistry, School of Dentistry,
Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Sahar Ansari
- Weintraub
Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Alireza Moshaverinia
- Weintraub
Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Chawla V, Bundel P, Singh Y. ALP-Mimetic Cyclic Peptide Nanotubes: A Multifunctional Strategy for Osteogenesis and Bone Regeneration. Biomacromolecules 2025; 26:1686-1700. [PMID: 39952236 DOI: 10.1021/acs.biomac.4c01484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Alkaline phosphatase (ALP) plays a crucial role in bone mineralization by hydrolyzing organophosphates and releasing inorganic phosphate ions, facilitating hydroxyapatite formation. The imidazole ring in the functional domain of ALP is critical for its catalytic activity and bone mineralization. However, the therapeutic application of native ALP is hindered by instability, short half-life, immunogenicity, and variable efficacy. This work presents the development of ALP-mimetic cyclic-octapeptide (ALAKHKHP) nanotubes to promote osteogenic differentiation and bone mineralization. The incorporation of imidazole-rich histidine residues in close proximity gives enzyme-mimetic characteristics. The nanotubes effectively catalyzed para-nitrophenyl phosphate (pNPP) hydrolysis, promoting in vitro calcium deposition and ALP activity, which stimulated osteogenic differentiation of MC3T3-E1 preosteoblasts, as evidenced by the upregulation of osteogenic marker genes. The nanotubes demonstrated excellent cell migration, reactive oxygen species (ROS) scavenging, and anti-inflammatory properties. This biomimetic nanoscaffold provides a promising alternative for bone regeneration, without relying on native enzymes, growth factors, or drugs.
Collapse
Affiliation(s)
- Vatan Chawla
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Pruthviraj Bundel
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
4
|
Li W, Li L, Hu J, Zhou D, Su H. Design and Applications of Supramolecular Peptide Hydrogel as Artificial Extracellular Matrix. Biomacromolecules 2024; 25:6967-6986. [PMID: 39418328 DOI: 10.1021/acs.biomac.4c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Supramolecular peptide hydrogels (SPHs) consist of peptides containing hydrogelators and functional epitopes, which can first self-assemble into nanofibers and then physically entangle together to form dynamic three-dimensional networks. Their porous structures, excellent bioactivity, and high dynamicity, similar to an extracellular matrix (ECM), have great potential in artificial ECM. The properties of the hydrogel are largely dependent on peptides. The noncovalent interactions among hydrogelators drive the formation of assemblies and further transition into hydrogels, while bioactive epitopes modulate cell-cell and cell-ECM interactions. Therefore, SPHs can support cell growth, making them ideal biomaterials for ECM mimics. This Review outlines the classical molecular design of SPHs from hydrogelators to functional epitopes and summarizes the recent advancements of SPHs as artificial ECMs in nervous system repair, wound healing, bone and cartilage regeneration, and organoid culture. This emerging SPH platform could provide an alternative strategy for developing more effective biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Wenting Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Longjie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jiale Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Pardo A, Gomez‐Florit M, Davidson MD, Öztürk‐Öncel MÖ, Domingues RMA, Burdick JA, Gomes ME. Hierarchical Design of Tissue-Mimetic Fibrillar Hydrogel Scaffolds. Adv Healthc Mater 2024; 13:e2303167. [PMID: 38400658 PMCID: PMC11209813 DOI: 10.1002/adhm.202303167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Most tissues of the human body present hierarchical fibrillar extracellular matrices (ECMs) that have a strong influence over their physicochemical properties and biological behavior. Of great interest is the introduction of this fibrillar structure to hydrogels, particularly due to the water-rich composition, cytocompatibility, and tunable properties of this class of biomaterials. Here, the main bottom-up fabrication strategies for the design and production of hierarchical biomimetic fibrillar hydrogels and their most representative applications in the fields of tissue engineering and regenerative medicine are reviewed. For example, the controlled assembly/arrangement of peptides, polymeric micelles, cellulose nanoparticles (NPs), and magnetically responsive nanostructures, among others, into fibrillar hydrogels is discussed, as well as their potential use as fibrillar-like hydrogels (e.g., those from cellulose NPs) with key biofunctionalities such as electrical conductivity or remote stimulation. Finally, the major remaining barriers to the clinical translation of fibrillar hydrogels and potential future directions of research in this field are discussed.
Collapse
Affiliation(s)
- Alberto Pardo
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
- Colloids and Polymers Physics GroupParticle Physics DepartmentMaterials Institute (iMATUS)and Health Research Institute (IDIS)University of Santiago de CompostelaSantiago de Compostela15782Spain
| | - Manuel Gomez‐Florit
- Health Research Institute of the Balearic Islands (IdISBa)Palma07010Spain
- Research Unit, Son Espases University Hospital (HUSE)Palma07010Spain
- Group of Cell Therapy and Tissue Engineering (TERCIT)Research Institute on Health Sciences (IUNICS)University of the Balearic Islands (UIB)Ctra. Valldemossa km 7.5Palma07122Spain
| | - Matthew D. Davidson
- BioFrontiers Institute and Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderCO80303USA
| | - Meftune Özgen Öztürk‐Öncel
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| | - Rui M. A. Domingues
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| | - Jason A. Burdick
- BioFrontiers Institute and Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderCO80303USA
| | - Manuela E. Gomes
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| |
Collapse
|
6
|
Baravkar SB, Lu Y, Masoud AR, Zhao Q, He J, Hong S. Development of a Novel Covalently Bonded Conjugate of Caprylic Acid Tripeptide (Isoleucine-Leucine-Aspartic Acid) for Wound-Compatible and Injectable Hydrogel to Accelerate Healing. Biomolecules 2024; 14:94. [PMID: 38254694 PMCID: PMC10813153 DOI: 10.3390/biom14010094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Third-degree burn injuries pose a significant health threat. Safer, easier-to-use, and more effective techniques are urgently needed for their treatment. We hypothesized that covalently bonded conjugates of fatty acids and tripeptides can form wound-compatible hydrogels that can accelerate healing. We first designed conjugated structures as fatty acid-aminoacid1-amonoacid2-aspartate amphiphiles (Cn acid-AA1-AA2-D), which were potentially capable of self-assembling into hydrogels according to the structure and properties of each moiety. We then generated 14 novel conjugates based on this design by using two Fmoc/tBu solid-phase peptide synthesis techniques; we verified their structures and purities through liquid chromatography with tandem mass spectrometry and nuclear magnetic resonance spectroscopy. Of them, 13 conjugates formed hydrogels at low concentrations (≥0.25% w/v), but C8 acid-ILD-NH2 showed the best hydrogelation and was investigated further. Scanning electron microscopy revealed that C8 acid-ILD-NH2 formed fibrous network structures and rapidly formed hydrogels that were stable in phosphate-buffered saline (pH 2-8, 37 °C), a typical pathophysiological condition. Injection and rheological studies revealed that the hydrogels manifested important wound treatment properties, including injectability, shear thinning, rapid re-gelation, and wound-compatible mechanics (e.g., moduli G″ and G', ~0.5-15 kPa). The C8 acid-ILD-NH2(2) hydrogel markedly accelerated the healing of third-degree burn wounds on C57BL/6J mice. Taken together, our findings demonstrated the potential of the Cn fatty acid-AA1-AA2-D molecular template to form hydrogels capable of promoting the wound healing of third-degree burns.
Collapse
Affiliation(s)
- Sachin B. Baravkar
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
| | - Yan Lu
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
| | - Abdul-Razak Masoud
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
| | - Qi Zhao
- NMR Laboratory, Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Jibao He
- Microscopy Laboratory, Tulane University, New Orleans, LA 70118, USA
| | - Song Hong
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
- Department of Ophthalmology, School of Medicine, L.S.U. Health, New Orleans, LA 70112, USA
| |
Collapse
|
7
|
Li W, Linli F, Yang W, Chen X. Enhancing the stability of natural anthocyanins against environmental stressors through encapsulation with synthetic peptide-based gels. Int J Biol Macromol 2023; 253:127133. [PMID: 37802437 DOI: 10.1016/j.ijbiomac.2023.127133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
The instability of anthocyanin to environmental stressors severely limits its applications as a natural bioactive pigment. To overcome these limitations, this proof-of-concept study utilizes the high biocompatibility of peptide molecules and the unique gel microstructure to develop innovative peptide-based gels. Characterization of the gels was conducted through AFM, SEM, rheological analysis, and CD spectrum. These analyses confirmed the fibrous mesh structure and impressive mechanical strength of the peptide-based gels. The cytotoxicity evaluation using MTT and hemolysis analysis showed high biocompatibility. Encapsulation efficiency analysis and fluorescence microscopy images demonstrated successful and efficient encapsulation of anthocyanins in all four peptide-based gels, with uniform distribution. Moreover, systematic investigations were conducted to assess the impact of peptide-based gels on the stability of natural anthocyanins under environmental stressors such as temperature, pH variations, and exposure to metal ions. Notably, the results revealed a significant enhancement in stability, including improved long-term storage and antioxidant activity. In conclusion, this study successfully developed four novel peptide-based gels that effectively protect natural anthocyanins from environmental stressors, highlighting their potential in various fields such as food and biology.
Collapse
Affiliation(s)
- Wenjun Li
- School of Food and Bioengineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, Sichuan Province 611130, China.
| | - Fangzhou Linli
- School of Food and Bioengineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, Sichuan Province 611130, China
| | - Wenyu Yang
- School of Food and Bioengineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, Sichuan Province 611130, China.
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, Sichuan Province 611130, China.
| |
Collapse
|
8
|
Hu Y, Fan Y, Chen B, Li H, Zhang G, Su J. Stimulus-responsive peptide hydrogels: a safe and least invasive administration approach for tumor treatment. J Drug Target 2023:1-17. [PMID: 37469142 DOI: 10.1080/1061186x.2023.2236332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
Tumours, with increasing mortality around the world, have bothered human beings for decades. Enhancing the targeting of antitumor drugs to tumour tissues is the key to enhancing their antitumor effects. The tumour microenvironment is characterised by a relatively low pH, overexpression of certain enzymes, redox imbalance, etc. Therefore, smart drug delivery systems that respond to the tumour microenvironment have been proposed to selectively release antitumor drugs. Among them, peptide hydrogels as a local drug delivery system have received much attention due to advantages such as high biocompatibility, degradability and high water-absorbing capacity. The combination of peptide segments with different physiological functions allows for tumour targeting, self-aggregation, responsiveness, etc. Morphological and microstructural changes in peptide hydrogels can occur when utilising the inherent pathological microenvironment of tumours to trigger drug release, which endows such systems with limited adverse effects and improved therapeutic efficiency. Herein, this review outlined the driving forces, impact factors, and sequence design in peptide hydrogels. We also discussed the triggers to induce the transformation of peptide-based hydrogels in the tumour microenvironment and described the advancements of peptide-based hydrogels for local drug delivery in tumour treatment. Finally, we gave a brief perspective on the prospects and challenges in this field.
Collapse
Affiliation(s)
- Yuchen Hu
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Ying Fan
- Chongqing University Jiangjin Hospital, Chongqing, P.R. China
| | - Ban Chen
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Hong Li
- School of Pharmacy, Guangxi Medical University, Nanning, P.R. China
| | - Gang Zhang
- Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan, P.R. China
| | - Jiangtao Su
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| |
Collapse
|
9
|
Tiwari OS, Rencus-Lazar S, Gazit E. Peptide- and Metabolite-Based Hydrogels: Minimalistic Approach for the Identification and Characterization of Gelating Building Blocks. Int J Mol Sci 2023; 24:10330. [PMID: 37373477 DOI: 10.3390/ijms241210330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Minimalistic peptide- and metabolite-based supramolecular hydrogels have great potential relative to traditional polymeric hydrogels in various biomedical and technological applications. Advantages such as remarkable biodegradability, high water content, favorable mechanical properties, biocompatibility, self-healing, synthetic feasibility, low cost, easy design, biological function, remarkable injectability, and multi-responsiveness to external stimuli make supramolecular hydrogels promising candidates for drug delivery, tissue engineering, tissue regeneration, and wound healing. Non-covalent interactions such as hydrogen bonding, hydrophobic interactions, electrostatic interactions, and π-π stacking interactions play key roles in the formation of peptide- and metabolite-containing low-molecular-weight hydrogels. Peptide- and metabolite-based hydrogels display shear-thinning and immediate recovery behavior due to the involvement of weak non-covalent interactions, making them supreme models for the delivery of drug molecules. In the areas of regenerative medicine, tissue engineering, pre-clinical evaluation, and numerous other biomedical applications, peptide- and metabolite-based hydrogelators with rationally designed architectures have intriguing uses. In this review, we summarize the recent advancements in the field of peptide- and metabolite-based hydrogels, including their modifications using a minimalistic building-blocks approach for various applications.
Collapse
Affiliation(s)
- Om Shanker Tiwari
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sigal Rencus-Lazar
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|