1
|
Chen L, Huang Y, Ning H, Liu Y, Tang H, Zhou R, Jin S, Zheng J, Yao R, Peng J. Flexible Piezoresistive Sensor Based on CNT/PVA Composite with Wide Linear Detection Range for Human Motion Monitoring. Polymers (Basel) 2025; 17:1378. [PMID: 40430674 PMCID: PMC12114893 DOI: 10.3390/polym17101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
In recent years, flexible pressure sensors have attracted significant attention due to their extensive application prospects in wearable devices, healthcare monitoring, and other fields. Herein, we propose a flexible piezoresistive sensor with a broad detection range, utilizing a CNT/PVA composite as the pressure-sensitive layer. The effect of the CNT-to-PVA ratio on sensing performance was systematically investigated, revealing that the sensor's sensitivity initially increases and then decreases with rising CNT content. When the weight percentage of CNTs reaches 11.24 wt%, the sensing film exhibits optimal piezoresistive properties. A resistance model of the composite conductive material was established to elucidate the sensing mechanism associated with CNT content in detail. Furthermore, hill-like microstructures were fabricated on a PDMS substrate using sandpaper as a template to further enhance overall performance. The sensor demonstrates a sensitivity of 0.1377 kPa-1 (<90 kPa), a sensing range of up to 400 kPa, a response time of 160 ms, and maintains excellent stability after 2000 folding cycles. It can accurately detect human joint flexion and muscle activity. This work is expected to provide a feasible solution for flexible electronic devices applied in human motion monitoring and analysis, particularly offering competitive advantages in applications involving wide-range pressure detection.
Collapse
Affiliation(s)
- Lijun Chen
- Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; (L.C.); (Y.H.); (Y.L.); (R.Z.); (S.J.); (J.Z.); (J.P.)
| | - Yucheng Huang
- Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; (L.C.); (Y.H.); (Y.L.); (R.Z.); (S.J.); (J.Z.); (J.P.)
| | - Honglong Ning
- Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; (L.C.); (Y.H.); (Y.L.); (R.Z.); (S.J.); (J.Z.); (J.P.)
- The International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China
| | - Yuxiang Liu
- Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; (L.C.); (Y.H.); (Y.L.); (R.Z.); (S.J.); (J.Z.); (J.P.)
| | - Huacheng Tang
- Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; (L.C.); (Y.H.); (Y.L.); (R.Z.); (S.J.); (J.Z.); (J.P.)
| | - Rui Zhou
- Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; (L.C.); (Y.H.); (Y.L.); (R.Z.); (S.J.); (J.Z.); (J.P.)
| | - Shaojie Jin
- Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; (L.C.); (Y.H.); (Y.L.); (R.Z.); (S.J.); (J.Z.); (J.P.)
| | - Jiahao Zheng
- Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; (L.C.); (Y.H.); (Y.L.); (R.Z.); (S.J.); (J.Z.); (J.P.)
| | - Rihui Yao
- Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; (L.C.); (Y.H.); (Y.L.); (R.Z.); (S.J.); (J.Z.); (J.P.)
- Key Laboratory of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Junbiao Peng
- Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; (L.C.); (Y.H.); (Y.L.); (R.Z.); (S.J.); (J.Z.); (J.P.)
| |
Collapse
|
2
|
Liang A, Zhai J, Zou J, Chen X. Porous Carbon Nanoparticle Composite Paper Fiber with Laser-Induced Graphene Surface Microstructure for Pressure Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2688-2698. [PMID: 39856562 DOI: 10.1021/acs.langmuir.4c04486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
In recent years, flexible pressure sensors have played an increasingly important role in human health monitoring. Inspired by traditional papermaking techniques, we have developed a highly flexible, low-cost, and ecofriendly flexible pressure sensor using shredded paper fibers as the substrate. By combining the properties of laser-induced graphene with the structure of paper fibers, we have improved the internal structure of pressure-sensitive paper and designed a conical surface microstructure, providing new insights into nanomaterial engineering. It features low resistance (424.44 Ω), low energy consumption of only 0.367 μW under a pressure of 1.96 kPa, high sensitivity (1.68 kPa-1), and a wide monitoring range (98 Pa-111.720 kPa). The pressure-sensitive paper with surface microstructure (MFTG) developed in this study has a total thickness comparable to A4 paper, is soft and bendable, can be cut into any shape like paper to fit the human body, and holds great potential for continuous monitoring of human activity status and physiological information.
Collapse
Affiliation(s)
- Aoxun Liang
- College of Transportation, Ludong University, No.186, Middle Hongqi Road, Zhifu District, Yantai 264025, Shandong, China
| | - Junlong Zhai
- College of Transportation, Ludong University, No.186, Middle Hongqi Road, Zhifu District, Yantai 264025, Shandong, China
| | - Jixu Zou
- School of Chemistry and Materials Science, Ludong University, No.186, Middle Hongqi Road, Zhifu District, Yantai 264025, Shandong, China
| | - Xueye Chen
- College of Transportation, Ludong University, No.186, Middle Hongqi Road, Zhifu District, Yantai 264025, Shandong, China
| |
Collapse
|
3
|
Wang L, Li H, Zhao C, Zhang L, Li J, Din SU, Wang Z, Sun J, Torres SAG, Fan Z, Wen L. Aluminium surface work hardening enables multi-scale 3D lithography. NATURE MATERIALS 2025; 24:39-47. [PMID: 39528627 DOI: 10.1038/s41563-024-02036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/29/2024] [Indexed: 11/16/2024]
Abstract
Multi-scale structures are ubiquitous in biological systems. However, manufacturing man-made structures with controllable features spanning multiple length scales, particularly down to nanoscale features, is very challenging, which seriously impacts their collective properties. Here we introduce an aluminium-based three-dimensional lithography that combines sequential nano-micro-macro-imprinting and anodization of multi-scale anodic aluminium oxide templates to manufacture well-defined multi-scale structures, using various materials. The high-fidelity nano-patterns and micro-patterns were facilitated by the surface work hardening phenomenon, where the nano-patterns can be further fine-tailored by anodization to have high-aspect-ratio and tunable nano-holes. Based on the aluminium-based three-dimensional lithography, multi-scale materials across length scales of at least 107 orders of magnitude were precisely fabricated, including carbon, semiconductors and metals. We integrated pressure sensors and biosensors with superior and customizable performances by tailoring the multi-scale carbon networks on different length scales from nanofibres and micropyramids to macrodome arrays. This work provides a versatile technique for prototyping on-demand multi-scale structures and materials to explore desirable mechanical and physical properties.
Collapse
Affiliation(s)
- Lang Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
- Research Centre for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, China
| | - Hangtong Li
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province (KLaCER), School of Engineering, Westlake University, Hangzhou, China
| | - Chen Zhao
- Research Centre for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, China
| | - Liqiang Zhang
- Research Centre for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, China
| | - Jiye Li
- Research Centre for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, China
| | - Salah Ud Din
- Research Centre for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, China
| | - Zichen Wang
- Research Centre for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, China
| | - Jiacheng Sun
- Research Centre for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, China
| | - Sergio Andres Galindo Torres
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province (KLaCER), School of Engineering, Westlake University, Hangzhou, China
| | - Zhiyong Fan
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Liaoyong Wen
- Research Centre for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, China.
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, China.
- Westlake Institute for Optoelectronics, Fuyang, Hangzhou, China.
| |
Collapse
|
4
|
Wang J, Hou Z, Wang W, Bai L, Chen H, Yang L, Yin K, Yang H, Wei D. Design of self-healing nanocomposite hydrogels and the application to the detection of human exercise and ascorbic acid in sweat. Biosens Bioelectron 2025; 267:116767. [PMID: 39270360 DOI: 10.1016/j.bios.2024.116767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/01/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
Hydrogel sensors have broad application prospects in human motion monitoring and sweat composition detection. However, hydrogel-based sensors are faced with challenges such as low accuracy and poor mechanical properties of analytes detection. Based on mussel-inspired chemistry, we synthesized mesoporous silica@polydopamine-Au (MPS@PDA-Au) nanomaterials and designed a self-healing nanocomposite hydrogel to monitor human movement and ascorbic acid detection in sweat. Mesoporous silica (MPS) possess orderly mesoporous structure. Dopamine (DA) polymerized on the surface of MPS to generate polydopamine (PDA), forming the composite material MPS@PDA-Au. This composite was then embedded into polyvinyl alcohol (PVA) hydrogels through a simple freeze-thaw cycle process. The hydrogels have achieved excellent deformable ability (508.6%), self-healing property (90.5%) and mechanical strength (2.9 MPa). The PVA/MPS@PDA-Au hydrogel sensors had the characteristics of fast response time (123.2 ms), wide strain sensing range (0-500%), excellent fatigue resistance and stability in human detection. The detection range of ascorbic acid (AA) in sweat was wide (8.0 μmol/L-100.0 μmol/L) and the detection limit was low (3.3 μmol/L). Therefore, these hydrogel sensors have outstanding application prospects in human motion monitoring and sweat composition detection.
Collapse
Affiliation(s)
- Jingyang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, 264025, China
| | - Zehua Hou
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, 264025, China
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, 264025, China; Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, 215123, China.
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, 264025, China.
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, 264025, China
| | - Kun Yin
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, 264025, China
| |
Collapse
|
5
|
Chen K, Yang H, Wang A, Tang L, Zha X, Iita NS, Zhang H, Li Z, Wang X, Yang W, Qu S, Wang Z. Smart Driving Hardware Augmentation by Flexible Piezoresistive Sensor Matrices with Grafted-on Anticreep Composites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408313. [PMID: 39584792 PMCID: PMC11744520 DOI: 10.1002/advs.202408313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/25/2024] [Indexed: 11/26/2024]
Abstract
Signal drift and hysteresis of flexible piezoresistive sensors pose significant challenges against the widespread applications in emerging fields such as electronic skin, wearable equipment for metaverse and human-AI (artificial intelligence) interfaces. To address the creep and relaxation issues associated with pressure-sensitive materials, a highly stable piezoresistive composite is proposed, using polyamide-imide (PAI) fibers as the matrix and in situ grafted-polymerized polyaniline (PANI) as the semi-conducting layer. The PAI with large rigid fluorenylidene groups exhibits a high glass transition temperature of 372 °C (PAI 5-5), which results in an extremely long relaxation time at room temperature and consequently offers outstanding anti-creep/relaxation performances. The enhancement of PAI-PANI interfacial bonding through in situ grafting improves the sensor reliably. The sensor presents high linear sensitivity of 35.3 kPa-1 over a pressure range of 0.2-20 kPa, outstanding repeatability, and excellent dynamic stability with only a 3.8% signal deviation through ≈10 000 cycles. Real-time visualization of pressure distribution is realized by sensor matrices, which demonstrate the capability of tactile gesture recognition on both flat and curved surfaces. The recognition of sitting postures is achieved by two 12 × 12 matrices facilitated by machine learning, which prompts the potential for the augmentation of smart driving.
Collapse
Affiliation(s)
- Kaifeng Chen
- Huanjiang LaboratorySchool of Aeronautics and AstronauticsZhejiang UniversityHangzhou310027China
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Hua Yang
- Huanjiang LaboratorySchool of Aeronautics and AstronauticsZhejiang UniversityHangzhou310027China
- Shanghai Academy of AI for ScienceShanghai200232China
| | - Ang Wang
- Institute of Thermal Science and TechnologyShandong UniversityJinan250061China
| | - Linsen Tang
- Huanjiang LaboratorySchool of Aeronautics and AstronauticsZhejiang UniversityHangzhou310027China
| | - Xin Zha
- Huanjiang LaboratorySchool of Aeronautics and AstronauticsZhejiang UniversityHangzhou310027China
| | - Ndeutala Selma Iita
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Hong Zhang
- Huanjiang LaboratorySchool of Aeronautics and AstronauticsZhejiang UniversityHangzhou310027China
| | - Zhuoxuan Li
- Huanjiang LaboratorySchool of Aeronautics and AstronauticsZhejiang UniversityHangzhou310027China
| | - Xinyu Wang
- Institute of Thermal Science and TechnologyShandong UniversityJinan250061China
| | - Wei Yang
- Center for X‐MechanicsKey Laboratory of Soft Machines and Smart Devices of Zhejiang ProvinceSchool of Aeronautics and AstronauticsZhejiang UniversityHangzhou310027China
| | - Shaoxing Qu
- Huanjiang LaboratorySchool of Aeronautics and AstronauticsZhejiang UniversityHangzhou310027China
- Center for X‐MechanicsKey Laboratory of Soft Machines and Smart Devices of Zhejiang ProvinceSchool of Aeronautics and AstronauticsZhejiang UniversityHangzhou310027China
| | - Zongrong Wang
- Huanjiang LaboratorySchool of Aeronautics and AstronauticsZhejiang UniversityHangzhou310027China
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
- Center for X‐MechanicsKey Laboratory of Soft Machines and Smart Devices of Zhejiang ProvinceSchool of Aeronautics and AstronauticsZhejiang UniversityHangzhou310027China
| |
Collapse
|
6
|
Xu R, Xu T, She M, Ji X, Li G, Zhang S, Zhang X, Liu H, Sun B, Shen G, Tian M. Skin-Friendly Large Matrix Iontronic Sensing Meta-Fabric for Spasticity Visualization and Rehabilitation Training via Piezo-Ionic Dynamics. NANO-MICRO LETTERS 2024; 17:90. [PMID: 39694974 DOI: 10.1007/s40820-024-01566-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/18/2024] [Indexed: 12/20/2024]
Abstract
Rehabilitation training is believed to be an effectual strategy that can reduce the risk of dysfunction caused by spasticity. However, achieving visualization rehabilitation training for patients remains clinically challenging. Herein, we propose visual rehabilitation training system including iontronic meta-fabrics with skin-friendly and large matrix features, as well as high-resolution image modules for distribution of human muscle tension. Attributed to the dynamic connection and dissociation of the meta-fabric, the fabric exhibits outstanding tactile sensing properties, such as wide tactile sensing range (0 ~ 300 kPa) and high-resolution tactile perception (50 Pa or 0.058%). Meanwhile, thanks to the differential capillary effect, the meta-fabric exhibits a "hitting three birds with one stone" property (dryness wearing experience, long working time and cooling sensing). Based on this, the fabrics can be integrated with garments and advanced data analysis systems to manufacture a series of large matrix structure (40 × 40, 1600 sensing units) training devices. Significantly, the tunability of piezo-ionic dynamics of the meta-fabric and the programmability of high-resolution imaging modules allow this visualization training strategy extendable to various common disease monitoring. Therefore, we believe that our study overcomes the constraint of standard spasticity rehabilitation training devices in terms of visual display and paves the way for future smart healthcare.
Collapse
Affiliation(s)
- Ruidong Xu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Tong Xu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Minghua She
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xinran Ji
- Academy of Arts & Design of Qingdao University, Qingdao, 266071, People's Republic of China
| | - Ganghua Li
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Shijin Zhang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xinwei Zhang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Liu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Bin Sun
- College of Electronics and Information, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Health&Protective Smart Textile Research Center of Qingdao, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
7
|
Li J, Fang Z, Wei D, Liu Y. Flexible Pressure, Humidity, and Temperature Sensors for Human Health Monitoring. Adv Healthc Mater 2024; 13:e2401532. [PMID: 39285808 DOI: 10.1002/adhm.202401532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/21/2024] [Indexed: 12/18/2024]
Abstract
The rapid advancements in artificial intelligence, micro-nano manufacturing, and flexible electronics technology have unleashed unprecedented innovation and opportunities for applying flexible sensors in healthcare, wearable devices, and human-computer interaction. The human body's tactile perception involves physical parameters such as pressure, temperature, and humidity, all of which play an essential role in maintaining human health. Inspired by the sensory function of human skin, many bionic sensors have been developed to simulate human skin's perception to various stimuli and are widely applied in health monitoring. Given the urgent requirements for sensing performance and integration of flexible sensors in the field of wearable devices and health monitoring, here is a timely overview of recent advances in pressure, humidity, temperature, and multi-functional sensors for human health monitoring. It covers the fundamental components of flexible sensors and categorizes them based on different response mechanisms, including resistive, capacitive, voltage, and other types. Specifically, the application of these flexible tactile sensors in the area of human health monitoring is highlighted. Based on this, an extended overview of recent advances in dual/triple-mode flexible sensors integrating pressure, humidity, and temperature tactile sensing is presented. Finally, the challenges and opportunities of flexible sensors are discussed.
Collapse
Affiliation(s)
- Jiaqi Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Zhengping Fang
- College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Dongsong Wei
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| |
Collapse
|
8
|
Li P, Zhang Y, Li C, Chen X, Gou X, Zhou Y, Yang J, Xie L. From materials to structures: a holistic examination of achieving linearity in flexible pressure sensors. NANOTECHNOLOGY 2024; 36:042002. [PMID: 39413806 DOI: 10.1088/1361-6528/ad8750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 10/16/2024] [Indexed: 10/18/2024]
Abstract
As a pivotal category in the realm of electronics skins, flexible pressure sensors have become a focal point due to their diverse applications such as robotics, aerospace industries, and wearable devices. With the growing demands for measurement accuracy, data reliability, and electrical system compatibility, enhancing sensor's linearity has become increasingly critical. Analysis shows that the nonlinearity of flexible sensors primarily originates from mechanical nonlinearity due to the nolinear deformation of polymers and electrical nonlinearity caused by changes in parameters such as resistance. These nonlinearities can be mitigated through geometric design, material design or combination of both. This work reviews linear design strategies for sensors from the perspectives of structure and materials, covering the following main points: (a) an overview of the fundamental working mechanisms for various sensors; (b) a comprehensive explanation of different linear design strategies and the underlying reasons; (c) a detailed review of existing work employing these strategies and the achieved effects. Additionally, this work delves into diverse applications of linear flexible pressure sensors, spanning robotics, safety, electronic skin, and health monitoring. Finally, existing constraints and future research prospects are outlined to pave the way for the further development of high-performance flexible pressure sensors.
Collapse
Affiliation(s)
- Pei Li
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education of China), Chongqing University, Chongqing 400044, People's Republic of China
| | - Yong Zhang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education of China), Chongqing University, Chongqing 400044, People's Republic of China
| | - Chunbao Li
- Department of Orthopedics, The No.4 Medical Centre, Chinese PLA General Hospital, Beijing 100048, People's Republic of China
| | - Xian Chen
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xin Gou
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education of China), Chongqing University, Chongqing 400044, People's Republic of China
| | - Yong Zhou
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education of China), Chongqing University, Chongqing 400044, People's Republic of China
| | - Jun Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Lei Xie
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education of China), Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
9
|
Huang J, Xie G, Xu X, Geng Z, Su Y. Degradable Multilayer Fabric Sensor with Wide Detection Range and High Linearity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58838-58847. [PMID: 39425644 DOI: 10.1021/acsami.4c12066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Integration of multiple superior features into a single flexible pressure sensor would result in devices with greater versatility and utility. To apply the device to a variety of scenarios and solve the problem of accumulation of e-waste in the environment, it is highly desirable to combine degradability and wide-range linearity characteristics in a single device. Herein, we reported a degradable multilayer fabric (DMF) consisting of an ellipsoidal carbon nanotube (ECNT) and polyvinylpyrrolidone/cellulose acetate electrospun fibers (PEF). The alternative layer-by-layer stacking of the ECNT and PEF notably accelerates the sensitivity toward pressure. The optimized device demonstrated a sensitivity of 3.38 kPa-1 over a wide measurement range from 0.1 to 500 kPa, as well as great mechanical stability over 2000 cycles. A good degradation performance was confirmed by both Fourier transform infrared (FTIR) characterization and decomposition experiments in sodium hydroxide solution. The fabricated sensor is capable of precepting a variety of physiological scenarios including subtle arterial pulse, dancing training, walking postures, and accidental falls. This work throws light onto the fundamental understanding of the mechanical interfacial coupling in piezoresistive materials and provides possibilities for the design and development of on-demand wearable electronics.
Collapse
Affiliation(s)
- Junlong Huang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Guangzhong Xie
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Xiangdong Xu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Zhenya Geng
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yuanjie Su
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| |
Collapse
|
10
|
Wang F, Yu H, Ma X, Lv X, Liu Y, Wang H, Wang Z, Chen D. A Highly Sensitive Strain Sensor with Self-Assembled MXene/Multi-Walled Carbon Nanotube Sliding Networks for Gesture Recognition. MICROMACHINES 2024; 15:1301. [PMID: 39597113 PMCID: PMC11596449 DOI: 10.3390/mi15111301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024]
Abstract
Flexible electronics is pursuing a new generation of electronic skin and human-computer interaction. However, effectively detecting large dynamic ranges and highly sensitive human movements remains a challenge. In this study, flexible strain sensors with a self-assembled PDMS/MXene/MWCNT structure are fabricated, in which MXene particles are wrapped and bridged by dense MWCNTs, forming complex sliding conductive networks. Therefore, the strain sensor possesses an impressive sensitivity (gauge factor = 646) and 40% response range. Moreover, a fast response time of 280 ms and detection limit of 0.05% are achieved. The high performance enables good prospects in human detection, like human movement and pulse signals for healthcare. It is also applied to wearable smart data gloves, in which the CNN algorithm is utilized to identify 15 gestures, and the final recognition rate is up to 95%. This comprehensive performance strain sensor is designed for a wide array of human body detection applications and wearable intelligent systems.
Collapse
Affiliation(s)
- Fei Wang
- Laboratory for Intelligent Flexible Electronics, College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (H.Y.); (X.M.); (X.L.); (Y.L.); (H.W.); (Z.W.)
| | | | | | | | | | | | | | - Da Chen
- Laboratory for Intelligent Flexible Electronics, College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (H.Y.); (X.M.); (X.L.); (Y.L.); (H.W.); (Z.W.)
| |
Collapse
|
11
|
Kim J, Roh H, Moon S, Jeon C, Baek S, Cho W, Sim JY, Jeong U. Wireless breathable face mask sensor for spatiotemporal 2D respiration profiling and respiratory diagnosis. Biomaterials 2024; 309:122579. [PMID: 38670033 DOI: 10.1016/j.biomaterials.2024.122579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
Owing to air pollution and the pandemic outbreak, the need for quantitative pulmonary monitoring has greatly increased. The COVID-19 outbreak has aroused attention for comfortable wireless monitoring of respiratory profiles and more real-time diagnosis of respiratory diseases. Although respiration sensors have been investigated extensively with single-pixel sensors, 2D respiration profiling with a pixelated array sensor has not been demonstrated for both exhaling and inhaling. Since the pixelated array sensor allowed for simultaneous profiling of the nasal breathing and oral breathing, it provides essential respiratory information such as breathing patterns, respiration habit, breathing disorders. In this study, we introduced an air-permeable, stretchable, and a pixelated pressure sensor that can be integrated into a commercial face mask. The mask sensor showed a strain-independent pressure-sensing performance, providing 2D pressure profiles for exhalation and inhalation. Real-time 2D respiration profiles could monitor various respiratory behaviors, such as oral/nasal breathing, clogged nose, out-of-breath, and coughing. Furthermore, they could detect respiratory diseases, such as rhinitis, sleep apnea, and pneumonia. The 2D respiratory profiling mask sensor is expected to be employed for remote respiration monitoring and timely patient treatment.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Heesung Roh
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Sungmin Moon
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Cheonhoo Jeon
- School of Electronics and Electrical Engineering, Dankook University, Yongin, Gyeonggi, 16890, South Korea
| | - Seunggoo Baek
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Woosung Cho
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea
| | - Jae-Yoon Sim
- Department of Electrical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea.
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, South Korea.
| |
Collapse
|
12
|
Han H, Fang C, Cheng Y, Liu J, Li M, Zhang X, Zhao Y, Yao X. Temperature-Switching Flexible Strain Sensors Based on Vanadium Dioxide for Intelligent Packaging Applications. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39058978 DOI: 10.1021/acsami.4c04519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Flexible sensors are promising for intelligent packaging and artificial intelligence, but the required multistimulus response is still a challenge in external environments. A candidate material for such multistimulus response is VO2 due to its unique semiconducting properties. Herein, W-doped VO2(M) with a tunable phase transition temperature was prepared by the hydrothermal method, and then, VO2(M)-based flexible sensors were fabricated employing a direct-write strategy, where conductive inks with VO2(M) powders were patterned onto various substrates. These sensors achieve dual responses to temperature and strain and exhibit high stability (over 2000 stretch-release cycles) to accurately monitor various statuses (opening and closing, temperature changes, etc.) of intelligent packaging. The spatial pressure distribution of different objects was discerned by the prepared VO2(M)/poly(dimethylsiloxane) (PDMS) sponge flexible pressure sensor arrays, and the information was successfully edited using the Morse code. The sensing signals from the intelligent packaging were collected and remotely transmitted to intelligent terminals via a wireless local-area network to achieve real-time monitoring of the packaged contents. Therefore, in this work, we not only designed new flexible sensors with multiple stimulus responses but also demonstrated the potential applications of W-doped VO2(M)-based flexible sensors in intelligent packaging.
Collapse
Affiliation(s)
- Hanzhi Han
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, P. R. China
| | - Changqing Fang
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, P. R. China
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, P. R. China
| | - Youliang Cheng
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, P. R. China
| | - Jie Liu
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, P. R. China
| | - Mengyao Li
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, P. R. China
| | - Xin Zhang
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, P. R. China
| | - Yifan Zhao
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, P. R. China
| | - Xingbo Yao
- School of Art and Design, Xi'an University of Technology, Xi'an 710048, P. R. China
| |
Collapse
|
13
|
Jin Q, Wang C, Wu H, Luo X, Li J, Ma G, Li Y, Luo C, Guo F, Long Y. 3D Printing of Capacitive Pressure Sensors with Tuned Wide Detection Range and High Sensitivity Inspired by Bio-Inspired Kapok Structures. Macromol Rapid Commun 2024; 45:e2300668. [PMID: 38325804 DOI: 10.1002/marc.202300668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Flexible pressure sensors have drawn considerable attention for their potential applications as electronic skins with both sensitivity and pressure response range. Although the introduction of surface microstructures effectively enhances sensitivity, the confined volume of their compressible structures results in a limited pressure response range. To address this issue, a biomimetic kapok structure is proposed and implemented for constructing the dielectric layer of flexible capacitive pressure sensors employing 3D printing technology. The structure is designed with easily deformable concave and rotational structures, enabling continuous deformation under pressure. This design results in a significant expansion of the pressure response range and improvement in sensitivity. Further, the study purposively analyses crucial parameters of the devised structure that affect its compressibility and stability. These include the concave angle θ, height ratio d1/d2, rotation angle α, and width k. As a result, the ultimate pressure sensors demonstrate remarkable features such as high sensitivity (≈2.38 kPa-1 in the range of 0-10 kPa), broad detection range (734 kPa), fast response time (23 ms), and outstanding pressure resolution (0.4% at 500 kPa). This study confirms the viability of bionic structures for flexible sensors, and their potential to expand the scope of wearable electronic devices.
Collapse
Affiliation(s)
- Qingxin Jin
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Chengyun Wang
- College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, 410083, China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha, Hunan, 410083, China
| | - Han Wu
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xin Luo
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jiaqi Li
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Guangmeng Ma
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yu Li
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Chunyi Luo
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Fawei Guo
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yu Long
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
14
|
Li Z, Guan T, Zhang W, Liu J, Xiang Z, Gao Z, He J, Ding J, Bian B, Yi X, Wu Y, Liu Y, Shang J, Li R. Highly Sensitive Pressure Sensor Based on Elastic Conductive Microspheres. SENSORS (BASEL, SWITZERLAND) 2024; 24:1640. [PMID: 38475176 DOI: 10.3390/s24051640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Elastic pressure sensors play a crucial role in the digital economy, such as in health care systems and human-machine interfacing. However, the low sensitivity of these sensors restricts their further development and wider application prospects. This issue can be resolved by introducing microstructures in flexible pressure-sensitive materials as a common method to improve their sensitivity. However, complex processes limit such strategies. Herein, a cost-effective and simple process was developed for manufacturing surface microstructures of flexible pressure-sensitive films. The strategy involved the combination of MXene-single-walled carbon nanotubes (SWCNT) with mass-produced Polydimethylsiloxane (PDMS) microspheres to form advanced microstructures. Next, the conductive silica gel films with pitted microstructures were obtained through a 3D-printed mold as flexible electrodes, and assembled into flexible resistive pressure sensors. The sensor exhibited a sensitivity reaching 2.6 kPa-1 with a short response time of 56 ms and a detection limit of 5.1 Pa. The sensor also displayed good cyclic stability and time stability, offering promising features for human health monitoring applications.
Collapse
Grants
- U22A20248, 52127803, 51931011, 51971233, 62174165, 52201236, M-0152, U20A6001, U1909215, and 52105286 National Natural Science Foundation of China
- 174433KYSB20200013 External Cooperation Program of Chinese Academy of Sciences
- GJTD-2020-11 the K.C. Wong Education Foundation
- 2022080 the Chinese Academy of Sciences Youth Innovation Promotion Association
- 2022C01032 the "Pioneer" and "Leading Goose" R&D Program of Zhejiang
- 2021C01183, 2021C01039 the Zhejiang Provincial Key R&D Program
- 2022R52004 the "High-level talent special support plan" technology innovation leading talent project of Zhejiang Province
- LD22E010002 the Natural Science Foundation of Zhejiang Province
- LGG20F010006 the Zhejiang Provincial Basic Public Welfare Research Project
- 2020Z022 the Ningbo Scientific and Technological Innovation 2025 Major Project
- 2022M723251 the China Postdoctoral Foundation
- 2023J049 National Science Foundation of Ningbo
Collapse
Affiliation(s)
- Zhangling Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Guan
- School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
| | - Wuxu Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyun Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyin Xiang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhiyi Gao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jing He
- School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne 3122, Australia
| | - Jun Ding
- Department of Materials Science and Engineering, National University of Singapore, Singapore 119260, Singapore
| | - Baoru Bian
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaohui Yi
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jie Shang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Runwei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
15
|
Zhao Q, Fan L, Zhao N, He H, Zhang L, Tan Q. Synergistic advancements in high-performance flexible capacitive pressure sensors: structural modifications, AI integration, and diverse applications. NANOSCALE 2024. [PMID: 38415750 DOI: 10.1039/d3nr05155b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The development of flexible pressure sensors for monitoring human motion and physiological signals has attracted extensive scientific research. However, achieving low monitoring limits, a wide detection range, large bending stresses, and excellent mechanical stability simultaneously remains a serious challenge. With the aim of developing a high-performance capacitive pressure sensor (CPS), this paper introduces the successful preparation of a single-walled carbon nanotube (SWNT)/polydimethylsiloxane (S-PDMS) composite dielectric with a foam-like structure (high permittivity and low elasticity modulus) and MXene/SWNT (S-MXene) composite film electrodes with a micro-crumpled structure. The above structurally modified CPS (SMCPS) demonstrated an excellent response output during pressure loading, achieving a wide pressure detection range (up to 700 kPa), a low detection limit (16.55 Pa), fast response/recovery characteristics (48/60 ms), enhanced sensitivity across a wide pressure range, long-term stability under repeated heavy loading and unloading (40 kPa, >2000 cycles), and reliable performance under various temperature and humidity conditions. The SMCPS demonstrated a precise and stable capacitive response in monitoring subtle physiological signals and detecting motion, owing to its unique electrode structure. The flexible device was integrated with an Internet of Things module to create a smart glove system that enables real-time tracking of dynamic gestures. This system demonstrates exceptional performance in gesture recognition and prediction with artificial intelligence analysis, highlighting the potential of the SMCPS in human-machine interface applications.
Collapse
Affiliation(s)
- Qiang Zhao
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Tai Yuan 030051, China.
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Tai Yuan 030051, China
| | - Lei Fan
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Tai Yuan 030051, China.
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Tai Yuan 030051, China
| | - Nan Zhao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haoyun He
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Tai Yuan 030051, China.
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Tai Yuan 030051, China
| | - Lei Zhang
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Tai Yuan 030051, China.
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Tai Yuan 030051, China
| | - Qiulin Tan
- Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Tai Yuan 030051, China.
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Tai Yuan 030051, China
| |
Collapse
|
16
|
Kim SW, Lee JH, Ko HJ, Lee S, Bae GY, Kim D, Lee G, Lee SG, Cho K. Mechanically Robust and Linearly Sensitive Soft Piezoresistive Pressure Sensor for a Wearable Human-Robot Interaction System. ACS NANO 2024; 18:3151-3160. [PMID: 38235650 DOI: 10.1021/acsnano.3c09016] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Soft piezoresistive pressure sensors play an underpinning role in enabling a plethora of future Internet of Things (IoT) applications such as human-robot interaction (HRI) technologies, wearable devices, and metaverse ecosystems. Despite significant attempts to enhance the performance of these sensors, existing sensors still fall short of achieving high strain tolerance and linearity simultaneously. Herein, we present a low-cost, facile, and scalable approach to fabricating a highly strain-tolerant and linearly sensitive soft piezoresistive pressure sensor. Our design utilizes thin nanocracked gold films (NC-GFs) deposited on poly(dimethylsiloxane) (PDMS) as electrodes of the sensor. The large mismatch stress between gold (Au) and PDMS induces the formation of secondary wrinkles along the pyramidal-structured electrode under pressure; these wrinkles function as protuberances on the electrode and enable exceptional linear sensitivity of 4.2 kPa-1 over a wide pressure range. Additionally, our pressure sensor can maintain its performance even after severe mechanical deformations, including repeated stretching up to 30% strain, due to the outstanding strain tolerance of NC-GF. Our sensor's impressive sensing performance and mechanical robustness make it suitable for diverse IoT applications, as demonstrated by its use in wearable pulse monitoring devices and human-robot interaction systems.
Collapse
Affiliation(s)
- Seong Won Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jeng-Hun Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Hyeon Ju Ko
- Department of Chemistry, University of Ulsan, Ulsan 44610, Korea
| | - Siyoung Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Geun Yeol Bae
- Department of Materials Design Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea
| | - Daegun Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Giwon Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea
| | - Seung Goo Lee
- Department of Chemistry, University of Ulsan, Ulsan 44610, Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
17
|
Lu C, Gao Y, Chan X, Yu W, Wang H, Hu L, Li L. A cross-scale honeycomb architecture-based flexible piezoresistive sensor for multiscale pressure perception and fine-grained identification. MATERIALS HORIZONS 2024; 11:510-518. [PMID: 37975415 DOI: 10.1039/d3mh01387a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Trade-off between sensitivity and the pressure sensing range remains a great challenge for flexible pressure sensors. Micro-nano surface structure-based sensors usually show high sensitivity only in a limited pressure regime, while porous structure-based sensors possess a broad pressure-response range with sensitivity being sacrificed. Here, we report a design strategy based on a cross-scale architecture consisting of a microscale tip and macroscale base, which provides continuous deformation ability over a broad pressure regime (10-4-104 kPa). The cross-scale honeycomb architecture (CHA)-based piezoresistive sensor exhibits an excellent sensitivity over a wide pressure range (0.5 Pa-0.56 kPa: S1 ∼ 27.97 kPa-1; 0.56-20.40 kPa: S2 ∼ 2.30 kPa-1; 20.40-460 kPa: S3 ∼ 0.13 kPa-1). As a result, the CHA-based sensor shows multiscale pressure perception and fine-grained identification ability from 0.5 Pa to 40 MPa. Additionally, the cross-scale architecture will be a general structure to design other types of sensors for highly sensitive pressure perception in a wide pressure range and its unit size from microscale to macroscale is beneficial for large-scale preparation, compared with micro-nano surface structures or internal pores.
Collapse
Affiliation(s)
- Chenxi Lu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, P. R. China.
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yuan Gao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, P. R. China.
| | - Xiaoao Chan
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, P. R. China.
| | - Wei Yu
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, P. R. China
| | - Haifeng Wang
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, P. R. China
| | - Liang Hu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, P. R. China.
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
| | - Lingwei Li
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, P. R. China.
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
18
|
Luo J, Liu F, Yin A, Qi X, Liu J, Ren Z, Zhou S, Wang Y, Ye Y, Ma Q, Zhu J, Li K, Zhang C, Zhao W, Yu S, Wei J. Highly sensitive, wide-pressure and low-frequency characterized pressure sensor based on piezoresistive-piezoelectric coupling effects in porous wood. Carbohydr Polym 2023; 315:120983. [PMID: 37230620 DOI: 10.1016/j.carbpol.2023.120983] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
Lightweight and highly compressible materials have received considerable attention in flexible pressure sensing devices. In this study, a series of porous woods (PWs) are produced by chemical removal of lignin and hemicellulose from natural wood by tuning treatment time from 0 to 15 h and extra oxidation through H2O2. The prepared PWs with apparent densities varying from 95.9 to 46.16 mg/cm3 tend to form a wave-shaped interwoven structure with improved compressibility (up to 91.89 % strain under 100 kPa). The sensor assembled from PW with treatment time of 12 h (PW-12) exhibits the optimal piezoresistive-piezoelectric coupling sensing properties. For the piezoresistive properties, it has high stress sensitivity of 15.14 kPa-1, covering a wide linear working pressure range of 0.06-100 kPa. For its piezoelectric potential, PW-12 shows a sensitivity of 0.443 V·kPa-1 with ultralow frequency detection as low as 0.0028 Hz, and good cyclability over 60,000 cycles under 0.41 Hz. The nature-derived all-wood pressure sensor shows obvious superiority in the flexibility for power supply requirement. More importantly, it presents fully decoupled signals without cross-talks in the dual-sensing functionality. Sensor like this is capable of monitoring various dynamic human motions, making it an extremely promising candidate for the next generation artificial intelligence products.
Collapse
Affiliation(s)
- Jingjing Luo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Feihua Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Ao Yin
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xue Qi
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jiang Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhongqi Ren
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shiqiang Zhou
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yuxin Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yang Ye
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Qingzhi Ma
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Junjun Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Kang Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chen Zhang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Weiwei Zhao
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Suzhu Yu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
19
|
Vu CC, Kim J, Nguyen TH. Health Monitoring System from Pyralux Copper-Clad Laminate Film and Random Forest Algorithm. MICROMACHINES 2023; 14:1726. [PMID: 37763889 PMCID: PMC10537244 DOI: 10.3390/mi14091726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Sensor technologies have been core features for various wearable electronic products for decades. Their functions are expected to continue to play an essential role in future generations of wearable products. For example, trends in industrial, military, and security applications include smartwatches used for monitoring medical indicators, hearing devices with integrated sensor options, and electronic skins. However, many studies have focused on a specific area of the system, such as manufacturing processes, data analysis, or actual testing. This has led to challenges regarding the reliability, accuracy, or connectivity of components in the same wearable system. There is an urgent need for studies that consider the whole system to maximize the efficiency of soft sensors. This study proposes a method to fabricate a resistive pressure sensor with high sensitivity, resilience, and good strain tolerance for recognizing human motion or body signals. Herein, the sensor electrodes are shaped on a thin Pyralux film. A layer of microfiber polyesters, coated with carbon nanotubes, is used as the bearing and pressure sensing layer. Our sensor shows superior capabilities in respiratory monitoring. More specifically, the sensor can work in high-humidity environments, even when immersed in water-this is always a big challenge for conventional sensors. In addition, the embedded random forest model, built for the application to recognize restoration signals with high accuracy (up to 92%), helps to provide a better overview when placing flexible sensors in a practical system.
Collapse
Affiliation(s)
- Chi Cuong Vu
- Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education, 01 Vo Van Ngan Street, Linh Chieu Ward, Ho Chi Minh City 700000, Vietnam;
| | - Jooyong Kim
- Department of Materials Science and Engineering, Soongsil University, Seoul 156-743, Republic of Korea;
| | - Thanh-Hai Nguyen
- Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education, 01 Vo Van Ngan Street, Linh Chieu Ward, Ho Chi Minh City 700000, Vietnam;
| |
Collapse
|
20
|
Qu X, Li J, Han Z, Liang Q, Zhou Z, Xie R, Wang H, Chen S. Highly Sensitive Fiber Pressure Sensors over a Wide Pressure Range Enabled by Resistive-Capacitive Hybrid Response. ACS NANO 2023. [PMID: 37498777 DOI: 10.1021/acsnano.3c03484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Soft capacitive pressure sensors with high performance are becoming increasingly in demand in the emerging flexible wearable field. While capacitive fiber pressure sensors have achieved high sensitivity, their sensitivity range is limited to low-pressure levels. As fiber sensors typically require preloading and fixation, this narrow range of high sensitivity poses a challenge for practical applications. To overcome this limitation, the study proposes resistive-capacitive hybrid response fiber pressure sensors (HFPSs) with three-layer core-sheath structures. The trigger and sensitivity enhancement mechanisms of the hybrid response are determined through model analysis and experimental verification. By adjustment of the sensitivity enhancement range of the hybrid response, the sensitivity attenuation of HFPSs is alleviated significantly. The obtained results demonstrate that HFPSs have excellent characteristics such as fast response, low hysteresis, wide response frequency, small signal drift, and good durability. The hybrid response enhances the practical sensitivity of HFPSs for various applications. With enhanced sensitivity, HFPSs can effectively monitor pulse signals at preloads ranging from 0 to 22.7 kPa. This wide range of preloads improves the fault tolerance of pulse monitoring and expands the potential application scenarios of fiber pressure sensors.
Collapse
Affiliation(s)
- Xiangyang Qu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Jing Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Zhiliang Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Qianqian Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Zhou Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Ruimin Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
21
|
Xiao F, Jin S, Zhang W, Zhang Y, Zhou H, Huang Y. Wearable Pressure Sensor Using Porous Natural Polymer Hydrogel Elastomers with High Sensitivity over a Wide Sensing Range. Polymers (Basel) 2023; 15:2736. [PMID: 37376381 DOI: 10.3390/polym15122736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Wearable pressure sensors capable of quantifying full-range human dynamic motionare are pivotal in wearable electronics and human activity monitoring. Since wearable pressure sensors directly or indirectly contact skin, selecting flexible soft and skin-friendly materials is important. Wearable pressure sensors with natural polymer-based hydrogels are extensively explored to enable safe contact with skin. Despite recent advances, most natural polymer-based hydrogel sensors suffer from low sensitivity at high-pressure ranges. Here, by using commercially available rosin particles as sacrificial templates, a cost-effective wide-range porous locust bean gum-based hydrogel pressure sensor is constructed. Due to the three-dimensional macroporous structure of the hydrogel, the constructed sensor exhibits high sensitivities (12.7, 5.0, and 3.2 kPa-1 under 0.1-20, 20-50, and 50-100 kPa) under a wide range of pressure. The sensor also offers a fast response time (263 ms) and good durability over 500 loading/unloading cycles. In addition, the sensor is successfully applied for monitoring human dynamic motion. This work provides a low-cost and easy fabrication strategy for fabricating high-performance natural polymer-based hydrogel piezoresistive sensors with a wide response range and high sensitivity.
Collapse
Affiliation(s)
- Fan Xiao
- School of Microelectronics Science and Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shunyu Jin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Wan Zhang
- School of Microelectronics Science and Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yingxin Zhang
- School of Microelectronics Science and Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hang Zhou
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuan Huang
- School of Microelectronics Science and Technology, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
22
|
Nan X, Xu Z, Cao X, Hao J, Wang X, Duan Q, Wu G, Hu L, Zhao Y, Yang Z, Gao L. A Review of Epidermal Flexible Pressure Sensing Arrays. BIOSENSORS 2023; 13:656. [PMID: 37367021 DOI: 10.3390/bios13060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
In recent years, flexible pressure sensing arrays applied in medical monitoring, human-machine interaction, and the Internet of Things have received a lot of attention for their excellent performance. Epidermal sensing arrays can enable the sensing of physiological information, pressure, and other information such as haptics, providing new avenues for the development of wearable devices. This paper reviews the recent research progress on epidermal flexible pressure sensing arrays. Firstly, the fantastic performance materials currently used to prepare flexible pressure sensing arrays are outlined in terms of substrate layer, electrode layer, and sensitive layer. In addition, the general fabrication processes of the materials are summarized, including three-dimensional (3D) printing, screen printing, and laser engraving. Subsequently, the electrode layer structures and sensitive layer microstructures used to further improve the performance design of sensing arrays are discussed based on the limitations of the materials. Furthermore, we present recent advances in the application of fantastic-performance epidermal flexible pressure sensing arrays and their integration with back-end circuits. Finally, the potential challenges and development prospects of flexible pressure sensing arrays are discussed in a comprehensive manner.
Collapse
Affiliation(s)
- Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhikuan Xu
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xinxin Cao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Jinjin Hao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xin Wang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Qikai Duan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Guirong Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Liangwei Hu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Yunlong Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China
| | - Zekun Yang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
23
|
Guo WT, Tang XG, Tang Z, Sun QJ. Recent Advances in Polymer Composites for Flexible Pressure Sensors. Polymers (Basel) 2023; 15:polym15092176. [PMID: 37177322 PMCID: PMC10180924 DOI: 10.3390/polym15092176] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Pressure sensors show significant potential applications in health monitoring, bio-sensing, electronic skin, and tactile perception. Consequently, tremendous research interest has been devoted to the development of high-performance pressure sensors. In this paper, recent progress on the polymer composite-based flexible pressure sensor is reviewed. The parameters of pressure sensors, including sensitivity, linear response range, detection limit, response speed, and reliability, are first introduced. Secondly, representative types of pressure sensors and relevant working principles are introduced and discussed. After that, the applications in human physiology monitoring, health monitoring, artificial skin, and self-powered smart system are listed and discussed in detail. Finally, the remaining challenges and outlook of polymer composite-based flexible sensors are summarized at the end of this review paper. This work should have some impact on the development of high-performance flexible pressure sensors.
Collapse
Affiliation(s)
- Wen-Tao Guo
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xin-Gui Tang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenhua Tang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qi-Jun Sun
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|