1
|
Zhang J, Guo Y, Wang S, Li X, Miao Y, Zhou J, Chen W, Liu Z, Gan W. Highly electroconductive and mechanically strong Ti 3C 2T x/cellulose nanofiber composite paper with gradient structure for efficient electromagnetic interference shielding. J Colloid Interface Sci 2025; 689:137216. [PMID: 40054262 DOI: 10.1016/j.jcis.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/07/2025] [Accepted: 03/01/2025] [Indexed: 03/26/2025]
Abstract
The remarkable electrical conductivity of Ti3C2Tx endows it with significant potentiality in electromagnetic interference (EMI) shielding. However, its poor mechanical properties constrain its further application. Presently, the principal approach to improve the mechanical properties of Ti3C2Tx is to introduce a large quantity of flexible polymers, which leads to a sharp decrease in conductivity and thereby impacts EMI shielding performance. Herein, a flexible Ti3C2Tx/cellulose nanofiber composite paper with a gradient structure (GS-TCCP) was fabricated by utilizing the fact that the total resistance is lower than the partial resistance in parallel circuits. The highly conductive thin layers are connected in parallel with the mechanically strong thick layers. This not only maintains the high conductivity but also promotes the enhancement of the mechanical properties. Moreover, the unique interlayer reflection and intralayer absorption mechanisms of the gradient structure also promote the further enhancement of EMI shielding effectiveness (SE). The GS-TCCP (38.33 wt% Ti3C2Tx, thickness of ∼75 μm) not only exhibits a high conductivity of ∼13110 S/m and strong mechanical properties (with a tensile strength of ∼78.2 MPa and a toughness of ∼4.019 MJ/m3), but also has an EMI SE of 46.8 dB in the X-band (8.2-12.4 GHz). In addition, its EMI efficiency reaches up to 99.998%, which is comparable to that of the homogeneous Ti3C2Tx/CNF composite paper with 50 wt% Ti3C2Tx and superior to most of the reported Ti3C2Tx-based thin film composites. The balance among conductivity, EMI shielding performance, and mechanical properties makes it have broad application prospects in fields such as EMI shielding, flexible sensing, and flexible electronic components.
Collapse
Affiliation(s)
- Juncheng Zhang
- Key Laboratory of Bio-Based Material Science & Technology of Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yaqing Guo
- Key Laboratory of Bio-Based Material Science & Technology of Ministry of Education, Northeast Forestry University, Harbin, China
| | - Siyuan Wang
- Key Laboratory of Bio-Based Material Science & Technology of Ministry of Education, Northeast Forestry University, Harbin, China
| | - Xiyue Li
- Key Laboratory of Bio-Based Material Science & Technology of Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yuanyuan Miao
- Key Laboratory of Bio-Based Material Science & Technology of Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jing Zhou
- Key Laboratory of Bio-Based Material Science & Technology of Ministry of Education, Northeast Forestry University, Harbin, China
| | - Wenshuai Chen
- Key Laboratory of Bio-Based Material Science & Technology of Ministry of Education, Northeast Forestry University, Harbin, China
| | - Zhenbo Liu
- Key Laboratory of Bio-Based Material Science & Technology of Ministry of Education, Northeast Forestry University, Harbin, China.
| | - Wentao Gan
- Key Laboratory of Bio-Based Material Science & Technology of Ministry of Education, Northeast Forestry University, Harbin, China.
| |
Collapse
|
2
|
Huang Z, Wei H, Zhang Y, Li X, Hu W, Zhang X, Cui J, Wang Y, Liu J, Wu Y. Magnetic-electric module design and fabrication of high performance electromagnetic interference shielding sandwich structure melamine foam composites with ultra-low reflection. J Colloid Interface Sci 2025; 689:137196. [PMID: 40054259 DOI: 10.1016/j.jcis.2025.02.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/06/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025]
Abstract
The development of an efficient electromagnetic interference (EMI) shielding material that balances the paradoxical relationship between low thickness and ultra-low reflectivity is highly significant for mitigating secondary electromagnetic wave pollution. In this work, a sandwich structure consisting of thermoplastic composite, porous foam, and conductive film was meticulously designed, employing a modular assembly strategy. This design aims to tackle the challenge by optimally leveraging the inherent advantages of each individual layer, thereby enhancing the overall performance and functionality of the structure. The core design features a melamine foam framework impregnated with discontinuous copper/silver nanoparticles and carbonyl iron magnetic nanosheets serving as the middle layer which offers abundant pores and interfaces, contributing to dielectric and magnetic losses for electromagnetic waves. The synergistic effect between the top layer (thermoplastic polyurethane/carbonyl iron), the middle layer and the bottom layer (a conductive polyester fiber@copper@nickel) was investigated in terms of impedance matching and magnetic loss as well as reflective shielding. The composite exhibited a shielding effectiveness of 78.01 dB across the X-band (8.2-12.4 GHz) with a thickness of only 2.26 mm. A low-reflection bandwidth (R < 0.1) of 2.69 GHz was obtained which constitutes 64.04 % of the X-band. Importantly, the composite achieved a remarkably low reflectivity of 0.818 %, corresponding to a reflecting shielding effectiveness (SER) of merely 0.035 dB. A finite element analysis was conducted to elucidate the wave shielding mechanism. This research provides a dependable and straightforward approach for creating EMI composites with low thickness, ultra-low reflection, and robust shielding efficiency.
Collapse
Affiliation(s)
- Zhongxin Huang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 Anhui, China; Key Laboratory of Adv. Funct. Mater. and Devices of Anhui Province, Hefei 230009, China
| | - Haoshan Wei
- School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei 230009 Anhui, China
| | - Yong Zhang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 Anhui, China; Key Laboratory of Adv. Funct. Mater. and Devices of Anhui Province, Hefei 230009, China; Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009 Anhui, China.
| | - Xiao Li
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 Anhui, China; Key Laboratory of Adv. Funct. Mater. and Devices of Anhui Province, Hefei 230009, China
| | - Wenqian Hu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 Anhui, China; Key Laboratory of Adv. Funct. Mater. and Devices of Anhui Province, Hefei 230009, China
| | - Xueru Zhang
- Instrumental Analysis Center, Hefei University of Technology, Hefei 230009, China
| | - Jiewu Cui
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 Anhui, China; Key Laboratory of Adv. Funct. Mater. and Devices of Anhui Province, Hefei 230009, China
| | - Yan Wang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 Anhui, China; Key Laboratory of Adv. Funct. Mater. and Devices of Anhui Province, Hefei 230009, China
| | - Jiaqin Liu
- Key Laboratory of Adv. Funct. Mater. and Devices of Anhui Province, Hefei 230009, China; Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009 Anhui, China
| | - Yucheng Wu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 Anhui, China; Key Laboratory of Adv. Funct. Mater. and Devices of Anhui Province, Hefei 230009, China.
| |
Collapse
|
3
|
Xiong C, Li W, Zhou Y, Zhang W, Zhang H, Chen W, Zheng Y, Lin W, Xing J. Multi-Layered Calcium Silicate Hydrate-Based Composites: A Nacre-Mimetic Design for Ultra-High Toughness. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502306. [PMID: 40364479 DOI: 10.1002/smll.202502306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/27/2025] [Indexed: 05/15/2025]
Abstract
Cement-based materials are the most extensively utilized artificial material in the world. The low toughness of cementitious materials has long been a significant constraint in the development of modern concrete, limiting its performance in critical infrastructure applications. As the primary hydration product, calcium silicate hydrate (C-S-H) determines the mechanical properties of cementitious materials, in which optimizing C-S-H presents a promising avenue for toughness enhancement. In this work, a nacre-mimetic design strategy is employed to develop a high toughness C-S-H composite, achieved by the arrangement of inorganic C-S-H "brick" alternated with polyvinyl alcohol (PVA) "mortar". The unique hierarchically soft/hard structure significantly improved the mechanical properties of C-S-H composite, showcasing a substantial improvement on tensile strength, ductility and toughness by 1-2 orders of magnitude compared with fiber/polymer reinforced cementitious composites, especially reaching ultra-high toughness (20.01±3.64 MJ m-3), which outperforms nacre by a factor of over ten and exhibits the highest performance among reported C-S-H-based materials. The nacre-mimetic C-S-H composite displayed exquisite interface and toughening mechanism revealed by density functional theory (DFT), molecular dynamics (MD), and finite element method (FEM) simulations. These findings provide a prospect for toughening cement-based materials, and broaden the potential applications in advanced functional composite systems.
Collapse
Affiliation(s)
- Chenchen Xiong
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
- State Key Laboratory of Engineering Materials for Major Infrastructure, Southeast University, Nanjing, 211189, China
| | - Weihuan Li
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
- State Key Laboratory of Engineering Materials for Major Infrastructure, Southeast University, Nanjing, 211189, China
| | - Yang Zhou
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
- State Key Laboratory of Engineering Materials for Major Infrastructure, Southeast University, Nanjing, 211189, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Hao Zhang
- State Key Laboratory of Engineering Materials for Major Infrastructure, Southeast University, Nanjing, 211189, China
| | - Wentao Chen
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
- State Key Laboratory of Engineering Materials for Major Infrastructure, Southeast University, Nanjing, 211189, China
| | - Yangzezhi Zheng
- School of Transportation, Southeast University, Nanjing, 211189, China
| | - Wei Lin
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
- State Key Laboratory of Engineering Materials for Major Infrastructure, Southeast University, Nanjing, 211189, China
| | - Jiarui Xing
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
- State Key Laboratory of Engineering Materials for Major Infrastructure, Southeast University, Nanjing, 211189, China
| |
Collapse
|
4
|
Huang S, Xiang G, Mochalin VN. Formation of hydrocarbons and carbon oxides in MXene reactions with water under varying oxidative conditions. NANOSCALE 2025; 17:9937-9946. [PMID: 40029167 DOI: 10.1039/d4nr04937c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Titanium carbide/carbonitride MXenes have garnered significant attention due to their remarkable properties, versatile solution processability, and broad range of potential applications. However, when exposed to the environment, MXenes are susceptible to degradation, which ultimately leads to the formation of metal oxides, a process that may be regarded as either disadvantageous or beneficial, depending on the application of a MXene and our knowledge about the underlying mechanisms. Therefore, it is very important to understand the reactivity of MXenes in different environments and conditions. Although researchers have made efforts to understand MXene degradation in air and water, our knowledge of the involved processes and even products of degradation remains incomplete. Here, we study the degradation of MXenes (Ti2CTx, Ti3C2Tx, and Ti3CNTx) under various oxidative conditions, in the presence of hydrogen peroxide, oxygen, ambient air, and argon. Gaseous products of MXene degradation in an aqueous environment were examined using gas chromatography (GC) equipped with a thermal conductivity detector (TCD) and a flame ionization detector (FID) working in series. In addition to methane and carbon dioxide, gaseous products including higher hydrocarbons were identified and analyzed. This research further deepens our understanding of the fundamental chemistry of MXenes.
Collapse
Affiliation(s)
- Shuohan Huang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Guanglei Xiang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Vadym N Mochalin
- Department of Chemistry, Missouri University of Science & Technology, Rolla, MO 65409, USA.
- Department of Materials Science & Engineering, Missouri University of Science & Technology, Rolla, MO 65409, USA
| |
Collapse
|
5
|
Wang R, Ju L, Meng X, Yu B, Chen H, Li S, Fu W, Jiang J, Sun Y, Lu W, Dai Y. Building Thermal-Conduction Nanochannels in Composite Electromagnetic Interference Shielding Film for Electromagnetic Heat Management. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23050-23061. [PMID: 40183772 DOI: 10.1021/acsami.4c22083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
In the 6G era, miniaturized and highly integrated wearable communications devices require electromagnetic materials with efficient thermal-management capability to mitigate electromagnetic interference (EMI) and heat accumulation. Herein, we present a facile strategy for conducting electromagnetic heat by constructing directional thermal-conduction nanochannels within a layer-by-layer EMI shielding film. This composite film consists of polyacrylonitrile/boron nitride nanosheets@polydopamine nanofibers covered with an EMI layer based on MXene sheets. Compared with traditional materials in which the heat dissipates randomly, the one-dimensional fibrous structure can offer a directional heat dissipation pathway. Under high-power microwave irradiation, it exhibits significantly lower temperatures, ensuring robust and durable communication performance without overheating. The thin film (0.43 mm thickness) achieves an impressive specific surface shielding efficiency of 29,400 dB·cm2·g-1 at 18-24 GHz, with an EMI shielding effectiveness (SE) of 88 dB for its layer-by-layer structure counterpart. In addition, the flexible film maintains a high EMI SE after 10,000 bending times. Its lightweight, flexible, and thin design makes it suitable for robust applications in various environments. This EMI shielding and thermally conductive film provides rapid heat dissipation and effective signal shielding for wearable communication systems, showcasing the great potential for efficient thermal management in next-generation communication technologies.
Collapse
Affiliation(s)
- Rui Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
- Purple Mountain Laboratories, Nanjing 211111, P. R. China
| | - Lu Ju
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, P. R. China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 210096, P. R. China
- Purple Mountain Laboratories, Nanjing 211111, P. R. China
| | - Xiangyu Meng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Buyun Yu
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, P. R. China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 210096, P. R. China
| | - Hao Chen
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, P. R. China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 210096, P. R. China
| | - Shujing Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Wanlin Fu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jingyi Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yueming Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Weibing Lu
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, P. R. China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 210096, P. R. China
- Purple Mountain Laboratories, Nanjing 211111, P. R. China
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
- Purple Mountain Laboratories, Nanjing 211111, P. R. China
| |
Collapse
|
6
|
Feng H, Zhao X, Qian W, Wang Z, Chen P, Tian C, Li BW, He D. Pressure-Assisted Anisotropy in Carbon Nanofiber Films for Smart Electromagnetic Interference Shielding and Joule Heating. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408366. [PMID: 40051174 DOI: 10.1002/smll.202408366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/14/2025] [Indexed: 04/25/2025]
Abstract
Intelligent electromagnetic interference (EMI) shielding materials with adjustable properties and performances are garnering significant attention due to the escalating complexity of application scenarios for electronic devices. Also, the trend of miniaturization is calling for lightweight and multifunctional materials. Here, the preparation of highly aligned carbon nanofiber film (a-CNFF) by electrospinning technology and a two-stage carbonization process is proposed, in which the pressurization strategy in the carbonization process promotes the development of highly aligned fiber network structures. The serialized anisotropic structures exhibit an impressive tunability in EMI shielding effectiveness (SE) adjustable from 23.0 to 35.6 dB for linearly polarized electromagnetic waves, and a superior specific SE value (SSE/t) of 34 000 dB cm2 g-1, with an EMI SE per unit thickness of 5791 dB cm-1. Moreover, under a low load voltage of 1.6 V, the peak temperature of the film can be tuned within a wide range of 49.2-120.6 °C. These remarkable performances achieved by simply rotating the film demonstrate adjustable functionalities of the a-CNFF, providing guidelines in the applications of aerospace, military, microelectronics, and wearable devices.
Collapse
Affiliation(s)
- Hao Feng
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xin Zhao
- Hubei Engineering Research Center of Radio Frequency Microwave Technology and Application, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wei Qian
- Hubei Engineering Research Center of Radio Frequency Microwave Technology and Application, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zhe Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Pengfei Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Chao Tian
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Bao-Wen Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Daping He
- Hubei Engineering Research Center of Radio Frequency Microwave Technology and Application, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
7
|
Shao R, Wang G, Chai J, Lin J, Zhao G, Zeng Z, Wang G. Multifunctional Janus-Structured Polytetrafluoroethylene-Carbon Nanotube-Fe 3O 4/MXene Membranes for Enhanced EMI Shielding and Thermal Management. NANO-MICRO LETTERS 2025; 17:136. [PMID: 39912994 PMCID: PMC11802968 DOI: 10.1007/s40820-025-01647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/29/2024] [Indexed: 02/07/2025]
Abstract
Herein, a novel Janus-structured multifunctional membrane with integrated electromagnetic interference (EMI) shielding and personalized thermal management is fabricated using shear-induced in situ fibrillation and vacuum-assisted filtration. Interestingly, within the polytetrafluoroethylene (PTFE)-carbon nanotube (CNT)-Fe3O4 layer (FCFe), CNT nanofibers interweave with PTFE fibers to form a stable "silk-like" structure that effectively captures Fe3O4 particles. By incorporating a highly conductive MXene layer, the FCFe/MXene (FCFe/M) membrane exhibits excellent electrical/thermal conductivity, mechanical properties, and flame retardancy. Impressively, benefiting from the rational regulation of component proportions and the design of a Janus structure, the FCFe/M membrane with a thickness of only 84.9 µm delivers outstanding EMI shielding effectiveness of 44.56 dB in the X-band, with a normalized specific SE reaching 10,421.3 dB cm2 g-1, which is attributed to the "absorption-reflection-reabsorption" mechanism. Furthermore, the membrane demonstrates low-voltage-driven Joule heating and fast-response photothermal performance. Under the stimulation of a 3 V voltage and an optical power density of 320 mW cm-2, the surface temperatures of the FCFe/M membranes can reach up to 140.4 and 145.7 °C, respectively. In brief, the FCFe/M membrane with anti-electromagnetic radiation and temperature regulation is an attractive candidate for the next generation of wearable electronics, EMI compatibility, visual heating, thermotherapy, and military and aerospace applications.
Collapse
Affiliation(s)
- Runze Shao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, People's Republic of China
| | - Guilong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, People's Republic of China.
| | - Jialong Chai
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, People's Republic of China
| | - Jun Lin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, People's Republic of China
| | - Guoqun Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, People's Republic of China
| | - Zhihui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, People's Republic of China
| | - Guizhen Wang
- Center for Advanced Studies in Precision Instruments, Hainan University, Haikou, 570228, People's Republic of China
| |
Collapse
|
8
|
Chu G, Nie Z, Peng Y, Xu H, Yang X, Guo X, Jiang M, Dong F, Guo Z, Qi S, Zhang J. Spin-coating ANF based multilayer symmetric composite films for enhanced electromagnetic interference shielding and thermal management. J Colloid Interface Sci 2025; 679:521-530. [PMID: 39378687 DOI: 10.1016/j.jcis.2024.09.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
The demand for flexible composite films with electromagnetic interference (EMI) shielding capabilities is rapidly increasing. Balancing high EMI performance with flexibility and portability has become a critical research focus in practical applications. In this study, an optimized strategy for aramid nanofibers (ANF) films was developed using spin-coating and sol-gel techniques. The resulting film features a smooth surface and excellent mechanical properties. ANF, initially an insulator, was transformed into a conductor through the in-situ polymerization of ion-doped polypyrrole (PPy). Leveraging a multilayer structural strategy, we prepared a symmetric composite film, ANF@PPy-(TA-MXene)-AgNWs-(TA-MXene)-ANF@PPy (PMA), using vacuum-assisted filtration and lamination hot pressing. This film, composed of ANF@PPy (PA) as the matrix, tannic acid (TA) modified MXene, and silver nanowires (AgNWs) as fillers, exhibited multiple shielding mechanisms as electromagnetic wave (EMW) passed through its various layers. This multilayer configuration provides significant flexibility in EMW shielding. Moreover, TA-modified MXene expands the lamellar spacing, enhancing the scattering efficiency of EMWs within the film, and serves as a medium connecting the upper and lower layers. This results in the efficient integration of the multilayer structure, synergistically improving both EMI shielding performance and mechanical properties. When the ratio of PA/MXene/AgNWs was 1:3:1, the film demonstrated optimal properties, including an EMI shielding effectiveness of 70.2 dB, thermal conductivity of 4.62 W/(m•K), and tensile strength of 50.2 MPa. Due to the exceptional EMI shielding and thermal properties of the PMA composite film, it holds great potential for applications in artificial intelligence, wearable heaters, and military equipment.
Collapse
Affiliation(s)
- Guiyu Chu
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Zhuguang Nie
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yanmeng Peng
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Huanyu Xu
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Xiaonan Yang
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Xiaoli Guo
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Mingyu Jiang
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Fanghong Dong
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Zilu Guo
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Shuhua Qi
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Junping Zhang
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
9
|
Hu X, Fan Q, Wang S, Chen Y, Wang D, Chen K, Ge F, Zhou W, Liang K. Two-Dimensional MXenes: Innovative Materials for Efficient Thermal Management and Safety Solutions. RESEARCH (WASHINGTON, D.C.) 2024; 7:0542. [PMID: 39703779 PMCID: PMC11658421 DOI: 10.34133/research.0542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024]
Abstract
MXenes, a class of 2-dimensional transition metal carbides and nitrides, have garnered important attention due to their remarkable electrical and thermal conductivity, high photothermal conversion efficiency, and multifunctionality. This review explores the potential of MXene materials in various thermal applications, including thermal energy storage, heat dissipation in electronic devices, and the mitigation of electromagnetic interference in wearable technologies. Recent advancements in MXene composites, such as MXene/bacterial cellulose aerogel films and MXene/polymer composites, have demonstrated enhanced performance in phase change thermal storage and electromagnetic interference shielding, underscoring their versatility and effectiveness. Although notable progress has been made, challenges remain, including the need for a deeper understanding of photothermal conversion mechanisms, improvements in mechanical properties, exploration of diverse MXene types, and the development of sustainable synthesis methods. This paper discusses these aspects and outlines future research directions, emphasizing the growing importance of MXenes in addressing energy efficiency, health, and safety concerns in modern applications.
Collapse
Affiliation(s)
- XiaoYan Hu
- School of Materials Science and Chemical Engineering,
Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
| | - Qi Fan
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shengchao Wang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanxin Chen
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Degao Wang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Advanced Interdisciplinary Sciences Research (AIR) Center, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Ke Chen
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
- Qianwan Institute of CNITECH, Ningbo 315336, P. R. China
| | - Fangfang Ge
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
- Qianwan Institute of CNITECH, Ningbo 315336, P. R. China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences,
Central South University, Changsha 410013, P. R. China
| | - Kun Liang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 35201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Xiong J, Zhao X, Liu Z, Chen H, Yan Q, Lian H, Chen Y, Peng Q, He X. Multifunctional Nacre-Like Nanocomposite Papers for Electromagnetic Interference Shielding via Heterocyclic Aramid/MXene Template-Assisted In-Situ Polypyrrole Assembly. NANO-MICRO LETTERS 2024; 17:53. [PMID: 39480629 PMCID: PMC11528091 DOI: 10.1007/s40820-024-01552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/29/2024] [Indexed: 11/02/2024]
Abstract
Robust, ultra-flexible, and multifunctional MXene-based electromagnetic interference (EMI) shielding nanocomposite films exhibit enormous potential for applications in artificial intelligence, wireless telecommunication, and portable/wearable electronic equipment. In this work, a nacre-inspired multifunctional heterocyclic aramid (HA)/MXene@polypyrrole (PPy) (HMP) nanocomposite paper with large-scale, high strength, super toughness, and excellent tolerance to complex conditions is fabricated through the strategy of HA/MXene hydrogel template-assisted in-situ assembly of PPy. Benefiting from the "brick-and-mortar" layered structure and the strong hydrogen-bonding interactions among MXene, HA, and PPy, the paper exhibits remarkable mechanical performances, including high tensile strength (309.7 MPa), outstanding toughness (57.6 MJ m-3), exceptional foldability, and structural stability against ultrasonication. By using the template effect of HA/MXene to guide the assembly of conductive polymers, the synthesized paper obtains excellent electronic conductivity. More importantly, the highly continuous conductive path enables the nanocomposite paper to achieve a splendid EMI shielding effectiveness (EMI SE) of 54.1 dB at an ultra-thin thickness (25.4 μm) and a high specific EMI SE of 17,204.7 dB cm2 g-1. In addition, the papers also have excellent applications in electromagnetic protection, electro-/photothermal de-icing, thermal therapy, and fire safety. These findings broaden the ideas for developing high-performance and multifunctional MXene-based films with enormous application potential in EMI shielding and thermal management.
Collapse
Affiliation(s)
- Jinhua Xiong
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Xu Zhao
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China.
| | - Zonglin Liu
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - He Chen
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Qian Yan
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Huanxin Lian
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Yunxiang Chen
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Qingyu Peng
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China.
| | - Xiaodong He
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| |
Collapse
|
11
|
Wang J, Ming W, Chen L, Song T, Yele M, Zhang H, Yang L, Sarula G, Liang B, Yan L, Wang G. MoS 2 Lubricate-Toughened MXene/ANF Composites for Multifunctional Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2024; 17:36. [PMID: 39392512 PMCID: PMC11469983 DOI: 10.1007/s40820-024-01496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/05/2024] [Indexed: 10/12/2024]
Abstract
The design and fabrication of high toughness electromagnetic interference (EMI) shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem. Ternary MXene/ANF (aramid nanofibers)-MoS2 composite films with nacre-like layered structure here are fabricated after the introduction of MoS2 into binary MXene/ANF composite system. The introduction of MoS2 fulfills an impressive "kill three birds with one stone" improvement effect: lubrication toughening mechanical performance, reduction in secondary reflection pollution of electromagnetic wave, and improvement in the performance of photothermal conversion. After the introduction of MoS2 into binary MXene/ANF (mass ratio of 50:50), the strain to failure and tensile strength increase from 22.1 ± 1.7% and 105.7 ± 6.4 MPa and to 25.8 ± 0.7% and 167.3 ± 9.1 MPa, respectively. The toughness elevates from 13.0 ± 4.1 to 26.3 ± 0.8 MJ m-3 (~ 102.3%) simultaneously. And the reflection shielding effectiveness (SER) of MXene/ANF (mass ratio of 50:50) decreases ~ 10.8%. EMI shielding effectiveness (EMI SE) elevates to 41.0 dB (8.2-12.4 GHz); After the introduction of MoS2 into binary MXene/ANF (mass ratio of 60:40), the strain to failure increases from 18.3 ± 1.9% to 28.1 ± 0.7% (~ 53.5%), the SER decreases ~ 22.2%, and the corresponding EMI SE is 43.9 dB. The MoS2 also leads to a more efficient photothermal conversion performance (~ 45 to ~ 55 °C). Additionally, MXene/ANF-MoS2 composite films exhibit excellent electric heating performance, quick temperature elevation (15 s), excellent cycle stability (2, 2.5, and 3 V), and long-term stability (2520 s). Combining with excellent mechanical performance with high MXene content, electric heating performance, and photothermal conversion performance, EMI shielding ternary MXene/ANF-MoS2 composite films could be applied in many industrial areas. This work broadens how to achieve a balance between mechanical properties and versatility of composites in the case of high-function fillers.
Collapse
Affiliation(s)
- Jiaen Wang
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Wei Ming
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Longfu Chen
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Tianliang Song
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Moxi Yele
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Hao Zhang
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Long Yang
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Gegen Sarula
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Benliang Liang
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Luting Yan
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Guangsheng Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
12
|
Sun Y, Su Y, Chai Z, Jiang L, Heng L. Flexible solid-liquid bi-continuous electrically and thermally conductive nanocomposite for electromagnetic interference shielding and heat dissipation. Nat Commun 2024; 15:7290. [PMID: 39242567 PMCID: PMC11379691 DOI: 10.1038/s41467-024-51732-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/14/2024] [Indexed: 09/09/2024] Open
Abstract
In the era of 5 G, the rise in power density in miniaturized, flexible electronic devices has created an urgent need for thin, flexible, polymer-based electrically and thermally conductive nanocomposites to address challenges related to electromagnetic interference (EMI) and heat accumulation. However, the difficulties in establishing enduring and continuous transfer pathways for electrons and phonons using solid-rigid conductive fillers within insulative polymer matrices limit the development of such nanocomposites. Herein, we incorporate MXene-bridging-liquid metal (MBLM) solid-liquid bi-continuous electrical-thermal conductive networks within aramid nanofiber/polyvinyl alcohol (AP) matrices, resulting in the AP/MBLM nanocomposite with ultra-high electrical conductivity (3984 S/cm) and distinguished thermal conductivity of 13.17 W m-1 K-1. This nanocomposite exhibits excellent EMI shielding efficiency (SE) of 74.6 dB at a minimal thickness of 22 μm, and maintains high EMI shielding stability after enduring various harsh conditions. Meanwhile, the AP/MBLM nanocomposite also demonstrates promising heat dissipation behavior. This work expands the concept of creating thin films with high electrical and thermal conductivity.
Collapse
Affiliation(s)
- Yue Sun
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, PR China
| | - Yunting Su
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, PR China
| | - Ziyuan Chai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, PR China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, PR China
| | - Liping Heng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, PR China.
| |
Collapse
|
13
|
Dong J, Lin J, Zhang H, Wang J, Li Y, Pan K, Zhang H, Hu D. Nacre-like Anisotropic Multifunctional Aramid Nanofiber Composites for Electromagnetic Interference Shielding, Thermal Management, and Strain Sensing. Molecules 2024; 29:4000. [PMID: 39274848 PMCID: PMC11396044 DOI: 10.3390/molecules29174000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Developing multifunctional flexible composites with high-performance electromagnetic interference (EMI) shielding, thermal management, and sensing capacity is urgently required but challenging for next-generation smart electronic devices. Herein, novel nacre-like aramid nanofibers (ANFs)-based composite films with an anisotropic layered microstructure were prepared via vacuum-assisted filtration and hot-pressing. The formed 3D conductive skeleton enabled fast electron and phonon transport pathways in the composite films. As a result, the composite films showed a high electrical conductivity of 71.53 S/cm and an outstanding thermal conductivity of 6.4 W/m·K when the mass ratio of ANFs to MXene/AgNWs was 10:8. The excellent electrical properties and multi-layered structure endowed the composite films with superior EMI shielding performance and remarkable Joule heating performance, with a surface temperature of 78.3 °C at a voltage of 2.5 V. Additionally, it was found that the composite films also exhibited excellent mechanical properties and outstanding flame resistance. Moreover, the composite films could be further designed as strain sensors, which show great promise in monitoring real-time signals for human motion. These satisfactory results may open up a new opportunity for EMI shielding, thermal management, and sensing applications in wearable electronic devices.
Collapse
Affiliation(s)
- Jin Dong
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Jing Lin
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Hebai Zhang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Jun Wang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Ye Li
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Kelin Pan
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Haichen Zhang
- School of Materials and Energy, Foshan University, Foshan 528000, China
| | - Dechao Hu
- School of Materials and Energy, Foshan University, Foshan 528000, China
| |
Collapse
|
14
|
Liu C, Jiang C, Shen Y, Zhou B, Liu C, Feng Y. Ultrafine Aramid Nanofiber-Assisted Large-Area Dense Stacking of MXene Films for Electromagnetic Interference Shielding and Multisource Thermal Conversion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38620-38630. [PMID: 38982840 DOI: 10.1021/acsami.4c09426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Polymers are often used as adhesives to improve the mechanical properties of flexible electromagnetic interference (EMI) shielding layered films, but the introduction of these insulating adhesives inevitably reduces the EMI performance. Herein, ultrafine aramid nanofibers (UANF) with a diameter of only 2.44 nm were used as the binder to effectively infiltrate and minimize the insulating gaps in MXene films, for balancing the EMI shielding and mechanical properties. Combining the evaporation-induced scalable assembly assisted by blade coating, flexible large-scale MXene/UANF films with highly aligned and compact MXene stacking are successfully fabricated. Compared with the conventional ANF with a larger diameter of 7.05 nm, the UANF-reinforced MXene film exhibits a "brick-mortar" structure with higher orientation and compacter stacking MXene nanosheets, thus showing the higher mechanical properties, electrical conductivity, and EMI shielding performance. By optimizing MXene content, the MXene/UANF film can achieve the optimal tensile strength of 156.9 MPa, a toughness of 2.9 MJ m-3, satisfactory EMI shielding effectiveness (EMI SE) of 40.7 dB, and specific EMI SE (SSE/t) of 22782.4 dB cm2/g). Moreover, the composite film exhibits multisource thermal conversion functions including Joule heating and photothermal conversion. Therefore, the multifunctional MXene/UANF EMI shielding film with flexibility, foldability, and robust mechanical properties shows the practical potential in complex application environments.
Collapse
Affiliation(s)
- Congqi Liu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Changlong Jiang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Yong Shen
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Bing Zhou
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Chuntai Liu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Yuezhan Feng
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| |
Collapse
|
15
|
Li W, Zhou T, Zhang Z, Li L, Lian W, Wang Y, Lu J, Yan J, Wang H, Wei L, Cheng Q. Ultrastrong MXene film induced by sequential bridging with liquid metal. Science 2024; 385:62-68. [PMID: 38963844 DOI: 10.1126/science.ado4257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Assembling titanium carbide (Ti3C2Tx) MXene nanosheets into macroscopic films presents challenges, including voids, low orientation degree, and weak interfacial interactions, which reduce mechanical performance. We demonstrate an ultrastrong macroscopic MXene film using liquid metal (LM) and bacterial cellulose (BC) to sequentially bridge MXene nanosheets (an LBM film), achieving a tensile strength of 908.4 megapascals. A layer-by-layer approach using repeated cycles of blade coating improves the orientation degree to 0.935 in the LBM film, while a LM with good deformability reduces voids into porosity of 5.4%. The interfacial interactions are enhanced by the hydrogen bonding from BC and the coordination bonding with LM, which improves the stress-transfer efficiency. Sequential bridging provides an avenue for assembling other two-dimensional nanosheets into high-performance materials.
Collapse
Affiliation(s)
- Wei Li
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Tianzhu Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Zejun Zhang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Lei Li
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Wangwei Lian
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Yanlei Wang
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Junfeng Lu
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Jia Yan
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Huagao Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
16
|
Shao B, Chen X, Chen X, Peng S, Song M. Advancements in MXene Composite Materials for Wearable Sensors: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:4092. [PMID: 39000870 PMCID: PMC11244375 DOI: 10.3390/s24134092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
In recent years, advancements in the Internet of Things (IoT), manufacturing processes, and material synthesis technologies have positioned flexible sensors as critical components in wearable devices. These developments are propelling wearable technologies based on flexible sensors towards higher intelligence, convenience, superior performance, and biocompatibility. Recently, two-dimensional nanomaterials known as MXenes have garnered extensive attention due to their excellent mechanical properties, outstanding electrical conductivity, large specific surface area, and abundant surface functional groups. These notable attributes confer significant potential on MXenes for applications in strain sensing, pressure measurement, gas detection, etc. Furthermore, polymer substrates such as polydimethylsiloxane (PDMS), polyurethane (PU), and thermoplastic polyurethane (TPU) are extensively utilized as support materials for MXene and its composites due to their light weight, flexibility, and ease of processing, thereby enhancing the overall performance and wearability of the sensors. This paper reviews the latest advancements in MXene and its composites within the domains of strain sensors, pressure sensors, and gas sensors. We present numerous recent case studies of MXene composite material-based wearable sensors and discuss the optimization of materials and structures for MXene composite material-based wearable sensors, offering strategies and methods to enhance the development of MXene composite material-based wearable sensors. Finally, we summarize the current progress of MXene wearable sensors and project future trends and analyses.
Collapse
Affiliation(s)
- Bingqian Shao
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (X.C.); (X.C.); (S.P.)
| | - Xiaotong Chen
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (X.C.); (X.C.); (S.P.)
| | - Xingwei Chen
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (X.C.); (X.C.); (S.P.)
| | - Shuzhe Peng
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (X.C.); (X.C.); (S.P.)
| | - Mingxin Song
- School of Electronic Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
17
|
Li L, Yan Y, Liang J, Zhao J, Lyu C, Zhai H, Wu X, Wang G. Wearable EMI Shielding Composite Films with Integrated Optimization of Electrical Safety, Biosafety and Thermal Safety. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400887. [PMID: 38639384 DOI: 10.1002/advs.202400887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Biomaterial-based flexible electromagnetic interference (EMI) shielding composite films are desirable in many applications of wearable electronic devices. However, much research focuses on improving the EMI shielding performance of materials, while optimizing the comprehensive safety of wearable EMI shielding materials has been neglected. Herein, wearable cellulose nanofiber@boron nitride nanosheet/silver nanowire/bacterial cellulose (CNF@BNNS/AgNW/BC) EMI shielding composite films with sandwich structure are fabricated via a simple sequential vacuum filtration method. For the first time, the electrical safety, biosafety, and thermal safety of EMI shielding materials are optimized integratedly. Since both sides of the sandwich structure contain CNF and BC electrical insulation layers, the CNF@BNNS/AgNW/BC composite films exhibit excellent electrical safety. Furthermore, benefiting from the AgNW conductive networks in the middle layer, the CNF@BNNS/AgNW/BC exhibit excellent EMI shielding effectiveness of 49.95 dB and ultra-fast response Joule heating performance. More importantly, the antibacterial property of AgNW ensures the biosafety of the composite films. Meanwhile, the AgNW and the CNF@BNNS layers synergistically enhance the thermal conductivity of the CNF@BNNS/AgNW/BC composite film, reaching a high value of 8.85 W m‒1 K‒1, which significantly enhances its thermal safety when used in miniaturized electronic device. This work offers new ideas for fabricating biomaterial-based EMI shielding composite films with high comprehensive safety.
Collapse
Affiliation(s)
- Liang Li
- Center for Advanced Studies in Precision Instruments, Center for New Pharmaceutical Development and Testing of Haikou, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Material Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Yongzhu Yan
- Center for Advanced Studies in Precision Instruments, Center for New Pharmaceutical Development and Testing of Haikou, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Material Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Jufu Liang
- Center for Advanced Studies in Precision Instruments, Center for New Pharmaceutical Development and Testing of Haikou, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Material Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Jinchuan Zhao
- Center for Advanced Studies in Precision Instruments, Center for New Pharmaceutical Development and Testing of Haikou, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Material Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Chaoyi Lyu
- School of Biomedical Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
| | - Haoxiang Zhai
- Center for Advanced Studies in Precision Instruments, Center for New Pharmaceutical Development and Testing of Haikou, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Material Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Xilong Wu
- School of Biomedical Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
| | - Guizhen Wang
- Center for Advanced Studies in Precision Instruments, Center for New Pharmaceutical Development and Testing of Haikou, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Material Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
18
|
Peng S, Liu C, Tan J, Zhang P, Zou J, Wang Y, Ma Y, Zhang X, Nan CW, Li BW. Direct Ink Writing of Low-Concentration MXene/Aramid Nanofiber Inks for Tunable Electromagnetic Shielding and Infrared Anticounterfeiting Applications. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38693723 DOI: 10.1021/acsami.4c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
MXene inks offer a promising avenue for the scalable production and customization of printing electronics. However, simultaneously achieving a low solid content and printability of MXene inks, as well as mechanical flexibility and environmental stability of printed objects, remains a challenge. In this study, we overcame these challenges by employing high-viscosity aramid nanofibers (ANFs) to optimize the rheology of low-concentration MXene inks. The abundant entangled networks and hydrogen bonds formed between MXene and ANF significantly increase the viscosity and yield stress up to 103 Pa·s and 200 Pa, respectively. This optimization allows the use of MXene/ANF (MA) inks at low concentrations in direct ink writing and other high-viscosity processing techniques. The printable MXene/ANF inks with a high conductivity of 883.5 S/cm were used to print shields with customized structures, achieving a tunable electromagnetic interference shielding effectiveness (EMI SE) in the 0.2-48.2 dB range. Furthermore, the MA inks exhibited adjustable infrared (IR) emissivity by changing the ANF ratio combined with printing design, demonstrating the application for infrared anticounterfeiting. Notably, the printed MXene/ANF objects possess outstanding mechanical flexibility and environmental stability, which are attributed to the reinforcement and protection of ANF. Therefore, these findings have significant practical implications as versatile MXene/ANF inks can be used for customizable, scalable, and cost-effective production of flexible printed electronics.
Collapse
Affiliation(s)
- Shaohui Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chenxu Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Junhui Tan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Pengxiang Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Junjie Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yunfan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yanan Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xin Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Ce-Wen Nan
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Bao-Wen Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
19
|
Yang Y, Shao L, Wang J, Ji Z, Zhang T, Wu M, He Y, Wang C, Ma J. An Asymmetric Layer Structure Enables Robust Multifunctional Wearable Bacterial Cellulose Composite Film with Excellent Electrothermal/Photothermal and EMI Shielding Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308514. [PMID: 38098438 DOI: 10.1002/smll.202308514] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/15/2023] [Indexed: 05/30/2024]
Abstract
Highly robust flexible multifunctional film with excellent electromagnetic interference shielding and electrothermal/photothermal characteristics are highly desirable for aerospace, military, and wearable devices. Herein, an asymmetric gradient multilayer structured bacterial cellulose@Fe3O4/carbon nanotube/Ti3C2Tx (BC@Fe3O4/CNT/Ti3C2Tx) multifunctional composite film is fabricated with simultaneously demonstrating fast Joule response, excellent EMI shielding effectiveness (EMI SE) and photothermal conversion properties. The asymmetric gradient 6-layer composite film with 40% of Ti3C2Tx possesses excellent mechanical performance with exceptional tensile strength (76.1 MPa), large strain (14.7%), and good flexibility. This is attributed to the asymmetric gradient multilayer structure designed based on the hydrogen bonding self-assembly strategy between Ti3C2Tx and BC. It achieved an EMI SE of up to 71.3 dB, which is attributed to the gradient "absorption-reflection-reabsorption" mechanism. Furthermore, this composite film also exhibits excellent low-voltage-driven Joule heating (up to 80.3 °C at 2.5 V within 15 s) and fast-response photothermal performance (up to 101.5 °C at 1.0 W cm-2 within 10 s), which is attributed to the synergistic effect of heterostructure. This work demonstrates the fabrication of multifunctional bacterial cellulose@Fe3O4/carbon nanotube/Ti3C2Tx composite film has promising potentials for next-generation wearable electronic devices in energy conversion, aerospace, and artificial intelligence.
Collapse
Affiliation(s)
- Yanlong Yang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Liang Shao
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Jie Wang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Zhanyou Ji
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Tao Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Mingjie Wu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Yingkun He
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Caiyun Wang
- Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Innovation Campus, North Wollongong, NSW, 2500, Australia
| | - Jianzhong Ma
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
20
|
Du C, Zhang H, Liu X, Zhou S, Ma Y, Li S, Zhang Y. Flexible and Simply Degradable MXene-Methylcellulose Piezoresistive Sensor for Human Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12996-13005. [PMID: 38422506 DOI: 10.1021/acsami.3c16125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Flexible pressure sensors are intensively demanded in various fields such as electronic skin, medical and health detection, wearable electronics, etc. MXene is considered an excellent sensing material due to its benign metal conductivity and adjustable interlayer distance. Exhibiting both high sensitivity and long-term stability is currently an urgent pursuit in MXene-based flexible pressure sensors. In this work, high-strength methylcellulose was introduced into the MXene film to increase the interlayer distance of 2D nanosheets and fundamentally overcome the self-stacking problem. Thus, concurrent improvement of the sensing capability and mechanical strength was obtained. By appropriately modulating the ratio of methylcellulose and MXene, the obtained pressure sensor presents a high sensitivity of 19.41 kPa-1 (0.88-24.09 kPa), good stability (10000 cycles), and complete biodegradation in H2O2 solution within 2 days. Besides, the sensor is capable of detecting a wide range of human activities (pulse, gesture, joint movement, etc.) and can precisely recognize spatial pressure distribution, which serves as a good candidate for next-generation wearable electronic devices.
Collapse
Affiliation(s)
- Changzhou Du
- State Key Laboratory of Silicate Materials for Architectures, Center for Smart Materials and Device Integration, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Hongjian Zhang
- State Key Laboratory of Silicate Materials for Architectures, Center for Smart Materials and Device Integration, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xiaofei Liu
- State Key Laboratory of Silicate Materials for Architectures, Center for Smart Materials and Device Integration, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Shengyang Zhou
- State Key Laboratory of Silicate Materials for Architectures, Center for Smart Materials and Device Integration, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Yanan Ma
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, P. R. China
| | - Shuxuan Li
- State Key Laboratory of Silicate Materials for Architectures, Center for Smart Materials and Device Integration, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Yong Zhang
- State Key Laboratory of Silicate Materials for Architectures, Center for Smart Materials and Device Integration, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
21
|
Wang PL, Mai T, Zhang W, Qi MY, Chen L, Liu Q, Ma MG. Robust and Multifunctional Ti 3 C 2 T x /Modified Sawdust Composite Paper for Electromagnetic Interference Shielding and Wearable Thermal Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304914. [PMID: 37679061 DOI: 10.1002/smll.202304914] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Robust, ultrathin, and environmental-friendliness papers that synergize high-efficiency electromagnetic interference (EMI) shielding, personal thermal management, and wearable heaters are essential for next-generation smart wearable devices. Herein, MXene nanocomposite paper with a nacre-like structure for EMI shielding and electrothermal/photothermal conversion is fabricated by vacuum filtration of Ti3 C2 Tx MXene and modified sawdust. The hydrogen bonding and highly oriented structure enhance the mechanical properties of the modified sawdust/MXene composite paper (SM paper). The SM paper with 50 wt% MXene content shows a strength of 23 MPa and a toughness of 13 MJ·M-3 . The conductivity of the SM paper is 10 195 S·m-1 , resulting in an EMI shielding effectiveness (SE) of 67.9 dB and a specific SE value (SSE/t) of 8486 dB·cm2 ·g-1 . In addition, the SM paper exhibits excellent thermal management performance including high light/electro-to-thermal conversion, rapid Joule heating and photothermal response, and sufficient heating stability. Notably, the SM paper exhibits low infrared emissivity and distinguished infrared stealth performance, camouflaging a high-temperature heater surface of 147-81 °C. The SM-based e-skin achieves visualization of Joule heating and realizes human motions monitoring. This work presents a new strategy for designing MXene-based wearable devices with great EMI shielding, artificial intelligence, and thermal management applications.
Collapse
Affiliation(s)
- Pei-Lin Wang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Tian Mai
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Wei Zhang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Meng-Yu Qi
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Lei Chen
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Qi Liu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Ming-Guo Ma
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, P.R. China
- State Silica-based Materials Laboratory of Anhui Province, Bengbu, 233000, P.R. China
| |
Collapse
|
22
|
Luo S, Li Q, Xue Y, Zhou B, Feng Y, Liu C. Reinforcing and toughening bacterial cellulose/MXene films assisted by interfacial multiple cross-linking for electromagnetic interference shielding and photothermal response. J Colloid Interface Sci 2023; 652:1645-1652. [PMID: 37666196 DOI: 10.1016/j.jcis.2023.08.177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
Ultrathin MXene composite films, with their flexibility, metal-level conductivity, and multifunction compatibility, are an ideal choice for electromagnetic interference (EMI) shielding materials in future developments. Nonetheless, the dilemma between electrical conductivity and robustness in these composite films remains a challenge. Herein, an ammonium polyphosphate (APP) assisted interfacial multiple cross-linking strategy, achieved via simple solution blending and filtration, was employed to reinforce and toughen the "brick-mortar" layered MXene/bacterial cellulose (MBCA) films without compromising their conductivity and EMI shielding ability. The introduction of a small amount of APP leads to multiple interfacial interactions between MXene and bacterial cellulose, resulting in significant enhancements in mechanical strength (360.8 MPa), Young's modulus (2.8 GPa), fracture strain (17.3%), and toughness (34.1 MJ/m3). Concurrently, the MBCA film displayed satisfactory conductivity values of 306.7 S/cm and an EMI SE value of 41 dB upon optimizing the MXene content. Additionally, the MBCA film demonstrated a consistent, rapid-response photothermal conversion capability, achieving a photothermal conversion temperature of 97 °C under a light intensity of 200 mW/m2. Consequently, this tough and multifunctional EMI shielding film holds substantial promise for protecting electronic equipment.
Collapse
Affiliation(s)
- Shilu Luo
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Qi Li
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Yajun Xue
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Bing Zhou
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China.
| | - Yuezhan Feng
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China.
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| |
Collapse
|
23
|
Zhao Y, Deng C, Yan B, Yang Q, Gu Y, Guo R, Lan J, Chen S. One-Step Method for Fabricating Janus Aramid Nanofiber/MXene Nanocomposite Films with Improved Joule Heating and Thermal Camouflage Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55150-55162. [PMID: 37967290 DOI: 10.1021/acsami.3c13722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The integration of ultraflexible and mechanically robust films with electric heaters and camouflage technology provides a promising platform for the development of wearable devices, especially for aerospace and military applications. Herein, we present a facile and efficient one-step vacuum-assisted filtration method for fabricating Janus films based on aramid nanofibers (ANF) and Ti3C2Tx (MXene). The ANF/MXene nanocomposite film exhibits remarkable properties, including high conductivity (23809.5 S/m), excellent mechanical strength (102.54 MPa), and outstanding thermal stability (575 °C). Most notably, the Janus ANF/MXene composite film demonstrates superior Joule heating performance with a low driving voltage (1-5 V), high heating temperature (30-276 °C), and rapid response time (within 5 s). Additionally, the film exhibits effective thermal camouflage (72 °C for objects with temperatures above 163 °C) and excellent electromagnetic interference shielding properties (SSE/t = 32475.6 dB cm2/g). These results demonstrate that Janus ANF/MXene films possess a unique combination of thermal camouflage, Joule heating, and electromagnetic interference shielding properties, making them highly promising for wearable devices, high-performance electrical heating, infrared stealth, and security protection applications.
Collapse
Affiliation(s)
- Yinghui Zhao
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Cong Deng
- Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Bin Yan
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Qin Yang
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yingchun Gu
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Ronghui Guo
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Jianwu Lan
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Sheng Chen
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| |
Collapse
|
24
|
Bian X, Yang Z, Zhang T, Yu J, Xu G, Chen A, He Q, Pan J. Multifunctional Flexible AgNW/MXene/PDMS Composite Films for Efficient Electromagnetic Interference Shielding and Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41906-41915. [PMID: 37610108 DOI: 10.1021/acsami.3c08093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
With the rapid development of electronic information technology, composite materials with outstanding performance in terms of electromagnetic interference (EMI) shielding and strain sensing are crucial for next-generation smart wearable electronic devices. However, the fabrication of flexible composite films with dual functionality remains a significant challenge. Herein, multifunctional flexible composite films with exciting EMI shielding and strain sensing properties were constructed using a facile vacuum-assisted filtration process and transfer method. The films consisted of ultrathin AgNW/MXene (Ti3C2Tx)/AgNW conductive networks (1 μm) attached to a flexible polydimethylsiloxane (PDMS) substrate. The obtained AgNW/MXene/PDMS composite film exhibited an exceptional EMI shielding effectiveness of 50.82 dB and good flexibility (retaining 93.67 and 90.18% of its original value after 1000 bending and stretching cycles, respectively), which are attributed to the enhanced multilayer internal reflection network created by the AgNWs and MXene as well as the synergistic effect of PDMS. Besides EMI shielding, the composite films also displayed remarkable strain sensing properties. They exhibited a wide linear range of tensile strain up to 68% with a gauge factor of 468. They also showed fast response, ultralow detection limit, and high mechanical stability. Interestingly, the composite films could also detect motion and voice recognition, demonstrating their potential as wearable sensors. This study highlights the effectiveness of multifunctional flexible AgNW/MXene/PDMS composite films in resisting electromagnetic radiation and monitoring human motion, thereby providing a promising solution for the development of flexible wearable electronic devices in complex electromagnetic environments.
Collapse
Affiliation(s)
- Xiaolong Bian
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhonglin Yang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Tao Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jiewen Yu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Gaopeng Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - An Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qingquan He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jun Pan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
25
|
Gui H, Zhao X, Zuo S, Liu W, Wang C, Xu P, Ding Y, Yao C. Carbonized Syndiotactic Polystyrene/Carbon Nanotube/MXene Hybrid Aerogels with Egg-Box Structure: A Platform for Electromagnetic Interference Shielding and Solar Thermal Energy Management. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39740-39751. [PMID: 37556599 DOI: 10.1021/acsami.3c08176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Functional materials for electromagnetic interference (EMI) shielding are a consistently hot topic in the booming communication engineering, proceeding the development that tends to the multifunctional EMI shielding materials. Herein, a series of carbonized syndiotactic polystyrene/carbon nanotube/MXene (CsPS/CNT/MXene) hybrid aerogels were fabricated for EMI shielding and solar thermal energy conversion purposes. To fabricate the hybrid aerogels, a porous CNT/MXene framework was initially prepared using freeze-casting. Subsequently, sPS was infused into the porous structure, followed by hyper-cross-linking and carbonization of sPS under an inert atmosphere. The resulting aerogels exhibited a distinctive egg-box structure, comprising numerous nanofibrous carbon microspheres embedded within the lamellar framework. The mass ratio between CNT and MXene was regulated to identify an optimum aerogel, that is, the CCM-4-6, which exhibited impressive properties including Young's compression modulus of 0.67 MPa, a water contact angle of 137.6 ± 4.1°, a specific surface area of 110 m2 g-1, an electrical conductivity of 43.0 S m-1, and an EMI SE value of 40 dB. Meanwhile, phase-change composites were fabricated through encapsulating paraffin wax within the hybrid aerogels. For the CCM-4-6 aerogel, a noteworthy encapsulation ratio was achieved at about 76.7%, along with remarkable latent heat, good thermal reliability, and commendable solar thermal energy conversion capacity. This study presents a facile route to prepare multifunctional EMI shielding materials.
Collapse
Affiliation(s)
- Haoguan Gui
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Xiaonan Zhao
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shixiang Zuo
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Wenjie Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Chunyu Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Pei Xu
- Provincial Key Laboratory of Advanced Functional Materials and Devices, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yunsheng Ding
- Provincial Key Laboratory of Advanced Functional Materials and Devices, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chao Yao
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| |
Collapse
|
26
|
Li J, Yang F, Liu D, Han S, Li J, Sui G. Graphene composite paper synergized with micro/nanocellulose-fiber and silk fibroin for flexible strain sensor. Int J Biol Macromol 2023; 240:124439. [PMID: 37062378 DOI: 10.1016/j.ijbiomac.2023.124439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
The fabrication of uniform and strong graphene-based conductive paper is challenging due to easy aggregation and poor film formability of graphene. Herein, on the basis of good dispersing effect of nanocellulose, high content graphene (50 wt%) composite paper with micro/nanocellulose fibers and silk fibroin (SF) was manufactured via simple casting method. The synergistic effects of cellulose microfibers (CMFs), cellulose nanofibers (CNFs) and SF result in the paper with ideal combination of flexibility, electrical conductivity and mechanical strength, where CNFs, CMFs and SF act as dispersing and film forming for GNPs, dimensional stability, and interfacial binding agents, respectively. Extraordinarily, by adding SF, graphene nanosheets are tightly coated on the surface of CMFs. The composite paper shows a tensile strength of 49.29 MPa, surface resistance of 39.0-42.1 Ω and good joints bend sensing performance. Additionally, it is found that CMFs can hinder the micro-cracks from propagating during the cyclic elbow bending test. The graphene-based conductive paper is helpful for the development of smart clothing wearable biosensing devices.
Collapse
Affiliation(s)
- Jun Li
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Fei Yang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Dongyan Liu
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Sensen Han
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Junsheng Li
- Engineering Center of National New Raw Material Base Construction of Liaoning Province, Shenyang 110031, China
| | - Guoxin Sui
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|