1
|
Tian L, Wang Z, Chen S, Guo K, Hao Y, Ma L, Ma K, Chen J, Liu X, Li L, Fu X, Zhang C. Ellagic Acid-Loaded sEVs Encapsulated in GelMA Hydrogel Accelerate Diabetic Wound Healing by Activating EGFR on Skin Repair Cells. Cell Prolif 2025:e70064. [PMID: 40384373 DOI: 10.1111/cpr.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025] Open
Abstract
Delayed diabetic wound healing is partially attributed to the functional disorder of skin repair cells caused by high glucose (HG). Small extracellular vehicles (sEVs) loaded with small-molecule drugs represent a highly promising therapeutic strategy. This study aims to evaluate the therapeutic efficacy of ellagic acid-encapsulated small extracellular vesicles (EA-sEVs) in diabetic wound regeneration and to unravel related mechanisms. Cytotoxicity tests of ellagic acid (EA) as liposomal small molecules (LSMs) were performed with the CCK8 assay. EA was incorporated into sEVs obtained from chorionic plate-mesenchymal stem cells (CP-MSCs) to construct EA-engineered sEVs. The protective effects of EA-sEVs on human dermal fibroblasts (HDFs) and human epidermal keratinocytes (HEKs) induced by high glucose (HG) were assessed through the evaluation of their proliferative, migrative and differentiative capabilities. Furthermore, to illustrate the underlying mechanism, the specific biological targets of EA were predicted and confirmed. Finally, EA-sEVs were encapsulated in GelMA hydrogel for investigating the pro-healing effects on diabetic wounds. EA was harmless to cell viability, increasing the possibility and safety of drug development. EA-engineered sEVs were fabricated by loading EA in sEVs. In vitro, EA-sEVs promoted the proliferation, migration, and transdifferentiation of HG-HDFs and the proliferation and migration of HG-HEKs. Mechanism analysis elucidated that epidermal growth factor receptor (EGFR) was the specific biological target of EA. EA interacting with EGFR was responsible for the functional improvement of HG-HDFs and HG-HEKs. In vivo, EA-sEVs encapsulated in GelMA promoted the healing of diabetic wounds by improving re-epithelialisation, collagen formation and the expression of EGFR. Gel-EA-sEVs promoted diabetic wound healing by improving biological functions of HDFs and HEKs. EGFR was first identified as the specific biological target of EA and was responsible for the functional improvement of HG-HDFs and HG-HEKs by Gel-EA-sEVs. Hence, Gel-EA-sEVs can serve as a new promising active dressing for diabetic wound treatment.
Collapse
Affiliation(s)
- Lige Tian
- College of Graduate, Tianjin Medical University, Tianjin, China
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
| | - Zihao Wang
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Shengqiu Chen
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- Innovation Research Center for Diabetic Foot, West China Hospital, Sichuan University, Chengdu, China
| | - Kailu Guo
- College of Graduate, Tianjin Medical University, Tianjin, China
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
| | - Yaying Hao
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing, China
| | - Liqian Ma
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing, China
| | - Kui Ma
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing, China
| | - Junli Chen
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing, China
| | - Xi Liu
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing, China
| | - Linlin Li
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Fu
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing, China
| | - Cuiping Zhang
- Medical Innovation Research Department, PLA General Hospital, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing, China
| |
Collapse
|
2
|
Shao J, Liu Y, Li R, Deng Z, Liu L, Wang J, Dai S, Su Z, Cui J, Chen Y, Yan X, Yang P, Maitz MF, Zhao A. PEGNB-Heparin-Liposome composite hydrogels for in situ spraying and ultra-fast adhesion: meeting the challenges of endothelial repair of vascular injury. Acta Biomater 2025:S1742-7061(25)00311-3. [PMID: 40381928 DOI: 10.1016/j.actbio.2025.04.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/13/2025] [Accepted: 04/30/2025] [Indexed: 05/20/2025]
Abstract
Carotid atherosclerosis is an essential cause of transient cerebral ischemia, stroke, and other cerebrovascular diseases, and carotid endarterectomy (CEA) is currently the most effective treatment for removing plaque and restoring the vascular lumen. However, the CEA disrupts the integrity and functionality of the endothelium and predisposes it to complications such as restenosis and thrombosis. Hydrogels can closely mimic the natural extracellular matrix, allowing a wide tuning of physical and chemical properties. These properties make hydrogels the most promising candidate materials for the repair of vascular injured intima. In this study, a multifunctional intimal repair hydrogel of poly(ethylene glycol)-norbornene (PEGNB)/ Heparin/ Liposome is proposed with the advantages of ultra-rapid adhesion to the wet tissue of the vascular inner wall, maintenance of adhesion stability under continuous erosion by blood flow. The hydrogel was supplemented with poly(vinyl butyral) (PVB) to reduce its swelling rate, and Rapamycin (RAPA) was encapsulated in this study as the drug into the cationic liposomes. This composite multifunctional (PNHB@Lip(RAPA)) hydrogel has exhibited outstanding anti-coagulation properties, markedly suppressed the proliferation and migration of SMCs, and displayed favourable cytocompatibility and blood compatibility. Concurrently, the capacity of the PNHB@Lip(RAPA) hydrogel to stimulate endovascular regeneration and deter restenosis and thrombus formation was validated through carotid intima damage repair experiments. These findings collectively indicate that the PNHB@Lip(RAPA) hydrogel represents a promising material for intimal injury repair, offering innovative insights into intimal repair methodologies. STATEMENT OF SIGNIFICANCE: Carotid atherosclerosis is a leading cause of transient cerebral ischemia, stroke, and cerebrovascular disorders. Although carotid endarterectomy (CEA) effectively removes plaques, it damages endothelial integrity, increasing the risk of restenosis and thrombosis. To address this, we developed PNHB@Lip(RAPA), a multifunctional intimal repair hydrogel composed of PEGNB, heparin, and rapamycin-encapsulated liposomes. This hydrogel rapidly adheres to wet vascular walls, resists blood flow erosion, and exhibits low swelling. The hydrogel demonstrates superior anticoagulation, inhibits smooth muscle cell proliferation and migration, and shows favourable cytocompatibility. Experimental results confirm its ability to promote endovascular regeneration while preventing restenosis and thrombosis. In summary, PNHB@Lip(RAPA) hydrogel is a promising material for intimal repair, offering innovative solutions to improve CEA postoperative outcomes.
Collapse
Affiliation(s)
- Jiang Shao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.; Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yanqiu Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ruolan Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zengyi Deng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Luying Liu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Jingyue Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Sheng Dai
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Zhaogui Su
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Jiawei Cui
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yian Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Xiaoling Yan
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Ping Yang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Manfred F Maitz
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.; Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6. 01069 Dresden., German
| | - Ansha Zhao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China..
| |
Collapse
|
3
|
Ge C, Wei X, Xu Y, Jiang Y, Yang X, Lin J, Li M, Tian Y, Fan S, Ye T, Han L, Huang H, Zhang D. Natural Ellagic Acid-Polyphenol ″Sandwich Biscuit″ Self-Assembled Solubilizing System for Formation Mechanism and Antibacterial Synergia. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27772-27787. [PMID: 40132126 DOI: 10.1021/acsami.5c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Ellagic acid (EA) has limited utility due to its extremely low solubility. Inspired by the naturally high content of EA in Triphala, the research group discovered that there might be noncovalent self-assembled nanoaggregates centered on EA in natural polyphenols that could significantly improve EA's solubility and enhance its antibacterial activity. Therefore, seven polyphenols that we found were potentially involved in EA self-assembly were separated and identified from Triphala, and 18 binary, ternary, and quaternary self-assembly systems were constructed by combining them with EA. Finally, a ternary self-assembled solubilizing system centered on ellagic acid-gallic acid-catechin (EA-GA-CA) was established. The system could improve the solubility of EA from 0.95 to 171.345 μg·mL-1, leading to a notable 180-fold increase, and the stability of EA in water was increased 3 times compared with the mixture of EA, GA, and CA, which is currently the most effective carrier-free hydrotropic solubilizing method of EA. The in vitro release rate reached about 61%, which was about 60 times higher than that of EA. Exploring the formation mechanism of the self-assembled complex revealed that EA, GA, and CA were induced by hydrogen bonding and π-π stacking to form a solubilizing structure resembling a sandwich biscuit. In addition, in vitro antibacterial experiments, biofilm clearance experiments, and infected wound healing experiments demonstrated that the EA-GA-CA complex has a better inhibitory effect on Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA) than EA, GA, CA, benzylpenicillin potassium, and the mixture of EA, GA, and CA (MIC = 12.5 mM). The inhibition rate of the EA-GA-CA complex against S. aureus reaches 82.68%, and it can rapidly promote the healing of infected wounds caused by S. aureus within 4-6 days (the healing rate increased from 15 to 75%). This study aims to provide new ideas for EA's natural small molecule carrier-free self-assembly solubilization and synergistic applications.
Collapse
Affiliation(s)
- Chunli Ge
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiaorong Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yingbi Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yurou Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Mengqi Li
- Pharmacy department, Sichuan Nursing Vocational College, Chengdu 610100, PR China
| | - Yin Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Sanhu Fan
- Sanajon Pharmaceutical Group, Chengdu 610000, PR China
| | - Tong Ye
- Jiangxi Drug Inspection Center, Nanchang 330000, PR China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Haozhou Huang
- State key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Meishan Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
- Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Pengzhou 611900, PR China
| |
Collapse
|
4
|
Li S, Luo S, Wang H, Liu H, Liu J, Zhang X, Tian B. Chitosan/polyvinyl alcohol film loading β-acids/β-cyclodextrin inclusion complex: A shelf-life extension strategy for strawberry. Int J Biol Macromol 2025; 312:144223. [PMID: 40373926 DOI: 10.1016/j.ijbiomac.2025.144223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/29/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Fabricating food packaging films with multifunction (antibacterial, antioxidant, and controlled-release properties) represents a powerful strategy for extending the shelf life and enhancing the safety of perishable fruits. Herein, chitosan (CS) and polyvinyl alcohol (PVA) composite films were loaded inclusion complex (IC) with different concentrations of β-acids/β-cyclodextrin (β-acids/β-CD) or β-acids/hydroxyethyl-β-cyclodextrin (β-acids/HE-β-CD) inclusion complex. Moreover, the films' physical, chemical, and biological properties were systematically investigated. Satisfyingly, these composite films exhibited excellent mechanical properties and thermal stability. As the concentration of the inclusion complex improved, the hydrophobicity of the functionalized films also enhanced (76.50°-108.59°/110.04°). Furthermore, variations in pH were discovered that it could affect β-acids release from films. A significant enhancement in the antioxidant capacity of films could be clearly observed with increased concentrations of the inclusion complex (from 5.56 % to 72.98 %/73.47 %). Additionally, films expressed outstanding antibacterial activity against Gram-positive bacteria (S. aureus) (inhibition zone >10.89 mm), with those loading β-acids/β-CD demonstrating a stronger antibacterial effect than those loading β-acids/HE-β-CD. For the preservation of strawberries - the typical representative of perishable fruits, the films significantly extended their shelf life to eight days. As the content of the inclusion complex of β-acids in the film increased, the weight loss dramatically reduced (39.91 % without film vs. 23.12 % with HE-β-CD@CS/PVA film). Overall, the CS/PVA films loading β-acids/β-CD display remarkable multifunctionality and value as a fresh-preserving packaging material with sustained release performance and notable bioactivity.
Collapse
Affiliation(s)
- Shuanghe Li
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China; Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Sang Luo
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Hui Wang
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Hui Liu
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao.
| | - Xu Zhang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
5
|
Zhang R, Ma Q, Zheng N, Wang R, Visentin S, He L, Liu S. Plant Polyphenol-Based Injectable Hydrogels: Advances and Biomedical Applications. Adv Healthc Mater 2025; 14:e2500445. [PMID: 40150799 DOI: 10.1002/adhm.202500445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Plant polyphenol-based hydrogels, known for their biocompatibility and adhesive properties, have emerged as promising materials in biomedical applications. These hydrogels leverage the catechol group's ability to form stable bonds in moist environments, similar to mussel adhesive proteins. This review provides a comprehensive overview of their synthesis, adhesion mechanisms, and applications, particularly in wound healing, tissue regeneration, and drug delivery. However, challenges related to in vivo stability and long-term biocompatibility remain critical barriers to clinical translation. Future research should focus on enhancing the bioactivity, biocompatibility, and scalability of these hydrogels, while addressing concerns related to toxicity, immune responses, and large-scale manufacturing. Advances in artificial intelligence-assisted screening and 3D/4D bioprinting are expected to accelerate their development and clinical translation. Furthermore, the integration of biomimetic designs and responsive functionalities, such as pH or temperature sensitivity, holds promise for further improving their therapeutic efficacy. In conclusion, the development of multifunctional plant polyphenol-based hydrogels represents a promising frontier in advancing personalized medicine and minimally invasive treatments.
Collapse
Affiliation(s)
- Renkai Zhang
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150001, China
| | - Qiuyue Ma
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450046, China
| | - Nannan Zheng
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450046, China
| | - Ruiwen Wang
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin, 150001, China
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Sciences, Piazza Nizza 44, Torino, 10126, Italy
| | - Liangcan He
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450046, China
| | - Shaoqin Liu
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450046, China
| |
Collapse
|
6
|
Ding Y, Bai JJ, Ablimit S, Yasen M, Anwar A, Kuerban K, Iminjan M, Zhang GQ. Quercus infectoria galls mitigates colitis in mice through alleviating mucosal barrier impairment and suppressing inflammatory factors. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119487. [PMID: 39954828 DOI: 10.1016/j.jep.2025.119487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xipayi Kuijie'an herbal enema preparation, a traditional Uyghur medicinal preparation derived from Quercus infectoria galls (QIG), has been clinically employed at Xinjiang Uyghur Medical Hospital for ulcerative colitis (UC) management. Despite its well-documented therapeutic efficacy, the precise mechanisms underlying its pharmacological actions remain poorly understood. AIM OF STUDY This study aimed to elucidate the therapeutic mechanisms of QIG against UC through an integrated approach combining network pharmacology analysis with experimental validation. MATERIALS AND METHODS An integrated approach combining network pharmacology analysis and molecular docking simulations was employed to identify bioactive compounds and their corresponding molecular targets. The effects of QIG on dextran sodium sulfate (DSS) induced colitis were systematically investigated, including disease activity index (DAI), colon length, histopathological observations, as well as the determination of colonic mucosal barrier permeability and biochemical indicators. RESULTS QIG significantly improved DAI and CMDI scores, reduced colonic shortening, decreased colonic mucosal barrier permeability, reduce the release of pro-inflammatory factors and mitigated histopathological changes. CONCLUSION This study demonstrates the efficacy of an integrated approach combining network pharmacology with experimental validation as a robust strategy for elucidating the therapeutic mechanisms of traditional medicines, as exemplified by the systematic investigation of QIG's anti-ulcerative colitis properties.
Collapse
Affiliation(s)
- Yan Ding
- College of Pharmacy, Xinjing Medical University, Urumqi, Xinjiang, 830017, China
| | - Jiao-Jiao Bai
- College of Pharmacy, Xinjing Medical University, Urumqi, Xinjiang, 830017, China
| | - Sabahat Ablimit
- College of Pharmacy, Xinjing Medical University, Urumqi, Xinjiang, 830017, China
| | - Muyassar Yasen
- College of Pharmacy, Xinjing Medical University, Urumqi, Xinjiang, 830017, China
| | - Arfidin Anwar
- College of Pharmacy, Xinjing Medical University, Urumqi, Xinjiang, 830017, China
| | - Kudelaidi Kuerban
- Tongji Hospital, School of Life Science and Technologies, Tongji University, Shanghai, 200065, China
| | - Mubarak Iminjan
- College of Pharmacy, Xinjing Medical University, Urumqi, Xinjiang, 830017, China.
| | - Guo-Qiang Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education and College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
7
|
Utpal BK, Sutradhar B, Zehravi M, Sweilam SH, Panigrahy UP, Urs D, Fatima AF, Nallasivan PK, Chhabra GS, Sayeed M, Alshehri MA, Rab SO, Khan SL, Emran TB. Polyphenols in wound healing: unlocking prospects with clinical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2459-2485. [PMID: 39453503 DOI: 10.1007/s00210-024-03538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Wound healing is a multifaceted, complex process that factors like aging, metabolic diseases, and infections may influence. The potentiality of polyphenols, natural compounds, has shown anti-inflammatory and antimicrobial properties in promoting wound healing and their potential applications in wound management. The studies reviewed indicate that polyphenols have multiple mechanisms that promote wound healing. This involves enhancing antioxidant defenses, reducing oxidative stress, modulating inflammatory responses, improving healing times, reducing infection rates, and enhancing tissue regeneration in clinical trials and in vivo and in vitro studies. Polyphenols have been proven to be effective in managing hard-to-heal wounds, especially in diabetic and elderly populations. Polyphenols have shown significant benefits in promoting angiogenesis and stimulating collagen synthesis. Polyphenol treatment has been demonstrated to have therapeutic effects in wound healing and chronic wound management. Their ability to regulate key healing processes makes them suitable for new wound care products and treatments. Future research should enhance formulations and delivery methods to optimize polyphenols' bioavailability and therapeutic efficacy in wound management approaches.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Baishakhi Sutradhar
- Department of Microbiology, Gono University (Bishwabidyalay), Nolam, Mirzanagar, Savar, Dhaka, 1344, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam Down Town University, Gandhi Nagar, Sankar Madhab Path, Panikhaiti, Guwahati, Assam, 781026, India
| | - Deepadarshan Urs
- Inflammation Research Laboratory, Department of Studies & Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate Campus, Kodagu, Karnataka, India
| | - Ayesha Farhath Fatima
- Department of Pharmaceutics, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad, India
| | - P Kumar Nallasivan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari, Coimbatore, Tamilnadu, India
| | - Gurmeet Singh Chhabra
- Department Pharmaceutical Chemistry, Indore Institute of Pharmacy, Opposite Indian Institute of Management Rau, Pithampur Road, Indore, Madhya Pradesh, India
| | - Mohammed Sayeed
- Department of Pharmacology, School of Pharmacy, Anurag University, Venkatapur, Ghatkesar, Hyderabad, Telangana, India
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| |
Collapse
|
8
|
Rocha FMG, Rocha CHL, Silva LCN, Pinheiro AJMCR, Mendonça AMS, Cantanhede Filho AJ, Sousa EM, Rocha CQ, Assuncao Holanda R, Santos JRA, Monteiro CA. n -butanol fraction of Terminalia catappa possesses anti-Candida albicans properties and in vivo action on Tenebrio molitor alternative infection model. Microb Pathog 2025; 198:107133. [PMID: 39571833 DOI: 10.1016/j.micpath.2024.107133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/09/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Current treatment of Candida infections is threatened by antifungal drug resistance. Thus, medicinal plants have been studied to identify new and highly effective antifungal substances with low toxicity. Here, we showed that the tannin-rich n-butanol fraction of Terminalia catappa (FBuOH) possesses antifungal and antibiofilm properties and protects Tenebrio molitor larvae against Candida albicans infection. FBuOH showed antifungal activity against Candida spp. vaginal isolates (MIC values ranged from 7 to 500 μg/mL). Moreover, a combination of FBuOH with fluconazole (FICI ≤0.5) showed considerably increased anti-yeast, anti-biofilm activity and significantly improved the survival rate (up to 100 %) of T. molitor larvae against C. albicans infection. Furthermore, FBuOH acted synergistically with fluconazole by reducing C. albicans membrane ergosterol content. These results could also explain the synergistic activity between FBuOH and fluconazole, indicating that FBuOH exerted its effects on C. albicans membrane integrity, increasing its permeability. Our findings provide insights into the antifungal activity and low cytotoxicity of FBuOH, showing its potential use as a new antimycotic.
Collapse
Affiliation(s)
- Flaviane Maria Galvão Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, 14049-900, SP, Brazil.
| | - Carlos Henrique Lopes Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, 14049-900, SP, Brazil.
| | - Luís Cláudio Nascimento Silva
- Laboratory of Immunology of Infectious and Parasitic Diseases, Master's Program in Biosciences Applied to Health, Ceuma University, Josué Montello Street, 65075120, São Luís, MA, Brazil.
| | | | | | | | - Eduardo Martins Sousa
- Laboratory of Immunology and Microbiology of Respiratory Infections, Master's Program in Biosciences Applied to Health, Ceuma University, Josué Montello Street, 65075120, São Luís, MA, Brazil.
| | - Cláudia Quintino Rocha
- Department of Chemistry, Federal University of Maranhão, Portugueses Avenue, 65080805, São Luís, MA, Brazil.
| | - Rodrigo Assuncao Holanda
- Institute of Biological Sciences (ICB), Postgraduate Program in Applied Cellular and Molecular Biology, Arnobio Marques Street 310, Santo Amaro, University of Pernambuco, 50100130, Santo Amaro-Recife, PE, Brazil.
| | - Julliana Ribeiro Alves Santos
- Institute of Biological Sciences (ICB), Postgraduate Program in Applied Cellular and Molecular Biology, Arnobio Marques Street 310, Santo Amaro, University of Pernambuco, 50100130, Santo Amaro-Recife, PE, Brazil.
| | - Cristina Andrade Monteiro
- Biology Laboratory, Biology Department, Federal Institute of Maranhão, Getulio Vargas Avenue, 65030-005, São Luís, MA, Brazil.
| |
Collapse
|
9
|
Ghosal K, Bhattacharyya SK, Mishra V, Zuilhof H. Click Chemistry for Biofunctional Polymers: From Observing to Steering Cell Behavior. Chem Rev 2024; 124:13216-13300. [PMID: 39621547 PMCID: PMC11638903 DOI: 10.1021/acs.chemrev.4c00251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/05/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Click chemistry has become one of the most powerful construction tools in the field of organic chemistry, materials science, and polymer science, as it offers hassle-free platforms for the high-yielding synthesis of novel materials and easy functionalization strategies. The absence of harsh reaction conditions or complicated workup procedures allowed the rapid development of novel biofunctional polymeric materials, such as biopolymers, tailor-made polymer surfaces, stimulus-responsive polymers, etc. In this review, we discuss various types of click reactions─including azide-alkyne cycloadditions, nucleophilic and radical thiol click reactions, a range of cycloadditions (Diels-Alder, tetrazole, nitrile oxide, etc.), sulfur fluoride exchange (SuFEx) click reaction, and oxime-hydrazone click reactions─and their use for the formation and study of biofunctional polymers. Following that, we discuss state-of-the-art biological applications of "click"-biofunctionalized polymers, including both passive applications (e.g., biosensing and bioimaging) and "active" ones that aim to direct changes in biosystems, e.g., for drug delivery, antiviral action, and tissue engineering. In conclusion, we have outlined future directions and existing challenges of click-based polymers for medicinal chemistry and clinical applications.
Collapse
Affiliation(s)
- Krishanu Ghosal
- Research
& Development Laboratory, Shalimar Paints
Limited, Nashik, Maharashtra 422403, India
| | | | - Vivek Mishra
- Amity
Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201313, India
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, Netherlands
- College
of Biological and Chemical Sciences, Jiaxing
University, Jiaxing 314001, China
| |
Collapse
|
10
|
Lan X, Du T, Zhuo J, Wang T, Shu R, Li Y, Zhang W, Ji Y, Wang Y, Yue X, Wang J. Advances of biomacromolecule-based antibacterial hydrogels and their performance evaluation for wound healing: A review. Int J Biol Macromol 2024; 279:135577. [PMID: 39270907 DOI: 10.1016/j.ijbiomac.2024.135577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Biomacromolecule hydrogels possess excellent mechanical properties and biocompatibility, but their inability to combat bacteria restricts their application in the biomedical field. With the increasing requirements and demands for hydrogel dressings, wound dressings with antibacterial properties of biomacromolecule hydrogels reinforced by adding antibacterial agents have attracted much attention, and related reviews are emerging. In this paper, the advances of biomacromolecule antibacterial hydrogels (including chitosan, sodium alginate, Hyaluronic acid, cellulose and gelatin) were first overviewed, and the antibacterial agents incorporated into hydrogels were classified (including metals and their derivatives, carbon-based materials, and native compounds). A series of performance evaluations of antibacterial hydrogels in the process of promoting wound healing were then reviewed, including basic properties (mechanical, rheological, injectable and self-healing, etc.), in vitro experiments (hemostasis, antibacterial, anti-inflammatory, anti-oxidation, biocompatibility) and in vivo experiments (in vivo model, histomorphology analysis, cytokines). Finally, the future development of biomacromolecule-based antibacterial hydrogels for wound healing is prospected. This work can provide a useful reference for researchers to prepare practical new wound hydrogel dressings.
Collapse
Affiliation(s)
- Xi Lan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Tianyu Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Xiaoyue Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China.
| |
Collapse
|
11
|
Sathuvan M, Min S, Narayanan K, Gaur A, Hong H, Vivek R, Ganapathy A, Cheong KL, Kang H, Thangam R. β-Cyclodextrin-based materials for 3D printing, cancer therapy, tissue engineering, and wound healing. CHEMICAL ENGINEERING JOURNAL 2024; 500:157272. [DOI: 10.1016/j.cej.2024.157272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Cao S, Liu H, Qin M, Xu N, Liu F, Liu Y, Gao C. Development and characterization of polyvinyl alcohol/chitosan crosslinked malic acid composite films with curcumin encapsulated in β-cyclodextrin for food packaging application. Int J Biol Macromol 2024; 278:134749. [PMID: 39214835 DOI: 10.1016/j.ijbiomac.2024.134749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Considering that fruits are vulnerable to damage and waste during stockpiling, transport and marketing. Given this, an innovative curcumin inclusion compound (Cur@β-CD) was devised in this study to introduce oil-soluble curcumin (Cur) into water-soluble polyvinyl alcohol (PVA) materials, thereby fabricating food packaging films endowed with excellent properties. DPPH test manifested that the oxidation resistance for PCOMC-Cur@β-CD film was 95 % above PVA material. It was ascribed to the fact that the Cur@β-CD elevated the water solubility of Cur while the increase of water solubility heightened the antioxidant effect for Cur in the film. Additionally, the chitosan (CS) was crosslinked with malic acid (MA), which elevated the barrier property of the film, reduced the amount of oxygen transmission and further retarded the oxidation reaction of the fruits for packaging. The antibacterial test demonstrated that the antibacterial rates of PCOMC-Cur@β-CD film against E. coli and S. aureus reached 92 % and 95 %, respectively, which was attributed to the slow release of Cur when Cur@β-CD was dissolved in PVA material and the Schiff base reaction between Cur and amino groups on CS. These findings indicate that the PCOMC-Cur@β-CD film developed in this work can provide certain insights into the field of food packaging.
Collapse
Affiliation(s)
- Shuting Cao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hongzhen Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ming Qin
- Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Nannan Xu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Fuhao Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuetao Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Chuanhui Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
13
|
Riaz A, Ali S, Summer M, Noor S, Nazakat L, Aqsa, Sharjeel M. Exploring the underlying pharmacological, immunomodulatory, and anti-inflammatory mechanisms of phytochemicals against wounds: a molecular insight. Inflammopharmacology 2024:10.1007/s10787-024-01545-5. [PMID: 39138746 DOI: 10.1007/s10787-024-01545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/26/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Numerous cellular, humoral, and molecular processes are involved in the intricate process of wound healing. PHARMACOLOGICAL RELEVANCE Numerous bioactive substances, such as ß-sitosterol, tannic acid, gallic acid, protocatechuic acid, quercetin, ellagic acid, and pyrogallol, along with their pharmacokinetics and bioavailability, have been reviewed. These phytochemicals work together to promote angiogenesis, granulation, collagen synthesis, oxidative balance, extracellular matrix (ECM) formation, cell migration, proliferation, differentiation, and re-epithelialization during wound healing. FINDINGS AND NOVELTY To improve wound contraction, this review delves into how the application of each bioactive molecule mediates with the inflammatory, proliferative, and remodeling phases of wound healing to speed up the process. This review also reveals the underlying mechanisms of the phytochemicals against different stages of wound healing along with the differentiation of the in vitro evidence from the in vivo evidence There is growing interest in phytochemicals, or plant-derived compounds, due their potential health benefits. This calls for more scientific analysis and mechanistic research. The various pathways that these phytochemicals control/modulate to improve skin regeneration and wound healing are also briefly reviewed. The current review also elaborates the immunomodulatory modes of action of different phytochemicals during wound repair.
Collapse
Affiliation(s)
- Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Sharjeel
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
14
|
Sardarabadi H, Darvishi MH, Zohrab F, Javadi H. Nanophytomedicine: A promising practical approach in phytotherapy. Phytother Res 2024; 38:3607-3644. [PMID: 38725270 DOI: 10.1002/ptr.8230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 07/12/2024]
Abstract
The long and rich history of herbal therapeutic nutrients is fascinating. It is incredible to think about how ancient civilizations used plants and herbs to treat various ailments and diseases. One group of bioactive phytochemicals that has gained significant attention recently is dietary polyphenols. These compounds are commonly found in a variety of fruits, vegetables, spices, nuts, drinks, legumes, and grains. Despite their incredible therapeutic properties, one challenge with polyphenols is their poor water solubility, stability, and bioavailability. This means that they are not easily absorbed by the body when consumed in essential diets. Because of structural complexity, polyphenols with high molecular weight cannot be absorbed in the small intestine and after arriving in the colon, they are metabolized by gut microbiota. However, researchers are constantly working on finding solutions to enhance the bioavailability and absorption of these compounds. This study aims to address this issue by applying nanotechnology approaches to overcome the challenges of the therapeutic application of dietary polyphenols. This combination of nanotechnology and phytochemicals could cause a completely new field called nanophytomedicine or herbal nanomedicine.
Collapse
Affiliation(s)
- Hadi Sardarabadi
- Department of Physiology and Pharmacology, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Hasan Darvishi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zohrab
- Department of Medical Science, Qom Branch, Islamic Azad University, Qom, Iran
| | - Hamidreza Javadi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Luo R, Xiang X, Jiao Q, Hua H, Chen Y. Photoresponsive Hydrogels for Tissue Engineering. ACS Biomater Sci Eng 2024; 10:3612-3630. [PMID: 38816677 DOI: 10.1021/acsbiomaterials.4c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Hydrophilic and biocompatible hydrogels are widely applied as ideal scaffolds in tissue engineering. The "smart" gelation material can alter its structural, physiochemical, and functional features in answer to various endo/exogenous stimuli to better biomimic the endogenous extracellular matrix for the engineering of cells and tissues. Light irradiation owns a high spatial-temporal resolution, complete biorthogonal reactivity, and fine-tunability and can thus induce physiochemical reactions within the matrix of photoresponsive hydrogels with good precision, efficiency, and safety. Both gel structure (e.g., geometry, porosity, and dimension) and performance (like conductivity and thermogenic or mechanical properties) can hence be programmed on-demand to yield the biochemical and biophysical signals regulating the morphology, growth, motility, and phenotype of engineered cells and tissues. Here we summarize the strategies and mechanisms for encoding light-reactivity into a hydrogel and demonstrate how fantastically such responsive gels change their structure and properties with light irradiation as desired and thus improve their applications in tissue engineering including cargo delivery, dynamic three-dimensional cell culture, and tissue repair and regeneration, aiming to provide a basis for more and better translation of photoresponsive hydrogels in the clinic.
Collapse
Affiliation(s)
- Rui Luo
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Xianjing Xiang
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Qiangqiang Jiao
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Hui Hua
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Yuping Chen
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
16
|
Ma L, Tan Y, Tong Q, Cao X, Liu D, Ma X, Jiang X, Li X. Collagen Scaffolds Functionalized by Cu 2+-Chelated EGCG Nanoparticles with Anti-Inflammatory, Anti-Oxidation, Vascularization, and Anti-Bacterial Activities for Accelerating Wound Healing. Adv Healthc Mater 2024; 13:e2303297. [PMID: 38315874 DOI: 10.1002/adhm.202303297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Skin injury is a common health problem worldwide, and the highly complex healing process poses critical challenges for its management. Therefore, wound dressings with salutary effects are urgently needed for wound care. However, traditional wound dressing with a single function often fails to meet the needs of wound repair, and the integration of multiple functions has been required for wound repair. Herein, Cu2+-chelated epigallocatechin gallate nanoparticles (EAC NPs), with radical scavenging, inflammation relieving, bacteria restraining, and vascularization accelerating capacities, are adopted to functionalize collagen scaffold, aiming to promote wound healing. Radical scavenging experiments verify that EAC NPs could efficiently scavenge radicals. Additionally, EAC NPs could effectively remove Escherichia coli and Staphylococcus aureus. H2O2 stimuli-responsive EAC NPs show slow and sustained release properties of Cu2+. Furthermore, EAC NPs exhibit protective effects against H2O2-induced oxidative-stress damage and anti-inflammatory activity in vivo. Physicochemical characterizations show that the introduction of EAC NPs does not disrupt the gelation behavior of collagen, and the composite scaffolds (CS) remain porous structure similar to collagen scaffold. Animal experiments demonstrate that CS could promote wound healing through improving the thickness of renascent epidermis and number of new vessels. CS with multiple salutary functions is a promising dressing for wound care.
Collapse
Affiliation(s)
- Lei Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yunfei Tan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Qiulan Tong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xiaoyu Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Danni Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xiaomin Ma
- Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
17
|
Yan M, Hu SY, Wang ZG, Hong R, Peng X, Kuzmanović M, Yang M, Dai R, Wang Y, Gou J, Li K, Xu JZ, Li ZM. Antibacterial, Fatigue-Resistant, and Self-Healing Dressing from Natural-Based Composite Hydrogels for Infected Wound Healing. Biomacromolecules 2024; 25:2438-2448. [PMID: 38502912 DOI: 10.1021/acs.biomac.3c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The treatment of infected wounds faces substantial challenges due to the high incidence and serious infection-related complications. Natural-based hydrogel dressings with favorable antibacterial properties and strong applicability are urgently needed. Herein, we developed a composite hydrogel by constructing multiple networks and loading ciprofloxacin for infected wound healing. The hydrogel was synthesized via a Schiff base reaction between carboxymethyl chitosan and oxidized sodium alginate, followed by the polymerization of the acrylamide monomer. The resultant hydrogel dressing possessed a good self-healing ability, considerable compression strength, and reliable compression fatigue resistance. In vitro assessment showed that the composite hydrogel effectively eliminated bacteria and exhibited an excellent biocompatibility. In a model of Staphylococcus aureus-infected full-thickness wounds, wound healing was significantly accelerated without scars through the composite hydrogel by reducing wound inflammation. Overall, this study opens up a new way for developing multifunctional hydrogel wound dressings to treat wound infections.
Collapse
Affiliation(s)
- Ming Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shi-Yu Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhi-Guo Wang
- West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Rui Hong
- West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Xu Peng
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, China
| | - Maja Kuzmanović
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Min Yang
- West China Hospital of Department of Pediatric Surgery, Sichuan University, Chengdu 610041, China
| | - Rui Dai
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yanqiong Wang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Juxiang Gou
- West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Ka Li
- West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
18
|
Li J, Gao X, Li S, Zhang X, Guo J, Wang B, Jin Y, Zhang J, Yang X, Wang E. Wound microenvironment self-adaptive all-in-one hydrogel for rapid healing of the diabetic wound. J Mater Chem B 2024; 12:2070-2082. [PMID: 38305057 DOI: 10.1039/d3tb02426a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The natural healing of diabetic wounds is collectively impeded by multiple factors, including hyperglycemia, angiogenesis disorders, acute oxidative stress, and prolonged inflammation. Although considerable effort has been devoted to solving these problems, the treatment of diabetic wounds remains a major clinical obstacle. In light of this, we developed an innovative wound microenvironment self-adaptive hydrogel to promote the healing of diabetic wounds. The hydrogel was constructed by the crosslinking of 3-aminobenzeneboronic acid (PBA)-modified gelatin (Gel) and polyvinyl alcohol (PVA) by borate ester bonds, which showed high responsiveness to glucose. Meanwhile, the liposomes that encapsulated metformin, L-arginine, and L(+)-ascorbic acid were incorporated into the hydrogel framework. The hydrogel@lipo composite demonstrated shape adaptability, glucose responsiveness, and all-in-one capability, thereby effectively improving the intricate microenvironment of diabetic wounds. In vitro and in vivo experiments demonstrated the ability of hydrogel@lipo to mitigate oxidative stress, enhance angiogenesis, and attenuate inflammatory responses. Consequently, the hydrogel@lipo could accelerate diabetic wound healing (within two weeks). The cumulative findings strongly suggest the potential of hydrogel@lipo as a highly promising therapeutic dressing for advancing diabetic wound recovery.
Collapse
Affiliation(s)
- Jingjing Li
- College of Nursing, Hebei University, Baoding 071002, P. R. China.
| | - Xin Gao
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Materials Science, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P. R. China.
| | - Shaochun Li
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, Baoding 071002, P. R. China
| | - Xinyu Zhang
- College of Nursing, Hebei University, Baoding 071002, P. R. China.
| | - Jiamin Guo
- College of Nursing, Hebei University, Baoding 071002, P. R. China.
| | - Bei Wang
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, Baoding 071002, P. R. China
| | - Yi Jin
- College of Basic Medical Science, Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases of Hebei Province, Baoding 071002, P. R. China
| | - Jinchao Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Materials Science, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P. R. China.
| | - Xinjian Yang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Materials Science, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P. R. China.
| | - Enjun Wang
- College of Nursing, Hebei University, Baoding 071002, P. R. China.
| |
Collapse
|
19
|
Keşim DA, Aşır F, Ayaz H, Korak T. The Effects of Ellagic Acid on Experimental Corrosive Esophageal Burn Injury. Curr Issues Mol Biol 2024; 46:1579-1592. [PMID: 38392220 PMCID: PMC10888482 DOI: 10.3390/cimb46020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
This study aimed to investigate the antioxidant effect of Ellagic acid (EA) on wound healing in sodium hydroxide (NaOH)-induced corrosive esophageal burn injury. The interaction networks and functional annotations were conducted using Cytoscape software. A total of 24 Wistar albino rats were divided into control, corrosive esophageal burn (CEB) and CEB + EA groups. Burn injury was created by 20% NaOH and 30 mg/kg EA was per oral administered to rats. At the end of the 28-day experimental period, Malondialdehyde (MDA) content was measured. Esophageal tissue samples were processed for histological staining. The EA-target interaction network was revealed to be involved in regulating crucial cellular mechanisms for burn wound healing, with epidermal growth factor (EGF) identified as a central mediator. An increase in animal weight in the CEB + EA group was observed in the EA-treated group after CEB injury. Burn injury increased MDA content, but EA treatment decreased its level after CEB injury. Stenosis index, collagen degeneration, inflammation, fibrosis and necrosis levels were increased after CEB injury. EA treatment improved histopathology in the CEB + EA group compared to the CEB group. The expression of EGF was decreased in the CEB group but upregulated in the EA-treated group, suggesting a potential involvement of EA in cellular processes and tissue regeneration. EA, through its antioxidative and tissue regenerative properties, significantly contributes to alleviating the adverse effects of CEB injury, promoting wound healing.
Collapse
Affiliation(s)
- Dilek Aygün Keşim
- Department of Physiology, Medical Faculty, Dicle University, Diyarbakır 21280, Turkey
| | - Fırat Aşır
- Department of Histology and Embryology, Medical Faculty, Dicle University, Diyarbakır 21280, Turkey
| | - Hayat Ayaz
- Department of Histology and Embryology, Medical Faculty, Dicle University, Diyarbakır 21280, Turkey
| | - Tuğcan Korak
- Department of Medical Biology, Medical Faculty, Kocaeli University, Kocaeli 41001, Turkey
| |
Collapse
|
20
|
Zhang G, Wang Y, Qiu H, Lu L. Facile one-pot synthesis of flower-like ellagic acid microparticles incorporating anti-microbial peptides for enhanced wound healing. J Mater Chem B 2024; 12:500-507. [PMID: 38099474 DOI: 10.1039/d3tb02016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Anti-microbial peptides (AMPs) have gained significant attention as potential antimicrobial agents due to their cytocompatibility and reduced drug resistance. However, AMPs often suffer from low stability due to their vulnerable molecular structure. This study presents a one-pot synthesis method for ellagic acid (EA)-based, flower-like AMPs@EAMP particles, combining the antibacterial properties of EA with AMPs. The resulting particles exhibit an enlarged surface area for the adsorption or embedding of AMPs, enhancing their antibacterial efficacy. Furthermore, in vitro evaluations demonstrate excellent biocompatibility and broad-spectrum activity against bacterial strains including both Gram-positive S. epidermidis and Gram-negative E. coli. In vivo studies indicate AMPs@EAMPs' potential to reconstruct the immune barrier, inhibit pathogens, and reduce inflammation, promoting orderly tissue repair. This innovative synthesis strategy provides a straightforward and effective approach for large-scale production of flower-like AMPs@EAMP particles with remarkable antibacterial properties, addressing the challenges associated with MDR infections.
Collapse
Affiliation(s)
- Guo Zhang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China.
- Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yu Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hua Qiu
- Stomatologic Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Lei Lu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
21
|
Zhao Y, Zheng Z, Yu CY, Wei H. Engineered cyclodextrin-based supramolecular hydrogels for biomedical applications. J Mater Chem B 2023; 12:39-63. [PMID: 38078497 DOI: 10.1039/d3tb02101g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cyclodextrin (CD)-based supramolecular hydrogels are polymer network systems with the ability to rapidly form reversible three-dimensional porous structures through multiple cross-linking methods, offering potential applications in drug delivery. Although CD-based supramolecular hydrogels have been increasingly used in a wide range of applications in recent years, a comprehensive description of their structure, mechanical property modulation, drug loading, delivery, and applications in biomedical fields from a cross-linking perspective is lacking. To provide a comprehensive overview of CD-based supramolecular hydrogels, this review systematically describes their design, regulation of mechanical properties, modes of drug loading and release, and their roles in various biomedical fields, particularly oncology, wound dressing, bone repair, and myocardial tissue engineering. Additionally, this review provides a rational discussion on the current challenges and prospects of CD-based supramolecular hydrogels, which can provide ideas for the rapid development of CD-based hydrogels and foster their translation from the laboratory to clinical medicine.
Collapse
Affiliation(s)
- Yuqi Zhao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Zhi Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| |
Collapse
|
22
|
Illescas-Montes R, Rueda-Fernández M, González-Acedo A, Melguizo-Rodríguez L, García-Recio E, Ramos-Torrecillas J, García-Martínez O. Effect of Punicalagin and Ellagic Acid on Human Fibroblasts In Vitro: A Preliminary Evaluation of Their Therapeutic Potential. Nutrients 2023; 16:23. [PMID: 38201853 PMCID: PMC10781179 DOI: 10.3390/nu16010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Pomegranate is a fruit that contains various phenolic compounds, including punicalagin and ellagic acid, which have been attributed to anti-inflammatory, antioxidant, and anticarcinogenic properties, among others. OBJECTIVE To evaluate the effect of punicalagin and ellagic acid on the viability, migration, cell cycle, and antigenic profile of cultured human fibroblasts (CCD-1064Sk). MTT spectrophotometry was carried out to determine cell viability, cell culture inserts were used for migration trials, and flow cytometry was performed for antigenic profile and cell cycle analyses. Cells were treated with each phenolic compound for 24 h at doses of 10-5 to 10-9 M. RESULTS Cell viability was always significantly higher in treated versus control cells except for punicalagin at 10-9 M. Doses of punicalagin and ellagic acid in subsequent assays were 10-6 M or 10-7 M, which increased the cell migration capacity and upregulated fibronectin and α-actin expression without altering the cell cycle. CONCLUSIONS These in vitro findings indicate that punicalagin and ellagic acid promote fibroblast functions that are involved in epithelial tissue healing.
Collapse
Affiliation(s)
- Rebeca Illescas-Montes
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (M.R.-F.); (L.M.-R.); (O.G.-M.)
- Institute of Biosanitary Research, Ibs.Granada, C/Doctor Azpitarte 4, 18012 Granada, Spain; (A.G.-A.); (E.G.-R.)
| | - Manuel Rueda-Fernández
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (M.R.-F.); (L.M.-R.); (O.G.-M.)
- Institute of Biosanitary Research, Ibs.Granada, C/Doctor Azpitarte 4, 18012 Granada, Spain; (A.G.-A.); (E.G.-R.)
| | - Anabel González-Acedo
- Institute of Biosanitary Research, Ibs.Granada, C/Doctor Azpitarte 4, 18012 Granada, Spain; (A.G.-A.); (E.G.-R.)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences of Melilla, University of Granada, C/Santander, 1, 52005 Melilla, Spain
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (M.R.-F.); (L.M.-R.); (O.G.-M.)
- Institute of Biosanitary Research, Ibs.Granada, C/Doctor Azpitarte 4, 18012 Granada, Spain; (A.G.-A.); (E.G.-R.)
| | - Enrique García-Recio
- Institute of Biosanitary Research, Ibs.Granada, C/Doctor Azpitarte 4, 18012 Granada, Spain; (A.G.-A.); (E.G.-R.)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences of Melilla, University of Granada, C/Santander, 1, 52005 Melilla, Spain
| | - Javier Ramos-Torrecillas
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (M.R.-F.); (L.M.-R.); (O.G.-M.)
- Institute of Biosanitary Research, Ibs.Granada, C/Doctor Azpitarte 4, 18012 Granada, Spain; (A.G.-A.); (E.G.-R.)
| | - Olga García-Martínez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (M.R.-F.); (L.M.-R.); (O.G.-M.)
- Institute of Biosanitary Research, Ibs.Granada, C/Doctor Azpitarte 4, 18012 Granada, Spain; (A.G.-A.); (E.G.-R.)
| |
Collapse
|
23
|
Munir S, Yue W, Li J, Yu X, Ying T, Liu R, You J, Xiong S, Hu Y. Effects of Phenolics on the Physicochemical and Structural Properties of Collagen Hydrogel. Polymers (Basel) 2023; 15:4647. [PMID: 38139899 PMCID: PMC10747534 DOI: 10.3390/polym15244647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
In the current era, the treatment of collagen hydrogels with natural phenolics for the improvement in physicochemical properties has been the subject of considerable attention. The present research aimed to fabricate collagen hydrogels cross-linked with gallic acid (GA) and ellagic acid (EA) at different concentrations depending on the collagen dry weight. The structural, enzymatic, thermal, morphological, and physical properties of the native collagen hydrogels were compared with those of the GA/EA cross-linked hydrogels. XRD and FTIR spectroscopic analyses confirmed the structural stability and reliability of the collagen after treatment with either GA or EA. The cross-linking also significantly contributed to the improvement in the storage modulus, of 435 Pa for 100% GA cross-linked hydrogels. The thermal stability was improved, as the highest residual weight of 43.8% was obtained for the hydrogels cross-linked with 50% GA in comparison with all the other hydrogels. The hydrogels immersed in 30%, 50%, and 100% concentrations of GA also showed improved swelling behavior and porosity, and the highest resistance to type 1 collagenase (76.56%), was obtained for 50% GA cross-linked collagen hydrogels. Moreover, GA 100% and EA 100% obtained the highest denaturation temperatures (Td) of 74.96 °C and 75.78 °C, respectively. In addition, SEM analysis was also carried out to check the surface morphology of the pristine collagen hydrogels and the cross-linked collagen hydrogels. The result showed that the hydrogels cross-linked with GA/EA were denser and more compact. However, the improved physicochemical properties were probably due to the formation of hydrogen bonds between the phenolic hydroxyl groups of GA and EA and the nitrogen atoms of the collagen backbone. The presence of inter- and intramolecular cross-links between collagen and GA or EA components and an increased density of intermolecular bonds suggest potential hydrogen bonding or hydrophobic interactions. Overall, the present study paves the way for further investigations in the field by providing valuable insights into the GA/EA interaction with collagen molecules.
Collapse
Affiliation(s)
- Sadia Munir
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Wei Yue
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Jinling Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Xiaoyue Yu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Tianhao Ying
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Juan You
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Yang Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
- Bioactive Peptide Technology Hubei Engineering Research Center, Jingzhou 434000, China
| |
Collapse
|
24
|
Wang J, Liu Z, Zhou Y, Zhu S, Gao C, Yan X, Wei K, Gao Q, Ding C, Luo T, Yang R. A multifunctional sensor for real-time monitoring and pro-healing of frostbite wounds. Acta Biomater 2023; 172:330-342. [PMID: 37806374 DOI: 10.1016/j.actbio.2023.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Flexible epidermal sensors based on conductive hydrogels hold great promise for various applications, such as wearable electronics and personal healthcare monitoring. However, the integration of conductive hydrogel epidermal sensors into multiple applications remains challenging. In this study, a multifunctional PAAm/PEG/hydrolyzed keratin (Hereinafter referred to as HK)/MXene conductive hydrogel (PPHM hydrogel) was designed as a high-performance therapeutic all-in-one epidermal sensor. This sensor not only accelerates wound healing but also provides wearable human-computer interaction. The developed sensor possesses highly sensitive sensing properties (Gauge Factor = 4.82 at high strain), strong mechanical tensile properties (capable of achieving a maximum elongation at break of 600 %), rapid self-healing capability, stable self-adhesive capability, biocompatibility, freeze resistance at -20 °C, and adjustable photo-thermal conversion capability. This therapeutic all-in-one sensor can sensitively monitor human movements, enabling the detection of small electrophysiological signals for diagnosing relevant activities and diseases. Furthermore, using a rat frostbite model, we demonstrated that the composite hydrogel sensor can serve as an effective wound dressing to accelerate the healing process. This study serves as a valuable reference for the development of multifunctional flexible epidermal sensors for personal smart health monitoring. STATEMENT OF SIGNIFICANCE: Accelerated wound healing reduces the risk of wound infection, and conductive hydrogel-based sensors can monitor physiological signals. The multifunctional application of conductive hydrogel sensors combined with wound diagnostic and therapeutic capabilities can meet personalized medical requirements for wound healing and sensor monitoring. The aim of this study is to develop a multifunctional hydrogel patch. The multifunctional hydrogel can be assembled into a flexible wearable high-performance diagnostic and therapeutic integrated sensor that can effectively accelerate the healing of frostbite wounds and satisfy the real-time monitoring of multi-application scenarios. We expect that this study will inform efforts to integrate wound therapy and sensor monitoring.
Collapse
Affiliation(s)
- Jian Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Zhenyu Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Yang Zhou
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Shilu Zhu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Chen Gao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xinze Yan
- School of Life Science, Anhui Medical University, Hefei, 230032, China
| | - Kun Wei
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Qian Gao
- School of Life Science, Anhui Medical University, Hefei, 230032, China.
| | - Chengbiao Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| | - Tingting Luo
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
25
|
do Nascimento MF, de Oliveira CR, Cardoso JC, Bordignon NCT, Gondak R, Severino P, Souto EB, de Albuquerque Júnior RLC. UV-polymerizable methacrylated gelatin (GelMA)-based hydrogel containing tannic acids for wound healing. Drug Deliv Transl Res 2023; 13:3223-3238. [PMID: 37474880 PMCID: PMC10624738 DOI: 10.1007/s13346-023-01383-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
Gelatin-based photopolymerizable methacrylate hydrogel (GelMA) is a promising biomaterial for in situ drug delivery, while aqueous extract of Punica granatum (AEPG) peel fruit rich in gallic acid and ellagic acid is used to improve wound healing. The aim of this study was to develop and analyze the healing properties of GelMA containing AEPG, gallic acid, or ellagic acid in a rodent model. GelMA hydrogels containing 5% AEPG (GelMA-PG), 1.6% gallic acid (GelMA-GA), or 2.1% ellagic acid (GelMA-EA) were produced and their mechanical properties, enzymatic degradation, and thermogravimetric profile determined. Wound closure rates, healing histological grading, and immunohistochemical counts of myofibroblasts were assessed over time. The swelling of hydrogels varied between 50 and 90%, and GelMA exhibited a higher swelling than the other groups. The GPG samples showed higher compression and Young's moduli than GelMA, GGA, and GAE. All samples degraded around 95% in 48 h. GPG and GGA significantly accelerated wound closure, improved collagenization, increased histological grading, and hastened myofibroblast differentiation in comparison to the control, GelMA, and GEA. GelMA containing AEPG (GPG) improved wound healing, and although gallic acid is the major responsible for such biological activity, a potential synergic effect played by other polyphenols present in the extract is evident.
Collapse
Affiliation(s)
| | - Clauberto R de Oliveira
- Biotechnological Postgraduate Program-RENORBIO, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-000, Brazil
| | - Juliana C Cardoso
- Postgraduate Program in Health and Environment, Tiradentes University, Aracaju, Sergipe, 49032-490, Brazil
| | - Natalia C T Bordignon
- Department of Dentistry, Post-Graduating Program in Dentistry, Federal University of Santa Catarina, Florianópolis, 88040-370, Brazil
| | - Rogério Gondak
- Department of Dentistry, Post-Graduating Program in Dentistry, Federal University of Santa Catarina, Florianópolis, 88040-370, Brazil
- Department of Pathology, Health Sciences Center, Federal University of Santa Catarina, R. Delfino Conti, S/N, Florianópolis, Santa Catarina, 88040-370, Brazil
| | - Patrícia Severino
- Post-Graduating Program in Industrial Biotechnology, University of Tiradentes, Av. Murilo Dantas, 300, Aracaju, 49010-390, Brazil
| | - Eliana B Souto
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- Associate Laboratory i4HB, Department of Pharmaceutical Technology, Faculty of Pharmacy, Institute for Health and Bioeconomy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Ricardo L C de Albuquerque Júnior
- Department of Dentistry, Post-Graduating Program in Dentistry, Federal University of Santa Catarina, Florianópolis, 88040-370, Brazil.
- Department of Pathology, Health Sciences Center, Federal University of Santa Catarina, R. Delfino Conti, S/N, Florianópolis, Santa Catarina, 88040-370, Brazil.
| |
Collapse
|
26
|
Gujju R, Dewanjee S, Singh K, Andugulapati SB, Tirunavalli SK, Jaina VK, Kandimalla R, Misra S, Puvvada N. Carbon Dots' Potential in Wound Healing: Inducing M2 Macrophage Polarization and Demonstrating Antibacterial Properties for Accelerated Recovery. ACS APPLIED BIO MATERIALS 2023; 6:4814-4827. [PMID: 37886889 DOI: 10.1021/acsabm.3c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Bacterial infections and persistent inflammation can impede the intrinsic healing process of wounds. To combat this issue, researchers have delved into the potential use of carbon dots (CDs) in the regulation of inflammation and counteract infections. These CDs were synthesized using a microwave-assisted hydrothermal process and have demonstrated outstanding antibacterial and antibiofilm properties against Gram-positive and Gram-negative bacteria. Additionally, CDs displayed biocompatibility at therapeutic concentrations and the ability to specifically target mitochondria. CD treatment effectively nullified lipopolysaccharide-triggered reactive oxygen species production by macrophages, while simultaneously promoting macrophage polarization toward an anti-inflammatory phenotype (M2), leading to a reduction in inflammation and an acceleration in wound healing. In vitro scratch assays also revealed that CDs facilitated the tissue-repairing process by stimulating epithelial cell migration during reepithelialization. In vivo studies using CDs topically applied to lipopolysaccharide (LPS)-stimulated wounds in C57/BL6 mice demonstrated significant improvements in wound healing due to enhanced fibroblast proliferation, angiogenesis, and collagen deposition. Crucially, histological investigations showed no indications of systemic toxicity in vital organs. Collectively, the application of CDs has shown immense potential in speeding up the wound-healing process by regulating inflammation, preventing bacterial infections, and promoting tissue repair. These results suggest that further clinical translation of CDs should be considered.
Collapse
Affiliation(s)
- Rajesh Gujju
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Kamini Singh
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Sai Balaji Andugulapati
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Satya Krishna Tirunavalli
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vinod Kumar Jaina
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana 506007, India
| | - Sunil Misra
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagaprasad Puvvada
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Chemistry, School of Advanced Science, VIT-AP University, Amaravati, Andhra Pradesh 522237, India
| |
Collapse
|