1
|
Guo Y, Liu Y, Zhang Z, Zhang X, Jin X, Zhang R, Chen G, Zhu L, Zhu M. Biopolymer based Fibrous Aggregate Materials for Diagnosis and Treatment: Design, Manufacturing, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414877. [PMID: 40351104 DOI: 10.1002/adma.202414877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 04/05/2025] [Indexed: 05/14/2025]
Abstract
Biopolymer-based fibrous aggregate materials (BFAMs) have gained increasing attention in biomedicine due to their excellent biocompatibility, processability, biodegradability, and multifunctionality. Especially, the medical applications of BFAMs demand advanced structure, performance, and function, which conventional trial-and-error methods struggle to provide. This necessitates the rational selection of materials and manufacturing methods to design BFAMs with various intended functions and structures. This review summarizes the current progress in raw material selection, structural and functional design, processing technology, and application of BFAMs. Additionally, the challenges encountered during the development of BFAMs are discussed, along with perspectives for future research offered.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Yifan Liu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Zeqi Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xiaozhe Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xu Jin
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Ruxu Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Guoyin Chen
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Liping Zhu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| |
Collapse
|
2
|
Chen X, Tian Q, Xiong Z, Wu M, Gong X. Flexible wearable piezoresistive physical sensors with photothermal conversion and self-cleaning functions for human motion monitoring. NANOSCALE 2024; 16:21881-21892. [PMID: 39498558 DOI: 10.1039/d4nr04063e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Flexible wearable sensors can mimic the sensing ability of the skin and transform deformation stimuli into monitorable electrical signals, making them favorable in the fields of personalized healthcare, human motion monitoring, and remote monitoring systems. Here, an innovative piezoresistive physical sensor based on fluorine-free superhydrophobic dodecyltrimethoxysilane/polypyrrole/carbon nanotube (DTMS/PPy/CNT) cotton fabrics (DPC-CFs) was assembled via an environmentally safe and simple dip-coating method. The flexible wearable sensor exhibits self-cleaning capability (high water contact angle of 158.3°), good electrical conductivity (45.43 S m-1), photo-thermal conversion (surface temperature up to 94.8 °C), rapid response/recovery time (60 ms/50 ms), and excellent stability (>2400 cycles), and was successfully applied to dynamic monitoring of a series of human activities such as wrist pulse, voice recognition, and finger bending. Furthermore, the development of the superhydrophobic piezoresistive physical sensor derived from biodegradable cotton fabrics means an important step forward in the evolution of wearable sensors, which not only provide better coverage of three-dimensional irregular surfaces to capture mechanical stimulation signals but also demonstrate better comfort, flexibility and versatility. It is foreseen that such sensors, which are fabricated by utilizing abundant renewable and biodegradable green raw materials, have a broad application prospect in the next generation of biomedical systems, fitness, and human-computer interactive devices.
Collapse
Affiliation(s)
- Xingzhong Chen
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Qianqian Tian
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Xiong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.
| |
Collapse
|
3
|
Zhu K, Li Z, Nie L, Du S, Zeng B, Song D, Zhang J, Wang J, Zhang J, Xu W. Preparation of chitin twisted fiber and its functional applications. Int J Biol Macromol 2024; 277:134124. [PMID: 39067733 DOI: 10.1016/j.ijbiomac.2024.134124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Chitin has garnered significant attention due to its renewable, biocompatibility and biodegradability, while its practical application seriously hindered as the functionality of chitin itself can no longer meet people's increasing requirements for materials. Here, an effective method is successfully built for high-performance chitin fibers fabrication through a multi-step strategy that involved chemical pre-crosslinking, followed by wet-twisting and wet-stretching techniques, combined with physical cross-linking. The as-prepared chitin fiber exhibited a smooth surface, adjustable diameter, and mechanical strong properties (144.6 MPa). More importantly, functional chitin fiber with magnetic or conductive abilities can be easily obtained by spraying Fe3O4 particles or Ag nanowire on the chemical pre-crosslinking chitin gel film before stretching and twisting. The doped functional inorganic particles exist in a continuous ribbon structure in the fiber reduced the decrease in material strength caused by uneven particles dispersion, resulting 88.4 % of stress and 91.6 % of strain retention. This work not only bestow invaluable insights into the fabrication of functional chitin fibers but also provide a novel approach to solve the problem of poor compatibility between organic and inorganic composite materials.
Collapse
Affiliation(s)
- Kunkun Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Zuhuan Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Ling Nie
- School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Siqian Du
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Beini Zeng
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Dengpeng Song
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China.
| | - Jinming Zhang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Jinfeng Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China.
| | - Jun Zhang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
4
|
Cheng W, Dong J, Sun R. Self-Powered Sensors Made with Fabric-Based Electrodes and a Conductive Coating. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35516-35524. [PMID: 38935057 DOI: 10.1021/acsami.4c04738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Amidst the growing challenge of meeting global energy demands with conventional sources, self-powered devices offer promising solution. Flexible and stretchable electronics are pivotal in wearable technology, enhancing the scope and functionality of these devices. This study employs potassium sodium niobite-lithium antimonate (K0.5Na0.5NbO3-LiSbO3) nanoparticles as fillers in polyvinylidene fluoride (PVDF) to fabricate piezoelectric thin films. These films are integrated with fabric-based electrodes to develop high-performance, flexible self-powered sensors. The sensor comprises a fabric-based electrode with polypyrrole (PPy) coated on plain nylon fabric, a 0.93KNN-0.07LS/PVDF composite piezoelectric thin film, and a protective PET layer. Results demonstrate that the 0.93KNN-0.07LS/PVDF-PPy/nylon composite sensors exhibit a stable piezoelectric output. Under 6 Hz and 10 N excitation, the piezoelectric output reaches approximately 6.1 V upon pressing. Additionally, the device shows good linear sensitivity in the 2-20 N pressure range and produces clear, regular output waveforms under cyclic pressures of varying frequencies and amplitudes, indicating excellent response repeatability. Even after extensive bending, twisting, and 5000 pressing cycles, the sensors maintain considerable cyclic stability, demonstrating high durability. These tests collectively indicate that the developed sensors possess high sensitivity, flexibility, durability, stability, and significant self-powered potential. This research provides a reference for the next generation of textile-based electrodes and offers potential strategies for flexible, wearable applications.
Collapse
Affiliation(s)
- Wenping Cheng
- School of Textile Science and Engineering, Xi 'an Polytechnic University, Xi 'an, Shaanxi 710048, China
| | - Jie Dong
- School of Textile Science and Engineering, Xi 'an Polytechnic University, Xi 'an, Shaanxi 710048, China
- State Key Laboratory of Intelligent Textile Materials and Products (Cultivation), Xi 'an Polytechnic University, Xi 'an, Shaanxi 710048, China
| | - Runjun Sun
- School of Textile Science and Engineering, Xi 'an Polytechnic University, Xi 'an, Shaanxi 710048, China
- State Key Laboratory of Intelligent Textile Materials and Products (Cultivation), Xi 'an Polytechnic University, Xi 'an, Shaanxi 710048, China
| |
Collapse
|
5
|
Liu Y, Cheng F, Li K, Yao J, Li X, Xia Y. Lightweight, flame retardant Janus carboxymethyl cellulose aerogel with fire-warning properties for smart sensor. Carbohydr Polym 2024; 328:121730. [PMID: 38220348 DOI: 10.1016/j.carbpol.2023.121730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Lightweight, flame retardant biomass aerogels combining with multi-functionalities are promising for thermal insulation, noise absorption and smart sensors. However, high flammability hinders the application of these aerogels in extreme condition. Herein, lightweight, flame retardant aerogel with fire-warning properties fabricated from resource-abundant graphite and green carboxymethyl cellulose (CMC) is reported. During sonicating expandable graphite (EG) in CMC solution, CMC not only fabricates the downsizing process via hydrogen bonding effect but also forms stable dispersions. Then biomass aerogel is fabricated by freeze-drying strategy and enhanced by metal ionic cross-linking method. This aerogel demonstrates Janus properties for electrical conductivity and thermal conductivity. Due to the synergistic flame retardant effect of graphite nanocomposite and metal ions with a barrier effect and catalytic carbonization capacity, the flame retardancy of these aerogels are enhanced with fire-warning properties. Furthermore, these aerogels are used for monitoring physical deformations as smart sensors, which provides inspiration and a sustainable solution for developing low-cost biomass aerogel with multifunction.
Collapse
Affiliation(s)
- Yide Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Fangfang Cheng
- Qingdao Yuanhai New Material Technology co., Ltd, Qingdao 266000, China
| | - Kai Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jiuyong Yao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiankai Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yanzhi Xia
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
6
|
Qi X, Liu Y, Yu L, Yu Z, Chen L, Li X, Xia Y. Versatile Liquid Metal/Alginate Composite Fibers with Enhanced Flame Retardancy and Triboelectric Performance for Smart Wearable Textiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303406. [PMID: 37551040 PMCID: PMC10582420 DOI: 10.1002/advs.202303406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Indexed: 08/09/2023]
Abstract
Liquid metal (LM) shows the superiority in smart wearable devices due to its biocompatibility and electromagnetic interference (EMI) shielding. However, LM based fibers that can achieve multifunctional integrated applications with biodegradability remain a daunting challenge. Herein, versatile LM based fibers are fabricated first by sonication in alginate solution to obtain LM micro/nano droplets and then wet-spinning into LM/alginate composite fibers. By mixing with high-concentration alginate solution (4-6 wt.%), the LM micro/nano droplets stability (colloidal stability for > 30 d and chemical stability for > 45 d) are not only improved, but also facilitate its spinning into fibers through bimetallic ions (e.g., Ga3+ and Ca2+ ) chelation strategy. These resultant fibers can be woven into smart textiles with excellent flexibility, air permeability, water/salt resistance, and high temperature tolerance (-196-150 °C). In addition, inhibition of smoldering result from the LM droplets and bimetallic ions is achieved to enhance flame retardancy. Furthermore, these fibers combine the exceptional properties of LM droplets (e.g., photo-thermal effect and EMI shielding) and alginate fibers (e.g., biocompatibility and biodegradability), applicable in wearable heating devices, wireless communication, and triboelectric nanogenerator, making it a promising candidate for flexible smart textiles.
Collapse
Affiliation(s)
- Xiulei Qi
- State Key Laboratory of Bio‐Fibers and Eco‐TextilesCollaborative Innovation Center for Marine Biomass FibersMaterials and Textiles of Shandong ProvinceCollege of Materials Science and EngineeringInstitute of Marine Biobased MaterialsQingdao UniversityNingxia Road 308Qingdao266071P. R. China
| | - Yide Liu
- State Key Laboratory of Bio‐Fibers and Eco‐TextilesCollaborative Innovation Center for Marine Biomass FibersMaterials and Textiles of Shandong ProvinceCollege of Materials Science and EngineeringInstitute of Marine Biobased MaterialsQingdao UniversityNingxia Road 308Qingdao266071P. R. China
| | - Lei Yu
- State Key Laboratory of Bio‐Fibers and Eco‐TextilesCollaborative Innovation Center for Marine Biomass FibersMaterials and Textiles of Shandong ProvinceCollege of Materials Science and EngineeringInstitute of Marine Biobased MaterialsQingdao UniversityNingxia Road 308Qingdao266071P. R. China
| | - Zhenchuan Yu
- State Key Laboratory of Bio‐Fibers and Eco‐TextilesCollaborative Innovation Center for Marine Biomass FibersMaterials and Textiles of Shandong ProvinceCollege of Materials Science and EngineeringInstitute of Marine Biobased MaterialsQingdao UniversityNingxia Road 308Qingdao266071P. R. China
| | - Long Chen
- State Key Laboratory of Bio‐Fibers and Eco‐TextilesCollaborative Innovation Center for Marine Biomass FibersMaterials and Textiles of Shandong ProvinceCollege of Materials Science and EngineeringInstitute of Marine Biobased MaterialsQingdao UniversityNingxia Road 308Qingdao266071P. R. China
| | - Xiankai Li
- State Key Laboratory of Bio‐Fibers and Eco‐TextilesCollaborative Innovation Center for Marine Biomass FibersMaterials and Textiles of Shandong ProvinceCollege of Materials Science and EngineeringInstitute of Marine Biobased MaterialsQingdao UniversityNingxia Road 308Qingdao266071P. R. China
| | - Yanzhi Xia
- State Key Laboratory of Bio‐Fibers and Eco‐TextilesCollaborative Innovation Center for Marine Biomass FibersMaterials and Textiles of Shandong ProvinceCollege of Materials Science and EngineeringInstitute of Marine Biobased MaterialsQingdao UniversityNingxia Road 308Qingdao266071P. R. China
| |
Collapse
|