1
|
Wen T, Chen W, Wang F, Zhang R, Chen C, Zhang M, Ma T. The roles and functions of ergothioneine in metabolic diseases. J Nutr Biochem 2025; 141:109895. [PMID: 40058711 DOI: 10.1016/j.jnutbio.2025.109895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/25/2025] [Accepted: 03/04/2025] [Indexed: 04/04/2025]
Abstract
The global prevalence of metabolic diseases is on the increase, and it has become a significant threat to the health and lives of individuals. Ergothioneine (EGT) is a natural betaine amino acid found in various foods, particularly mushrooms. EGT cannot be synthesized by mammals; it is absorbed into small intestinal epithelial cells by a cationic protein, the novel organic cation transporter 1 (OCTN1), and transported to certain organs including liver, spleen, kidney, lung, heart, eyes and brain. EGT has been reported to exhibit antioxidant, anti-inflammatory, anti-apoptotic, anti-aging, and metal-chelating effects. The unique chemical properties and biological functions of EGT position it as a promising candidate for the research and treatment of metabolic diseases. This review summarizes EGT's capacities, potential therapeutic effects on multiple metabolic diseases, and their specific mechanisms. Finally, we outline challenges for future research on EGT and aspire to establish it as a prospective therapeutic agent for metabolic diseases.
Collapse
Affiliation(s)
- Tingting Wen
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Wanjing Chen
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Fengjing Wang
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Rui Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Cheng Chen
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China.
| | - Mingliang Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Teng Ma
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
2
|
Mao Y, Xie Z, Zhang X, Fu Y, Yu X, Deng L, Zhang X, Hou B, Wang X, Ma M, Ren F. Ergothioneine Ameliorates Liver Fibrosis by Inhibiting Glycerophospholipids Metabolism and TGF-β/Smads Signaling Pathway: Based on Metabonomics and Network Pharmacology. J Appl Toxicol 2025; 45:514-530. [PMID: 39579000 DOI: 10.1002/jat.4728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Ergothioneine (EGT) is a diet-derived natural sulfur-containing amino acid that exhibits strong anti-oxidant and anti-inflammation activities. Oxidative stress and chronic inflammatory injury are predominant pro-fibrogenic factors. Therefore, EGT may have therapeutic potential against liver fibrosis; however, its underlying mechanism is incompletely understood. This study aimed at investigating the protective effects of EGT on liver fibrosis based on metabonomics and network pharmacology. A mouse model of liver fibrosis was established by intraperitoneal injection with 40% CCl4 solution (2 mL/kg, twice a week) and intragastric administration with EGT (5, 10 mg/kg/d) for six weeks. Results showed that EGT improved liver function by reducing serum levels of ALT (alanine aminotransferase), AST (aspartate aminotransferase), and TBIL (total bilirubin), and alleviated liver fibrosis by reducing LN (laminin) and HyP (hydroxyproline) levels, decreasing expressions of α-SMA (α-smooth muscle actin), Col-I (collagen type I), and Col-III (collagen type III), and improving pathological changes. EGT also significantly inhibited CCl4-induced hepatic inflammation and TGF-β/Smads signaling pathway. Metabolomics identified six key metabolic pathways, such as purine metabolism, glycerophospholipid metabolism, and sphingolipid metabolism, and eight key metabolites, such as xanthine, guanine, ATP, phosphatidylcholine, and sphingosine. Network pharmacology analysis showed that IL-17, cAMP and NF-κB signaling pathways were potential key mechanisms. Integrated analysis revealed that PLA2G2A might be a potential target of EGT against liver fibrosis. EGT may inhibit the glycerophospholipid metabolism through PLA2G2A to inhibit the TGF-β/Smads signaling pathway, thereby alleviating fibrosis. The present study indicates that EGT may be considered a valid therapeutic strategy to regress liver fibrosis, and provides novel insights into the pharmacological mechanism of EGT against liver fibrosis.
Collapse
Affiliation(s)
- Yaping Mao
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Zhenghui Xie
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Xiangxia Zhang
- Department of Anatomy, School of Basic Medicine, Shenyang Medical College, Shenyang, China
- Department of Morphology, School of Nursing and Health, Qingdao Huanghai University, Qingdao, China
| | - Yu Fu
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Xiaotong Yu
- Department of Anatomy, School of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Lili Deng
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Xiu Zhang
- Department of Anatomy, School of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Bo Hou
- Department of Morphology, School of Nursing and Health, Qingdao Huanghai University, Qingdao, China
| | - Xiao Wang
- Department of Gastroenterology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Mingyue Ma
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Fu Ren
- Department of Anatomy, School of Basic Medicine, Shenyang Medical College, Shenyang, China
- Key Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, Shenyang Medical College, Shenyang, China
- Key Laboratory of Phenomics in Shenyang, Shenyang Medical College, Shenyang, China
| |
Collapse
|
3
|
Du Z, Liu X, Xie Z, Wang Q, Lv Z, Li L, Wang H, Xue D, Zhang Y. The relationship between a high-fat diet, gut microbiome, and systemic chronic inflammation: insights from integrated multiomics analysis. Am J Clin Nutr 2025; 121:643-653. [PMID: 39746397 DOI: 10.1016/j.ajcnut.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/29/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND The detrimental effects of a high-fat diet (HFD) extend beyond metabolic consequences and include systemic chronic inflammation (SCI), immune dysregulation, and gut health disruption. OBJECTIVES In this study, we used Mendelian randomization (MR) to investigate the relationship between HFD, gut microbiota, and SCI. METHODS Genetic variants associated with dietary fat were utilized to explore causal relationships. Genome-wide association study data for the analyses of the gut microbiota, inflammatory cytokines, immune cell characteristics, and serum metabolites were obtained from European individuals. Mediation analysis was used to reveal potential mediating factors. The GMrepo database was used to analyze the bacterial composition in different groups. Transcriptomic and single-cell sequencing analyses explored inflammation and barrier function in colonic tissue. RESULTS HFD consumption was linked to changes in the abundance of 3 bacterial families and 11 bacterial genera. Combined with the GMrepo database, the increased abundance of the genus Lachnospiraceae_FCS020group and the decreased abundance of genus Bacteroides and genus Barnesiella are consistent with the MR results. Transcriptomic and single-cell sequencing analyses revealed intestinal inflammation and mucosal barrier dysfunction in HFD-fed mice. MR revealed a link between HFD consumption and increased levels of interleukin (IL)-18 [odds ratio (OR): 3.64, 95%CI: 1.24, 10.69, P = 0.02], MIG (OR = 3.14, 95%CI: 1.17, 8.47, P = 0.02), IL-13 [OR = 3.21, 95% confidence interval (CI): 1.08, -9.52, P = 0.04], and IL-2RA (OR = 2.93, 95%CI: 1.01, 8.53, P = 0.049). Twenty-nine immune cell signatures, including altered monocyte and T-cell subsets, were affected by HFD consumption. Twenty-six serum metabolites that are linked to HFD consumption, particularly lipid and amino acid metabolites, were identified. The positive gut microbiota exhibit extensive associations with inflammatory cytokines. In particular, Lachnospiraceae_FCS020 group (OR: 1.93, 95% CI: 1.11, 3.37, P = 0.02) may play a mediating role in HFD-induced increases in IL-2RA concentrations. CONCLUSIONS Microbial dysbiosis appears to be an important mechanism for HFD-induced SCI. The Lachnospiraceae_FCS020 group may act as a key genus in HFD-mediated elevation of IL-2RA.
Collapse
Affiliation(s)
- Zhiwei Du
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuxu Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhihong Xie
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiang Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Shandong, China
| | - Zhenyi Lv
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lianghao Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Heming Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongbo Xue
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yingmei Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
4
|
Ye X, Chen T, Du Y, Zhao R, Chen L, Wu D, Hu J. Folic acid-based hydrogels co-assembled with protocatechuic acid for enhanced treatment of inflammatory bowel disease. Colloids Surf B Biointerfaces 2025; 246:114367. [PMID: 39541908 DOI: 10.1016/j.colsurfb.2024.114367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Inflammatory bowel disease (IBD) presents a significant therapeutic challenge due to the need for oral drug delivery systems that withstand acidic environment of stomach while effectively targeting intestinal inflammation. To address this issue, we created a novel hydrogel system based on a folic acid (FA)-dopamine (DA) conjugate, co-assembled with protocatechuic acid (PCA), to form F-DP hydrogels. These hydrogels demonstrated robust anti-gastric acid, mucosal adhesive, and injectable properties, enhancing their efficacy for targeted delivery. In DSS-induced colitis mouse models, treatment with F-DP hydrogels resulted in significant therapeutic improvements, including increased body weight, reduced disease activity index (DAI), and maintained colon length. Biochemical assays revealed that F-DP hydrogels significantly enhanced antioxidant enzyme activities (GSH and SOD) and reduced oxidative stress markers (NO and MDA). Histological assessments confirmed effective repair of the colonic mucosal barrier, restoration of tight junction protein ZO-1, and reduction of inflammatory lesions. Furthermore, immunofluorescence staining indicated that F-DP hydrogels facilitated macrophages polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, thereby reducing inflammation and promoting tissue repair. Our study demonstrates that F-DP hydrogels show significant potential for improving IBD treatment through enhanced gastric resistance, intestinal adhesion, and synergistic anti-inflammatory effects, warranting further investigation for clinical applications.
Collapse
Affiliation(s)
- Ximei Ye
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yinan Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Runan Zhao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lihang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Luo W, Liu J, Zhang M, Jiang Y, Sun B, Xie S, Sobhy Dawood A, Attia Algharib S, Gao X. Florfenicol core-shell composite nanogels as oral administration for efficient treatment of bacterial enteritis. Int J Pharm 2024; 662:124499. [PMID: 39033938 DOI: 10.1016/j.ijpharm.2024.124499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
To reduce the bitterness of florfenicol, avoid its degradation by gastric acid, and enhance its antibacterial activity against Escherichia coli by targeting and slowly releasing drugs at the site of intestinal infection, with pectin as an anion carrier and chitosan oligosaccharides (COS) as a cationic carrier, florfenicol-loaded COS@pectin core nanogels were self-assembled by electrostatic interaction and then encapsulated in sodium carboxymethylcellulose (CMCNa) shell nanogels through the complexation of CMCNa and Ca2+ to prepare florfenicol core-shell composite nanogels in this study. The florfenicol core-shell composite nanogels were investigated for their formula choice, physicochemical characterization, pH-responsive performances, antibacterial activity, therapeutic efficacy, and in vitro and in vivo biosafety studies. The results indicated that the optimized formula was 0.6 g florfenicol, 0.79 g CMCNa, 0.30 g CaCl2, 0.05 g COS, and 0.10 g pectin, respectively. In addition, the mean particle diameter, polydispersity index, zeta potential, loading capacity, and encapsulation efficiency were 124.0 ± 7.2 nm, -22.9 ± 2.5 mV, 0.42 ± 0.03, 43.4 % ± 3.1 %, and 80.5 % ± 3.4 %, respectively. The appearance, lyophilized mass, resolvability, scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and fourier transform infrared (FTIR) showed that the florfenicol core-shell composite nanogels were successfully prepared. Florfenicol core-shell composite nanogels had satisfactory stability, rheology, and pH-responsiveness, which were conducive to avoid degradation by gastric acid and achieve targeted and slow release at intestinal infection sites. More importantly, florfenicol core-shell composite nanogels had excellent antibacterial activity against Escherichia coli, a satisfactory therapeutic effect, and good palatability. In vitro and in vivo biosafety studies suggested the great promise of florfenicol core-shell composite nanogels. Therefore, the prepared florfenicol core-shell composite nanogels may be helpful for the treatment of bacterial enteritis as a biocompatible oral administration.
Collapse
Affiliation(s)
- Wanhe Luo
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China.
| | - Jinhuan Liu
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China; Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, Sichuan 610000, China
| | - Mengdi Zhang
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Yongtao Jiang
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Beibei Sun
- Instrumental Analysis Center, Tarim University, Alar, Xinjiang 843300, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MARA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ali Sobhy Dawood
- Medicine and Infectious Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt
| | - Samah Attia Algharib
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, QG, Egypt
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing Jiangsu 210095, China
| |
Collapse
|
6
|
Lu B, Zhao S, Zhang J, Zhan J, Zhang J, Liu Z, Zhang J. Anti-inflammatory and antioxidant effects on skin based on supramolecular hyaluronic acid-ectoin. J Mater Chem B 2024; 12:8408-8419. [PMID: 39086221 DOI: 10.1039/d4tb00459k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We addressed the damage caused by internal and external factors on the skin, as well as the aging phenomenon caused by delayed repair after damage. We prepared supramolecular hyaluronic acid-ectoin (HA-ECT) by combining theoretical calculations and experimental research, using intermolecular forces between hyaluronic acid and ectoin. This supramolecule has good stability, safety, and skin permeability and can penetrate the stratum corneum of the skin, reaching the epidermis and dermis of the skin. Compared with ectoin, the permeability of the supramolecule HA-ECT was 3.39-fold higher. Supramolecular HA-ECT can promote the proliferation of keratinocytes and fibroblasts, significantly increase the content of type collagen-I, reduce the expression of inflammatory factors in keratinocytes, and enhance skin hydration and repair effects. HA-ECT can reduce intracellular reactive oxygen species and inhibit the expression of matrix metalloproteinase-1 (reduced by 1.27-fold) to improve skin photoaging. Therefore, supramolecular HA-ECT has potential application in the field of cosmetics for skin antioxidants, anti-aging, and repair.
Collapse
Affiliation(s)
- Beibei Lu
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Shenzhen 518020, Guangdong, China.
- The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen 518020, Guangdong, China
- Department of Shenzhen People's Hospital Geriatrics Center, Shenzhen 518020, Guangdong, China
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China.
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Siran Zhao
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, 100029, China
| | - Jichuan Zhang
- Shenzhen Shinehigh Innovation Technology Co., Ltd., Shenzhen 518055, P. R. China
| | - Jingbo Zhan
- Shenzhen Shinehigh Innovation Technology Co., Ltd., Shenzhen 518055, P. R. China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Shenzhen 518020, Guangdong, China.
- The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen 518020, Guangdong, China
- Department of Shenzhen People's Hospital Geriatrics Center, Shenzhen 518020, Guangdong, China
| | - Zhe Liu
- Bloomage Biotech Co., Ltd., Jinan, Shandong 250104, China.
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China.
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| |
Collapse
|
7
|
Li W, Zhan M, Wen Y, Chen Y, Zhang Z, Wang S, Tian D, Tian S. Recent Progress of Oral Functional Nanomaterials for Intestinal Microbiota Regulation. Pharmaceutics 2024; 16:921. [PMID: 39065618 PMCID: PMC11280463 DOI: 10.3390/pharmaceutics16070921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The gut microbiota is closely associated with human health, and alterations in gut microbiota can influence various physiological and pathological activities in the human body. Therefore, microbiota regulation has become an important strategy in current disease treatment, albeit facing numerous challenges. Nanomaterials, owing to their excellent protective properties, drug release capabilities, targeting abilities, and good biocompatibility, have been widely developed and utilized in pharmaceuticals and dietary fields. In recent years, significant progress has been made in research on utilizing nanomaterials to assist in regulating gut microbiota for disease intervention. This review explores the latest advancements in the application of nanomaterials for microbiota regulation and offers insights into the future development of nanomaterials in modulating gut microbiota.
Collapse
Affiliation(s)
- Wanneng Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Minle Zhan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Yue Wen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Yu Chen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Zhongchao Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
8
|
Tian X, Guo J, Gu C, Wang H, Wang D, Liao Y, Zhu S, Zhao M, Gu Z. Ergothioneine-Sodium Hyaluronate Dressing: A Promising Approach for Protecting against Radiation-Induced Skin Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29917-29929. [PMID: 38813785 DOI: 10.1021/acsami.4c05416] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Radiotherapy commonly causes damage to healthy tissues, particularly radiation-induced skin injury (RISI) that affects a significant majority of patients undergoing radiotherapy. Effective treatments for RISI are lacking. This study focuses on the pathogenesis of RISI, which primarily involves oxidative stress. Excessive reactive oxygen species (ROS) generation during radiation induces damage to biological macromolecules, triggering oxidative stress and inflammation. To address this, ergothioneine (EGT), a natural and biocompatibile thiol compound with excellent antioxidant activity, is explored as a potential radiation-protective agent. By utilizing its specific transport and absorption in the skin tissue, as well as its efficient and stable clearance of radiation-induced "ROS storm", EGT is combined with sodium hyaluronate (NaHA) to develop a novel radiation protective dressing suitable for the skin. This EGT-NaHA dressing demonstrates an effective ability to scavenge free radicals and reduce oxidative stress in vitro and in vivo, reducing cellular apoptosis and inflammation. These results demonstrate the protective properties of EGT against RISI, with far-reaching implications for research and development in the field of radioprotection.
Collapse
Affiliation(s)
- Xinyi Tian
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junsong Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglu Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - You Liao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoru Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
- Department of Gastrointestinal Surgery, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Man J, Shen Y, Song Y, Yang K, Pei P, Hu L. Biomaterials-mediated radiation-induced diseases treatment and radiation protection. J Control Release 2024; 370:318-338. [PMID: 38692438 DOI: 10.1016/j.jconrel.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
In recent years, the intersection of the academic and medical domains has increasingly spotlighted the utilization of biomaterials in radioactive disease treatment and radiation protection. Biomaterials, distinguished from conventional molecular pharmaceuticals, offer a suite of advantages in addressing radiological conditions. These include their superior biological activity, chemical stability, exceptional histocompatibility, and targeted delivery capabilities. This review comprehensively delineates the therapeutic mechanisms employed by various biomaterials in treating radiological afflictions impacting the skin, lungs, gastrointestinal tract, and hematopoietic systems. Significantly, these nanomaterials function not only as efficient drug delivery vehicles but also as protective agents against radiation, mitigating its detrimental effects on the human body. Notably, the strategic amalgamation of specific biomaterials with particular pharmacological agents can lead to a synergistic therapeutic outcome, opening new avenues in the treatment of radiation- induced diseases. However, despite their broad potential applications, the biosafety and clinical efficacy of these biomaterials still require in-depth research and investigation. Ultimately, this review aims to not only bridge the current knowledge gaps in the application of biomaterials for radiation-induced diseases but also to inspire future innovations and research directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Jianping Man
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanhua Shen
- Experimental Animal Centre of Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215005, China
| | - Yujie Song
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China..
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China..
| |
Collapse
|
10
|
Halliwell B, Cheah I. Are age-related neurodegenerative diseases caused by a lack of the diet-derived compound ergothioneine? Free Radic Biol Med 2024; 217:60-67. [PMID: 38492784 DOI: 10.1016/j.freeradbiomed.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
We propose that the diet-derived compound ergothioneine (ET) is an important nutrient in the human body, especially for maintenance of normal brain function, and that low body ET levels predispose humans to significantly increased risks of neurodegenerative (cognitive impairment, dementia, Parkinson's disease) and possibly other age-related diseases (including frailty, cardiovascular disease, and eye disease). Hence, restoring ET levels in the body could assist in mitigating these risks, which are rapidly increasing due to ageing populations globally. Prevention of neurodegeneration is especially important, since by the time dementia is usually diagnosed damage to the brain is extensive and likely irreversible. ET and vitamin E from the diet may act in parallel or even synergistically to protect different parts of the brain; both may be "neuroprotective vitamins". The present article reviews the substantial scientific basis supporting these proposals about the role of ET.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| | - Irwin Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| |
Collapse
|
11
|
Chen C, Beloqui A, Xu Y. Oral nanomedicine biointeractions in the gastrointestinal tract in health and disease. Adv Drug Deliv Rev 2023; 203:115117. [PMID: 37898337 DOI: 10.1016/j.addr.2023.115117] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Oral administration is the preferred route of administration based on the convenience for and compliance of the patient. Oral nanomedicines have been developed to overcome the limitations of free drugs and overcome gastrointestinal (GI) barriers, which are heterogeneous across healthy and diseased populations. This review aims to provide a comprehensive overview and comparison of the oral nanomedicine biointeractions in the gastrointestinal tract (GIT) in health and disease (GI and extra-GI diseases) and highlight emerging strategies that exploit these differences for oral nanomedicine-based treatment. We introduce the key GI barriers related to oral delivery and summarize their pathological changes in various diseases. We discuss nanomedicine biointeractions in the GIT in health by describing the general biointeractions based on the type of oral nanomedicine and advanced biointeractions facilitated by advanced strategies applied in this field. We then discuss nanomedicine biointeractions in different diseases and explore how pathological characteristics have been harnessed to advance the development of oral nanomedicine.
Collapse
Affiliation(s)
- Cheng Chen
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; WEL Research Institute, avenue Pasteur, 6, 1300 Wavre, Belgium.
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|