1
|
Kalulu M, Chilikwazi B, Hu J, Fu G. Soft Actuators and Actuation: Design, Synthesis, and Applications. Macromol Rapid Commun 2025; 46:e2400282. [PMID: 38850266 DOI: 10.1002/marc.202400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Soft actuators are one of the most promising technological advancements with potential solutions to diverse fields' day-to-day challenges. Soft actuators derived from hydrogel materials possess unique features such as flexibility, responsiveness to stimuli, and intricate deformations, making them ideal for soft robotics, artificial muscles, and biomedical applications. This review provides an overview of material composition and design techniques for hydrogel actuators, exploring 3D printing, photopolymerization, cross-linking, and microfabrication methods for improved actuation. It examines applications of hydrogel actuators in biomedical, soft robotics, bioinspired systems, microfluidics, lab-on-a-chip devices, and environmental, and energy systems. Finally, it discusses challenges, opportunities, advancements, and regulatory aspects related to hydrogel actuators.
Collapse
Affiliation(s)
- Mulenga Kalulu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Bright Chilikwazi
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| |
Collapse
|
2
|
Yin X, He S, Fu X, Xiong X, Song Y, Zhao Q. Shape-Regulated Motion and Energy Conversion of Polyelectrolyte Membrane Actuators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407560. [PMID: 39139020 DOI: 10.1002/adma.202407560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Indexed: 08/15/2024]
Abstract
Smart actuators hold great potential in soft robotics and sensors, but their movement at the fluid interface is less understood and controlled, hindering their performances and applications in complicated fluids. Here an ethanol-containing polyelectrolyte actuator is prepared that demonstrates excellent actuating performance via the Marangoni effect. These actuators exhibit enduring (17 min), repeatable (50 cycles), and autonomous motion on the water surface. More importantly, the motion of actuators are dependent on their shapes. Polygonal actuators with more edges exhibit round motion attached to walls of containers, while the actuators with few edges move randomly. On the basis of this property, the circular actuators can pass through pipe bends with S-shaped complex geometry. These unique advantages lend the actuators to successful applications in wireless sensing (standard 0-5 V level signals) for locating obstructions inside invisible pipes and continuous energy harvesting (7700 nC per cycle) for micro mechanical energy.
Collapse
Affiliation(s)
- Xianze Yin
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Shuyan He
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Xinming Fu
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Xiaoshuang Xiong
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Yiheng Song
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Qiang Zhao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
3
|
Chen F, Wu X, Lu G, Nie J, Zhu X. Thermochromic Hydrogels with Adjustable Transition Behavior for Smart Windows. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38593302 DOI: 10.1021/acsami.3c19272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
With the fast economic development and accelerating urbanization, more and more skyscrapers made entirely of concrete and glass are being constructed. To keep a comfortable indoor environment, massive energy for air conditioning or heating appliances is consumed. A huge amount of heat (>30%) is gained or released through glass windows. Using smart windows with the capability to modulate light is an effective way to reduce building energy consumption. Thermochromic hydrogel is one of the potential smart window materials due to its excellent thermal response, high radiation-blocking efficiency, cost-effectiveness, biocompatibility, and good uniformity. In this work, polyhydroxypropyl acrylate (PHPA) hydrogels with controllable lower critical solution temperature (LCST) were prepared by photopolymerization. The transition temperature and transition rate under "static transition" conditions were investigated. Unlike "static" conditions in which the transition temperature was not affected by the initial and final temperature and heating/cooling ramp, the transition temperature varied with the rate of temperature change under dynamic conditions. The "dynamic" transition temperature of the PHPA hydrogel gradually increased with the increase of the heating rate. It was the result of the movement of the molecular chains lagging behind the temperature change when the temperature change was too fast. The results of the solar irradiation experiment by filling PHPA hydrogels into double glazing windows showed that the indoor temperature was about 15 °C lower than that of ordinary glass windows, indicating that it can significantly reduce the energy consumption of air conditioning. In addition, a wide range of adjustable transition temperatures and fast optical response make PHPA hydrogels potentially applicable to smart windows.
Collapse
Affiliation(s)
- Fuping Chen
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xuewei Wu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Guoqiang Lu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiaoqun Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
4
|
Wu J, Xue W, Yun Z, Liu Q, Sun X. Biomedical applications of stimuli-responsive "smart" interpenetrating polymer network hydrogels. Mater Today Bio 2024; 25:100998. [PMID: 38390342 PMCID: PMC10882133 DOI: 10.1016/j.mtbio.2024.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
In recent years, owing to the ongoing advancements in polymer materials, hydrogels have found increasing applications in the biomedical domain, notably in the realm of stimuli-responsive "smart" hydrogels. Nonetheless, conventional single-network stimuli-responsive "smart" hydrogels frequently exhibit deficiencies, including low mechanical strength, limited biocompatibility, and extended response times. In response, researchers have addressed these challenges by introducing a second network to create stimuli-responsive "smart" Interpenetrating Polymer Network (IPN) hydrogels. The mechanical strength of the material can be significantly improved due to the topological entanglement and physical interactions within the interpenetrating structure. Simultaneously, combining different network structures enhances the biocompatibility and stimulus responsiveness of the gel, endowing it with unique properties such as cell adhesion, conductivity, hemostasis/antioxidation, and color-changing capabilities. This article primarily aims to elucidate the stimulus-inducing factors in stimuli-responsive "smart" IPN hydrogels, the impact of the gels on cell behaviors and their biomedical application range. Additionally, we also offer an in-depth exposition of their categorization, mechanisms, performance characteristics, and related aspects. This review furnishes a comprehensive assessment and outlook for the advancement of stimuli-responsive "smart" IPN hydrogels within the biomedical arena. We believe that, as the biomedical field increasingly demands novel materials featuring improved mechanical properties, robust biocompatibility, and heightened stimulus responsiveness, stimuli-responsive "smart" IPN hydrogels will hold substantial promise for wide-ranging applications in this domain.
Collapse
Affiliation(s)
- Jiuping Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wu Xue
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhihe Yun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xinzhi Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
5
|
Peng S, Cao X, Sun Y, Chen L, Ma C, Yang L, Zhao H, Liu Q, Liu Z, Ma C. Polyurethane Shape Memory Polymer/pH-Responsive Hydrogel Hybrid for Bi-Function Synergistic Actuations. Gels 2023; 9:gels9050428. [PMID: 37233019 DOI: 10.3390/gels9050428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023] Open
Abstract
Stimuli-responsive actuating hydrogels response to the external stimulus with complex deformation behaviors based on the programmable anisotropic structure design are one of the most important smart soft materials, which have great potential applications in artificial muscles, smart values, and mini-robots. However, the anisotropic structure of one actuating hydrogel can only be programmed one time, which can only provide single actuating performance, and subsequently, has severely limited their further applications. Herein, we have explored a novel SMP/hydrogel hybrid actuator through combining polyurethane shape memory polymer (PU SMP) layer and pH-responsive polyacrylic-acid (PAA) hydrogel layer by a napkin with UV-adhesive. Owing to both the super-hydrophilicity and super-lipophilicity of the cellulose-fiber based napkin, the SMP and the hydrogel can be bonded firmly by the UV-adhesive in the napkin. More importantly, this bilayer hybrid 2D sheet can be programmed by designing a different temporary shape in heat water which can be fixed easily in cool water to achieve various fixed shapes. This hybrid with a fixed temporary shape can achieve complex actuating performance based on the bi-functional synergy of temperature-triggered SMP and pH-responsive hydrogel. The relatively high modulus PU SMP achieved high to 87.19% and 88.92% shape-fixing ratio, respectively, correspond to bending and folding shapes. The hybrid actuator can actuate with the 25.71 °/min actuating speed. Most importantly, one SMP/hydrogel bi-layer hybrid sheet was repeatedly programmed at least nine times in our research to fix various temporary 1D, 2D and 3D shapes, including bending, folding and spiraling shapes. As a result, only one SMP/hydrogel hybrid can provide various complex stimuli-responsive actuations, including the reversable bending-straightening, spiraling-unspiraling. A few of the intelligent devices have been designed to simulate the movement of the natural organisms, such as bio-mimetic "paw", "pangolin" and "octopus". This work has developed a new SMP/hydrogel hybrid with excellent multi-repeatable (≥9 times) programmability for high-level complex actuations, including the 1D to 2D bending and the 2D to 3D spiraling actuations, which also provides a new strategy to design other new soft intelligent materials and systems.
Collapse
Affiliation(s)
- Shuyi Peng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xingyu Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Lin Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Chao Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Lang Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Hongliang Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Key Laboratory of Quality Safe Evaluation and Research of Degradable Material for State Market Regulation, Products Quality Supervision and Testing Institute of Hainan Province, Haikou 570203, China
| | - Qijie Liu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou 318000, China
| | - Zhenzhong Liu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou 318000, China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Key Laboratory of Quality Safe Evaluation and Research of Degradable Material for State Market Regulation, Products Quality Supervision and Testing Institute of Hainan Province, Haikou 570203, China
| |
Collapse
|