1
|
Shi W, Wang X, Gao F, Wang Z. Ferrocene-based metal-organic frameworks with dual synergistic active sites for selectively electrochemical removal of arsenic from contaminated water. WATER RESEARCH 2024; 260:121915. [PMID: 38878309 DOI: 10.1016/j.watres.2024.121915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
The effective removal of trace levels of the highly toxic arsenite (As(Ⅲ)) from groundwater is crucial to address the threat to drinking water supply. Herein, we developed an electrochemical separation system utilizing redox-active ferrocene-based metal-organic frameworks (termed Fe-DFc) for selective removal of As(III). This system leveraged 1,1'-ferrocenedicarboxylic acid as a ligand coordinated with iron, enabling the highly selective capture and conversion of As(III) from groundwater. The Fe-DFc electrode-based electrochemical system not only effectively removed As(III) even in the presence of a 1250-fold excess of competing electrolytes, but also converted about 96 % of the adsorbed As(III) into the less toxic As(V), surpassing the results of those documented in the current literature. X-ray absorption fine structure analysis and density functional theory calculations demonstrated that the high selectivity of Fe-O6 moiety and the exceptional redox activity of Fc synergistically contributed to the efficient removal of As(III). Moreover, the electrochemical separation system enabled the remediation of arsenic-contaminated groundwater at a low energy cost of 0.033 kWh m-3 during long-term operation, highlighting the application potential of the electrochemical technology for arsenic removal from contaminated water.
Collapse
Affiliation(s)
- Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
2
|
Guan GW, Zheng ST, Ni S, Wang SS, Ma H, Liu XY, Peng X, Wang J, Yang QY. Cobalt-based Polymerized Porphyrinic Network for Visible-light-driven CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32271-32281. [PMID: 38868898 DOI: 10.1021/acsami.4c04487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Visible-light-driven conversion of carbon dioxide to valuable compounds and fuels is an important but challenging task due to the inherent stability of the CO2 molecules. Herein, we report a series of cobalt-based polymerized porphyrinic network (PPN) photocatalysts for CO2 reduction with high activity. The introduction of organic groups results in the addition of more conjugated electrons to the networks, thereby altering the molecular orbital levels within the networks. This integration of functional groups effectively adjusts the levels of the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO). The PPN(Co)-NO2 exhibits outstanding performance, with a CO evolution rate of 12 268 μmol/g/h and 85.8% selectivity, surpassing most similar photocatalyst systems. The performance of PPN(Co)-NO2 is also excellent in terms of apparent quantum yield (AQY) for CO production (5.7% at 420 nm). Density functional theory (DFT) calculations, time-resolved photoluminescence (TRPL), and electrochemical tests reveal that the introduction of methyl and nitro groups leads to a narrower energy gap, facilitating a faster charge transfer. The coupling reaction in this study enables the formation of stable C-C bonds, enhancing the structural regulation, active site diversity, and stability of the catalysts for photocatalytic CO2 reduction. This work offers a facile strategy to develop reliable catalysts for efficient CO2 conversion.
Collapse
Affiliation(s)
- Guo-Wei Guan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Su-Tao Zheng
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuang Ni
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shan-Shan Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Heping Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiang-Yu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiaomeng Peng
- Research and Development Centre, China Tobacco Anhui Industrial Co., Ltd., Hefei, Anhui 230088, China
| | - Jian Wang
- Research and Development Centre, China Tobacco Anhui Industrial Co., Ltd., Hefei, Anhui 230088, China
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
3
|
Das N, Paul R, Tomar S, Biswas C, Chakraborty S, Mondal J. Catching an Oxo Vanadate Porous Acetylacetonate Covalent Adaptive Catalytic Network that Renders Mustard-Gas Simulant Harmless. Inorg Chem 2024; 63:6092-6102. [PMID: 38507817 DOI: 10.1021/acs.inorgchem.4c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
In this work, we illustrated the design and development of a metal-coordinated porous organic polymer (POP) namely VO@TPA-POP via a post-synthetic metalation strategy to incorporate oxo-vanadium sites in a pristine polymer (TPA-POP) having acetylacetonate (acac) as anchoring moiety. The as-synthesized VO@TPA-POP exhibited highly robust and porous framework, which has been utilized for thioanisole (TA) oxidation to its corresponding sulfoxide. The catalyst demonstrated notable stability and recyclability by maintaining its catalytic activity over multiple reaction cycles without any significant loss in activity. The X-ray absorption spectroscopy (XAS) and density functional theory (DFT) analysis establish the existence of V(+4) oxidation state along with the VO(O)4 active sites into the porous network and the most energetically feasible mechanistic pathway involved in the TA oxidation, respectively, indicating the role of electron density associated with vanadium center during the catalytic transformation. Thus, this work aims at the demonstration of versatility and potential of VO@TPA-POP as a porous heterogeneous catalyst for the TA oxidation followed by decontamination of sulfur mustards (HD's) to their corresponding less toxic sulfoxides in a more efficient and greener way.
Collapse
Affiliation(s)
- Nitumani Das
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalini Tomar
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, A C.I. of Homi Bhabha National Institute (HBNI), Chhatnag Road, Jhunsi, Prayagraj (Allahabad), U.P. 211019, India
| | - Chandan Biswas
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sudip Chakraborty
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, A C.I. of Homi Bhabha National Institute (HBNI), Chhatnag Road, Jhunsi, Prayagraj (Allahabad), U.P. 211019, India
| | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Paul R, Boruah A, Das R, Chakraborty S, Chahal K, Deka DJ, Peter SC, Mai BK, Mondal J. Pyrolysis Free Out-of-Plane Co-Single Atomic Sites in Porous Organic Photopolymer Stimulates Solar-Powered CO 2 Fixation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305307. [PMID: 37926775 DOI: 10.1002/smll.202305307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/11/2023] [Indexed: 11/07/2023]
Abstract
Herein, a facile strategy is illustrated to develop pyrolysis-free out-of-plane coordinated single atomic sites-based M-POP via a one-pot Friedel Craft acylation route followed by a post-synthetic metalation. The optimized geometry of the Co@BiPy-POP clearly reveals the presence of out-of-plane Co-single atomic sites in the porous backbone. This novel photopolymer Co@BiPy-POP shows extensive π-conjugations followed by impressive light harvesting ability and is utilized for photochemical CO2 fixation to value-added chemicals. A remarkable conversion of styrene epoxide (STE) to styrene carbonate (STC) (≈98%) is obtained under optimized photocatalytic conditions in the existence of promoter tert-butyl ammonium bromide (TBAB). Synchrotron-based X-ray adsorption spectroscopy (XAS) analysis reveals the single atom coordination sites along with the metal (Co) oxidation number of +2.16 in the porous network. Moreover, in situ diffuse reflectance spectroscopy (DRIFTS) and electron paramagnetic resonance (EPR) investigations provide valuable information on the evolution of key reaction intermediates. Comprehensivecomputational analysis also helps to understand the overall mechanistic pathway along with the interaction between the photocatalyst and reactants. Overall, this study presents a new concept of fabricating porous photopolymers based on a pyrolysis-free out-of-plane-coordination strategy and further explores the role of single atomic sites in carrying out feasible CO2 fixation reactions.
Collapse
Affiliation(s)
- Ratul Paul
- Department of Catalysis and Fine Chemicals, CSIR- Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, India
| | - Ankita Boruah
- Department of Catalysis and Fine Chemicals, CSIR- Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, India
| | - Risov Das
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Subhajit Chakraborty
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Kapil Chahal
- Department of Catalysis and Fine Chemicals, CSIR- Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, India
| | - Dhruba Jyoti Deka
- Department of Catalysis and Fine Chemicals, CSIR- Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, India
| | - Sebastian C Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - John Mondal
- Department of Catalysis and Fine Chemicals, CSIR- Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, India
| |
Collapse
|
5
|
Zhou LL, Guan Q, Dong YB. Covalent Organic Frameworks: Opportunities for Rational Materials Design in Cancer Therapy. Angew Chem Int Ed Engl 2024; 63:e202314763. [PMID: 37983842 DOI: 10.1002/anie.202314763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Nanomedicines are extensively used in cancer therapy. Covalent organic frameworks (COFs) are crystalline organic porous materials with several benefits for cancer therapy, including porosity, design flexibility, functionalizability, and biocompatibility. This review examines the use of COFs in cancer therapy from the perspective of reticular chemistry and function-oriented materials design. First, the modification sites and functionalization methods of COFs are discussed, followed by their potential as multifunctional nanoplatforms for tumor targeting, imaging, and therapy by integrating functional components. Finally, some challenges in the clinical translation of COFs are presented with the hope of promoting the development of COF-based anticancer nanomedicines and bringing COFs closer to clinical trials.
Collapse
Affiliation(s)
- Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa, Macau SAR, 999078, China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
6
|
Chen Y, Wang PM, Chen ZT, Li B. Modulating Charge Transfer Pathways to Enhance Photocatalytic Performance of the Metal-Organic Layer Nanosheet. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46982-46994. [PMID: 37769278 DOI: 10.1021/acsami.3c09985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Two-dimensional metal-organic layer (MOL) nanosheets, as nonhomogeneous catalysts, show better optical activity in the field of photocatalysis due to their unique structural advantages. Current research focuses on how to modify the structure of 2D nanosheets by means of crystal engineering to modulate the intralayer electron transfer pathway and systematically investigate the impacts of size effect and electron transfer pathway on the energy utilization efficiency of crystalline materials. In the present work, a triple lophine-derived ligand was designed and prepared, which exhibits a large π-conjugation system and multiple D-A (D: donor, A: acceptor) electron transfer pathways. 2D MOL constructed with Cd ions can be exfoliated by physical sonication to obtain double-walled 2D MOL nanosheets. Compared with the bulk crystalline material, the 2D nanosheets exhibit better photovoltaic properties. Benefiting from the excellent structural advantages, 2D MOL nanosheets could be used as photocatalysts for a variety of aerobic oxidation reactions under mild conditions (10 W white LED, room temperature), such as the trifluoromethylation of coumarins, the synthesis of benzimidazole derivatives from aromatic diamines and aromatic aldehydes, and the preparation of 2,4,6-triarylpyridine derivatives, all with high conversion rates and selectivity (yield typically greater than 88%). The related results illustrate that the introduction of the photoactive triple-lophine unit into 2D MOL nanosheets can effectively modulate the electron transport mode and enhance energy utilization, which provides a new research idea for the development of nonhomogeneous photocatalysts aimed at the applications of visible light-driven organic conversion.
Collapse
Affiliation(s)
- Yuan Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Peng-Min Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Zi-Tong Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Bao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
7
|
Liu G, Trinh QT, Wang H, Wu S, Arce-Ramos JM, Sullivan MB, Kraft M, Ager JW, Zhang J, Xu R. Selective and Stable CO 2 Electroreduction to CH 4 via Electronic Metal-Support Interaction upon Decomposition/Redeposition of MOF. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301379. [PMID: 37300346 DOI: 10.1002/smll.202301379] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Indexed: 06/12/2023]
Abstract
The CO2 electroreduction to fuels is a feasible approach to provide renewable energy sources. Therefore, it is necessary to conduct experimental and theoretical investigations on various catalyst design strategies, such as electronic metal-support interaction, to improve the catalytic selectivity. Here a solvent-free synthesis method is reported to prepare a copper (Cu)-based metal-organic framework (MOF) as the precursor. Upon electrochemical CO2 reduction in aqueous electrolyte, it undergoes in situ decomposition/redeposition processes to form abundant interfaces between Cu nanoparticles and amorphous carbon supports. This Cu/C catalyst favors the selective and stable production of CH4 with a Faradaic efficiency of ≈55% at -1.4 V versus reversible hydrogen electrode (RHE) for 12.5 h. The density functional theory calculation reveals the crucial role of interfacial sites between Cu and amorphous carbon support in stabilizing the key intermediates for CO2 reduction to CH4 . The adsorption of COOH* and CHO* at the Cu/C interface is up to 0.86 eV stronger than that on Cu(111), thus promoting the formation of CH4 . Therefore, it is envisioned that the strategy of regulating electronic metal-support interaction can improve the selectivity and stability of catalyst toward a specific product upon electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Guanyu Liu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
| | - Quang Thang Trinh
- Institute of High-Performance Computing (IHPC), A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way #16-16 Connexis, Singapore, 138632, Singapore
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, Brisbane, Queensland, 4111, Australia
| | - Haojing Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Shuyang Wu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
| | - Juan Manuel Arce-Ramos
- Institute of High-Performance Computing (IHPC), A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way #16-16 Connexis, Singapore, 138632, Singapore
| | - Michael B Sullivan
- Institute of High-Performance Computing (IHPC), A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way #16-16 Connexis, Singapore, 138632, Singapore
| | - Markus Kraft
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Joel W Ager
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Berkeley Educational Alliance for Research in Singapore (BEARS), 1 Create Way, Singapore, 138602, Singapore
| | - Jia Zhang
- Institute of High-Performance Computing (IHPC), A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way #16-16 Connexis, Singapore, 138632, Singapore
| | - Rong Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
| |
Collapse
|
8
|
Isinkaralar K. Improving the adsorption performance of non-polar benzene vapor by using lignin-based activated carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108706-108719. [PMID: 37752402 DOI: 10.1007/s11356-023-30046-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
Both indoor and outdoor contamination continually contain benzene vapor. It has primary concerns about long-term health risks to the living environment. Benzene is a crucial airborne pollutant in the environment due to its apparent acute toxicity, high volatility, and poor degradability. It is especially urgent to restrain benzene emissions due to the persistent concentration increase and stringent processes. Benzene adsorption is a highly efficient mechanism with low cost, low energy consumption, and a simple process. In this study, biomass-derived porous carbon materials (TCACs) were synthesized by pyrolysis activation combined with H3PO4, HNO3, and HCl. TCAC44 has the best activation conclusion, showing that surface area and pore volume were 1107 m2/g and 0.58 cm3/g treated with H3PO4 and so was chosen for subsequent benzene adsorption/desorption tests. The adsorption capacities of benzene for TCAC44 were increased from 58 mg/g for 35 °C + 95% RH to 121 mg/g for 25 °C + 15% RH and presented a higher adsorption capacity of benzene than TCAC101 and TCAC133. Otherwise, well recyclability of TCAC44 was revealed as the benzene adsorption capacity reductions were 22.49% after five adsorption-desorption cycles. Furthermore, the present study established the property-application relationships to promote and encourage future research on the newly synthesized innovative TCAC44 for benzene removal.
Collapse
Affiliation(s)
- Kaan Isinkaralar
- Department of Environmental Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37150, Kastamonu, Türkiye.
| |
Collapse
|
9
|
Wang L, Shi L, Guo T, Yuan J, Zhou B, Zhang J. Near-infrared active ferrocenyl porous organic polymer with photothermal enhanced enzymatic activity for combination antibacterial application. RSC Adv 2023; 13:26445-26454. [PMID: 37671338 PMCID: PMC10476166 DOI: 10.1039/d3ra03504b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023] Open
Abstract
As a severe ongoing global problem, bacterial contamination exists in every aspect of human life and the search for new antibacterial agents is urgently needed. Herein, a ferrocenyl porous organic polymer (FMC-POP) broad-spectrum antibacterial agent based on synergistic photothermal and peroxidase-like activity was prepared in a facile manner via the copolymerization of ferrocene diformaldehyde and cinnamaldehyde with mannitol through the acid-responsive acetal bond. The photoactive FMC-POP, with high photothermal conversion efficiency (41.45%), could convert not only the near-infrared laser irradiation into local heat to eradicate bacteria, but also low-concentration H2O2 into radical oxygen species (˙OH) that are effective against bacteria. Compared with single-mode photothermal (PTT) and enzymatic therapies, this combination therapy could significantly improve the bactericidal effect, exhibiting a germicidal efficiency of up to 99% (vs. 80.42% for PTT and 70% for enzyme). Thus, our work paves the way for a synergistic non-invasive antimicrobial therapy, which could expand the applications of POP-based artificial enzymes in biomedicine.
Collapse
Affiliation(s)
- Lei Wang
- The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang Medical University Weifang 261031 Shandong PR China
| | - Lin Shi
- The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang Medical University Weifang 261031 Shandong PR China
| | - Taoyan Guo
- School of Pharmacy, Weifang Medical University Weifang 261053 Shandong PR China
| | - Jingsong Yuan
- School of Pharmacy, Weifang Medical University Weifang 261053 Shandong PR China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University Weifang 261053 Shandong PR China
| | - Jing Zhang
- The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang Medical University Weifang 261031 Shandong PR China
| |
Collapse
|