1
|
Pinheiro T, Morais M, Silvestre S, Carlos E, Coelho J, Almeida HV, Barquinha P, Fortunato E, Martins R. Direct Laser Writing: From Materials Synthesis and Conversion to Electronic Device Processing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402014. [PMID: 38551106 DOI: 10.1002/adma.202402014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Direct Laser Writing (DLW) has been increasingly selected as a microfabrication route for efficient, cost-effective, high-resolution material synthesis and conversion. Concurrently, lasers participate in the patterning and assembly of functional geometries in several fields of application, of which electronics stand out. In this review, recent advances and strategies based on DLW for electronics microfabrication are surveyed and outlined, based on laser material growth strategies. First, the main DLW parameters influencing material synthesis and transformation mechanisms are summarized, aimed at selective, tailored writing of conductive and semiconducting materials. Additive and transformative DLW processing mechanisms are discussed, to open space to explore several categories of materials directly synthesized or transformed for electronics microfabrication. These include metallic conductors, metal oxides, transition metal chalcogenides and carbides, laser-induced graphene, and their mixtures. By accessing a wide range of material types, DLW-based electronic applications are explored, including processing components, energy harvesting and storage, sensing, and bioelectronics. The expanded capability of lasers to participate in multiple fabrication steps at different implementation levels, from material engineering to device processing, indicates their future applicability to next-generation electronics, where more accessible, green microfabrication approaches integrate lasers as comprehensive tools.
Collapse
Affiliation(s)
- Tomás Pinheiro
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Maria Morais
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Sara Silvestre
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Emanuel Carlos
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - João Coelho
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Henrique V Almeida
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Pedro Barquinha
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Elvira Fortunato
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Rodrigo Martins
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| |
Collapse
|
2
|
Chen G, Zhao F, Zeng Y, Su Z, Xu L, Shao C, Wu C, He G, Chen Q, Zhao Y, Sun D, Hai Z. Conformal Fabrication of Thick Film Platinum Strain Gauge Via Error Regulation Strategies for In Situ High-Temperature Strain Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:966-974. [PMID: 38109359 DOI: 10.1021/acsami.3c10866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Monitoring high-temperature strain on curved components in harsh environments is a challenge for a wide range of applications, including in aircraft engines, gas turbines, and hypersonic vehicles. Although there are significant improvements in the preparation of high-temperature piezoresistive film on planar surfaces using 3D printing methods, there are still difficulties with poor surface compatibility and high-temperature strain testing on curved surfaces. Herein, a conformal direct ink writing (CDIW) system coupled with an error feedback regulation strategy was used to fabricate high-precision, thick films on curved surfaces. This strategy enabled the maximum amount of error in the distance between the needle and the substrate on a curved surface to be regulated from 155 to 4 μm. A conformal Pt thick-film strain gauge (CPTFSG) with a room-temperature strain coefficient of 1.7 was created on a curved metallic substrate for the first time. The resistance drift rate at 800 °C for 1 h was 1.1%, which demonstrated the excellent stability and oxidation resistance of the CPTFSG. High-temperature dynamic strain tests up to 769 °C revealed that the sensor had excellent high-temperature strain test performance. Furthermore, the CPTFSG was conformally deposited on an aero-engine turbine blade to perform in situ tensile and compressive strain testing at room temperature. High-temperature strain tests were conducted at 100 and 200 °C for 600 and 580 με, respectively, demonstrating a high steady-state response consistent with the commercial high-temperature strain transducer. In addition, steady-state strain tests at high temperatures up to 496 °C were tested. The CDIW error modulation strategy provides a highly promising approach for the high-precision fabrication of Pt thick films on complex surfaces and driving in situ sensing of high-temperature parameters on curved components toward practical applications.
Collapse
Affiliation(s)
- Guochun Chen
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, P. R. China
| | - Fuxin Zhao
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, P. R. China
| | - Yingjun Zeng
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, P. R. China
| | - Zhixuan Su
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Lida Xu
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, P. R. China
| | - Chenhe Shao
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, P. R. China
| | - Chao Wu
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, P. R. China
| | - Gonghan He
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, P. R. China
| | - Qinnan Chen
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, P. R. China
| | - Yang Zhao
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, P. R. China
| | - Daoheng Sun
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, P. R. China
| | - Zhenyin Hai
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, P. R. China
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
3
|
Zeng Y, Chen G, Zhao F, Xu L, Fu Y, Wu C, Shao C, He G, Chen Q, Zhao Y, Sun D, Hai Z. All-Three-Dimensionally-Printed AgPd Thick-Film Strain Gauge with a Glass-Ceramic Protective Layer for High-Temperature Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48395-48405. [PMID: 37801478 DOI: 10.1021/acsami.3c10724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
A high-temperature thin/thick-film strain gauge (TFSG) shows development prospects for in situ strain monitoring of hot-end components due to their small perturbations, no damage, and fast response. Direct ink writing (DIW) 3D printing is an emerging and facile approach for the rapid fabrication of TFSG. However, TFSGs prepared based on 3D printing with both high thermal stability and low temperature coefficient of resistance (TCR) over a wide temperature range remain a great challenge. Here, we report a AgPd TFSG with a glass-ceramic protective layer based on DIW. By encapsulating the AgPd sensitive layer and regulating the Pd content, the AgPd TFSG demonstrated a low TCR (191.6 ppm/°C) from 50 to 800 °C and ultrahigh stability (with a resistance drift rate of 0.14%/h at 800 °C). Meanwhile, the achieved specifications for strain detection included a strain sensing range of ±500 με, fast response time of 153 ms, gauge factor of 0.75 at 800 °C, and high durability of >8000 cyclic loading tests. The AgPd TFSG effectively monitors strain in superalloys and can be directly deposited onto cylindrical surfaces, demonstrating the scalability of the presented approach. This work provides a strategy to develop TFSGs for in situ sensing of complex curved surfaces in harsh environments.
Collapse
Affiliation(s)
- Yingjun Zeng
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, PR China
| | - Guochun Chen
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, PR China
| | - Fuxin Zhao
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, PR China
| | - Lida Xu
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, PR China
| | - Yanzhang Fu
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, PR China
| | - Chao Wu
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, PR China
| | - Chenhe Shao
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, PR China
| | - Gonghan He
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, PR China
| | - Qinnan Chen
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, PR China
| | - Yang Zhao
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, PR China
| | - Daoheng Sun
- Pen-Tung Sah Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, PR China
| | - Zhenyin Hai
- Department of Mechanical and Electrical Engineering, School of Aerospace Engineering, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|