1
|
Yang Y, Ding D, Huang C, Ding X, Wang T, Zhuo M, Wang H, Kai S, Cheng N. Development of an aminoguanidine hybrid hydrogel composites with hydrogen and oxygen supplying performance to boost infected diabetic wound healing. J Colloid Interface Sci 2025; 691:137401. [PMID: 40157079 DOI: 10.1016/j.jcis.2025.137401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/09/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Diabetic wounds tend to develop into non-healing wounds associated with a complex inflammatory microenvironment of uncontrollable bacterial infection, reactive oxygen species (ROS) accumulation, and chronic hypoxia. This study developed a multifunctional hydrogel system by integrating aminoguanidine and hydrogen and oxygen gas-release nanoparticles (PAP NPs) into phenylboronic acid-modified quaternized chitosan and an oxidized dextran network. Hollow mesoporous Prussian blue (HPB) nanozymes with superoxide dismutase- and catalase-like activities are promising bioreactors for simultaneously alleviating ROS accumulation and hypoxia by converting elevated endogenous hydrogen peroxide (H2O2) into oxygen in diabetic wounds. Simultaneously, incorporating ammonia borane (AB)-loaded HPB NPs served as a source of hydrogen, further reducing ROS overproduction and modulating pro-inflammatory cytokine responses. Aminoguanidine in the hydrogel network inhibits the formation of advanced glycation end products (AGEs), inhibiting skin cell apoptosis and promoting their proliferation and migration. Moreover, the hydrogel exhibited significant mechanical characteristics and self-healing capacity owing to the Schiff base and phenylboronate ester linkages. Incorporating PAP NPs into the hydrogel produced an exceptional photothermal response, effectively eradicating bacteria with a mortality rate exceeding 95 % within 10 min and protecting the wound from potential infections. In vivo studies demonstrated that PAP@Gel significantly accelerated the healing of infected diabetic wounds by mitigating oxidative stress, enhancing oxygenation, inhibiting inflammation and AGE formation, and reversing bacterial infections. This study highlights a promising nanomedicine approach for designing future diabetic wound dressings, providing a novel strategy for catalytic ROS scavenging and synergistic hydrogen and oxygen therapies.
Collapse
Affiliation(s)
- Yilei Yang
- College of Pharmacy, Shandong Second Medical University, Weifang, Shandong 261053, PR China
| | - Dejun Ding
- College of Pharmacy, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| | - Changbao Huang
- College of Pharmacy, Shandong Second Medical University, Weifang, Shandong 261053, PR China
| | - Xinghua Ding
- College of Pharmacy, Shandong Second Medical University, Weifang, Shandong 261053, PR China
| | - Tao Wang
- College of Pharmacy, Shandong Second Medical University, Weifang, Shandong 261053, PR China
| | - Mengting Zhuo
- College of Pharmacy, Shandong Second Medical University, Weifang, Shandong 261053, PR China
| | - Huijuan Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, PR China
| | - Shuangshuang Kai
- College of Pharmacy, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| | - Ni Cheng
- College of Pharmacy, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| |
Collapse
|
2
|
Zhang Y, Han J, Qin S, Wang J, Lv Z, Dong S, Fan D. Two Birds with One Stone: Fe-DNA nanospheres produced via coordination-propelled self-assembly with excellent peroxidase-like property for versatile ratiometric fluorescent assay and cellular imaging. Biosens Bioelectron 2025; 279:117424. [PMID: 40163949 DOI: 10.1016/j.bios.2025.117424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Exploring novel versatile nanozymes for multi-signal biosensing and cellular application is one of the most promising directions to meet the diversified requirements in this field. Herein, by harnessing coordination-propelled self-assembly between Fe (II) and DNAs, we prepared Fe-DNA nanospheres (Fe-DNA NSs) via a cost-effective one-step hydrothermal method, and pioneered the application of its excellent POD-mimicking property to fluorescent substrates. Initially, we investigated its enzyme-like activity using TMB as canonical colorimetric substrate and screened its catalytic oxidation effects towards different fluorescent substrates, such as T-HCl, AR, OPD and Sc, respectively. Afterwards, by virtue of the contrary fluorescent changes of Sc (decreased FI465) and OPD (increased FI562) and the cooperative effects of FRET/IFE between them, we devised the first universal Fe-DNA nanospheres-based ratiometric fluorescent (RF) platform. Taking H2O2 and glucose as model targets, two RF biosensors based on the alternative direct-nanozyme-catalysis and enzyme/nanozyme-tandem-catalysis were rationally fabricated, respectively. And we further exploited them to evaluate the quality of commercial contact lens care solution, and sensitively determine the blood glucose level of human. Moreover, corresponding cytotoxicity experiments adequately proved the superior biocompatibility of Fe-DNA NSs over most inorganic nanozymes. Furthermore, taking Cy5-labelled A20 strands as templates, we synthesized small-sized (∼60 nm) Fe-DNA fluorescent nanozyme and achieved efficient cellular delivery/imaging. This work not only offered a valid prototype for operating multi-signal-responsive nanozymatic biosensors, but also opened unique avenues for the bio-applications of nucleic acids-originated fluorescent nanozymes in cellular imaging and biotherapy.
Collapse
Affiliation(s)
- Yuwei Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jiawen Han
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Shuai Qin
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Juan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Zhihua Lv
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Daoqing Fan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
3
|
Song K, Ming J, Tao B, Zhao F, Huang S, Wu W, Jiang C, Li X. Emerging glucose oxidase-delivering nanomedicines for enhanced tumor therapy. J Control Release 2025; 381:113580. [PMID: 40024341 DOI: 10.1016/j.jconrel.2025.02.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Abnormalities in glucose metabolism have been shown to characterize malignant tumors. Glucose depletion by glucose oxidase (GOD) has shown great potential in tumor therapy by causing tumor starvation. Since 2017, nanomedicines have been designed and utilized to deliver GOD for more precise and effective glucose modulation, which can overcome intrinsic limitations of different cancer therapeutic modalities by remodeling the tumor microenvironment to enhance antitumor therapy. To date, the topic of GOD-delivering nanomedicines for enhancing tumor therapy has not been comprehensively summarized. Herein, this review aims to provide an overview and discuss in detail recent advances in GOD delivery and directly involved starvation therapy strategies, GOD-sensitized various tumor therapy strategies, and GOD-mediated multimodal antitumor strategies. Finally, the challenges and outlooks for the future progress of the emerging tumor therapeutic nanomedicines are discussed. This review provides intuitive and specific insights to a broad audience in the fields of nanomedicines, biomaterials, and cancer therapy.
Collapse
Affiliation(s)
- Kaiyue Song
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiang Ming
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Feng Zhao
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Shaorong Huang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China.
| | - Wencheng Wu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200092, China.
| | - Xianglong Li
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
4
|
Chiang SY, Peng CH, Lin JW, Kuo JW, Lin YW, Lin CH, Chen CY. Amino-Acid-Engineered Bionanozyme Selectivity for Colorimetric Detection of Human Serum Albumin. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20693-20704. [PMID: 40022657 DOI: 10.1021/acsami.4c22270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Nanozymes are emerging nanomaterials owing to their superior stability and enzyme-mimicking catalytic functions. However, unlike natural enzymes with inherent amino-acid-based recognition motifs for target interactions, manipulating nanozyme selectivity toward specific targets remains a major challenge. In this study, we introduce the de novo strategy using the supramolecular assembly of l-tryptophan (l-Trp) as the recognition amino acid with copper (Cu) ions for creating a human serum albumin (HSA)-responsive bionanozyme. This amino-acid-engineered bionanozyme enables selective colorimetric detection of HSA, a critical urinary biomarker for kidney diseases, overcoming the challenge that HSA is neither a typical substrate nor an inhibitor for most nanozymes. Kinetic studies and competitive tests reveal that HSA subdomain IIIA binding to l-Trp sites limits the electron-transfer-induced structural changes of l-Trp-Cu chelate rings, resulting in noncompetitive inhibition. This inhibition effect is significantly stronger than that observed for canonical amino acids, common proteins, and urinary interference species. Colorimetric monitoring of bionanozyme activity enables sensitive HSA detection with a detection limit of 1.3 nM and a quantification range of 2 nM to 10 μM. This approach is exceptionally more sensitive and offers a broader detection range compared to conventional colorimetric and fluorescent methods, suitable for diagnostics across various clinical stages of disease. This innovative rational strategy to designing and manipulating selective nanozyme-target interactions not only addresses the limitations of nanozymes but also expands their precise applications in complex biological systems.
Collapse
Affiliation(s)
- Siang-Yun Chiang
- Department of Chemistry, National Changhua University of Education, Changhua City 50007, Taiwan
| | - Chun-Hsiang Peng
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jhe-Wei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jia-Wei Kuo
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yang-Wei Lin
- Department of Chemistry, National Changhua University of Education, Changhua City 50007, Taiwan
| | - Chia-Her Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chong-You Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
5
|
Dong X, Yan W, Zhang D, Dong X, Li Y. Biomass spinach-drived metal-free carbon dots-based nanozyme for multimodal nitrite sensing and functionalized by glucose oxidase as ROS amplifiers to enhance tumor therapy. Int J Biol Macromol 2025; 304:140875. [PMID: 39938831 DOI: 10.1016/j.ijbiomac.2025.140875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
The metal-free carbon dots (CDs) nanozyme, which is endowed generation of multiple reactive oxygen species (ROS), followed by highly selective chemical sensing, remains a critical challenge. The exceptional biocatalytic properties of glucose oxidase (GOx) have spurred the development of GOx-functionalized nanocatalysts for cancer therapy. Here, the innovative free metal-doped CDs and CDs@GOx nanozymes with peroxidase (POD)-like activity were developed, which specifically catalyzed H₂O₂ to engender multiple ROS including •O2-, 1O2 and •OH, to oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue ox-TMB, indicating both nanozymes can be as ROS amplifiers to enhance tumor therapy. The introduction of NO₂- triggered a distinct color change from blue to green ascribed to the diazotization of ox-TMB along with quenching the fluorescence of CDs, which endowed high selectivity and sensitivity for NO2- detection. Furthermore, CDs catalyzed endogenous H₂O₂ within tumor cells, to effectively destroy cancer cells rather than normal cells. As expected, CDs@GOx preferentially catalyze glucose in cancer cells to further supply H2O2, allowing more ROS accumulation, thereby realizing the integration of starvation therapy and ROS therapy of cancer. Notably, in vivo anti-tumor efficacy demonstrated that CDs and CDs@GOx markedly inhibited tumor growth without external stimulation with neglected side effects. Compared to the saline group, the tumor size was reduced by 3 or 4 times for CDs and CDs@GOx, respectively. This metal-free CDs tailors a convenient and impactful nanoplatform for chemical sensing and as ROS amplifiers to enhance tumor therapy by non-invasive treatment.
Collapse
Affiliation(s)
- Xiaorui Dong
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Wenjun Yan
- Analytical Instrumentation Center, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, PR China.
| | | | - Xiuqing Dong
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China.
| | - Yingqi Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China.
| |
Collapse
|
6
|
Wang X, Wei N, Zhang Y, Fang Y, Li Y, Li S, Wang Z, Sun C. Nanozyme-mediated glutathione depletion for enhanced ROS-based cancer therapies: a comprehensive review. Nanomedicine (Lond) 2025; 20:279-290. [PMID: 39726369 PMCID: PMC11792818 DOI: 10.1080/17435889.2024.2446138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Nanozymes can improve reactive oxygen species (ROS)-based cancer therapies by targeting cancer cells' antioxidant defense mechanisms, particularly glutathione (GSH) depletion, to overcome ROS-resistant cancer cells. Nanozymes, innovative enzyme-mimetic nanomaterials, can generate ROS, alter the tumor microenvironment (TME), and synergize with photodynamic therapy (PDT), chemodynamic therapy (CDT), radiotherapy, and immunotherapy. This review shows how nanozymes catalyze ROS generation, selectively deplete GSH, and target cancer elimination, offering clear advantages over standard therapies. Nanozymes selectively target cancer cells' antioxidant defenses to improve PDT, CDT, and radiation therapies. To maximize nanozyme-based cancer treatment efficacy, biodistribution, biocompatibility, and tumor heterogeneity must be assessed. To improve cancer treatment, multifunctional, stimuli-responsive nanozymes and synergistic combination drugs should be developed.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, People’s Republic of China
| | - Nan Wei
- Department of radiotherapy, Anhui No.2 Provincial People’s Hospital, Hefei, Anhui, people’s Republic of China
| | - Yang Zhang
- Department of radiotherapy, Anhui No.2 Provincial People’s Hospital, Hefei, Anhui, people’s Republic of China
| | - Yuan Fang
- Department of radiotherapy, Anhui No.2 Provincial People’s Hospital, Hefei, Anhui, people’s Republic of China
| | - Yijun Li
- Department of Pathology, Anhui No.2 Provincial People’s Hospital, Hefei, Anhui, People’s Republic of China
| | - Songguo Li
- Department of Pathology, Anhui No.2 Provincial People’s Hospital, Hefei, Anhui, People’s Republic of China
| | - Zhanggui Wang
- Department of radiotherapy, Anhui No.2 Provincial People’s Hospital, Hefei, Anhui, people’s Republic of China
| | - Chenglong Sun
- Department of radiotherapy, Anhui No.2 Provincial People’s Hospital, Hefei, Anhui, people’s Republic of China
- Department of radiotherapy, Anhui No.2 Provincial People’s Hospital Clinical College, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
7
|
Liang KA, Chih HY, Liu IJ, Yeh NT, Hsu TC, Chin HY, Tzang BS, Chiang WH. Tumor-targeted delivery of hyaluronic acid/polydopamine-coated Fe 2+-doped nano-scaled metal-organic frameworks with doxorubicin payload for glutathione depletion-amplified chemodynamic-chemo cancer therapy. J Colloid Interface Sci 2025; 677:400-415. [PMID: 39096708 DOI: 10.1016/j.jcis.2024.07.241] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Chemodynamic therapy (CDT), an emerging cancer treatment modality, uses multivalent metal elements to convert endogenous hydrogen peroxide (H2O2) to toxic hydroxyl radicals (•OH) via a Fenton or Fenton-like reaction, thus eliciting oxidative damage of cancer cells. However, the antitumor potency of CDT is largely limited by the high glutathione (GSH) concentration and low catalytic efficiency in the tumor sites. The combination of CDT with chemotherapy provides a promising strategy to overcome these limitations. In this work, to enhance antitumor potency by tumor-targeted and GSH depletion-amplified chemodynamic-chemo therapy, the hyaluronic acid (HA)/polydopamine (PDA)-decorated Fe2+-doped ZIF-8 nano-scaled metal-organic frameworks (FZ NMs) were fabricated and utilized to load doxorubicin (DOX), a chemotherapy drug, via hydrophobic, π-π stacking and charge interactions. The attained HA/PDA-covered DOX-carrying FZ NMs (HPDFZ NMs) promoted DOX and Fe2+ release in weakly acidic and GSH-rich milieu and exhibited acidity-activated •OH generation. Through efficient CD44-mediated endocytosis, the HPDFZ NMs internalized by CT26 cells not only prominently enhanced •OH accumulation by consuming GSH via PDA-mediated Michael addition combined with Fe2+/Fe3+ redox couple to cause mitochondria damage and lipid peroxidation, but also achieved intracellular DOX release, thus eliciting apoptosis and ferroptosis. Importantly, the HPDFZ NMs potently inhibited CT26 tumor growth in vivo at a low DOX dose and had good biosafety, thereby showing promising potential in tumor-specific treatment.
Collapse
Affiliation(s)
- Kai-An Liang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - Hsiang-Yun Chih
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - I-Ju Liu
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - Nien-Tzu Yeh
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Hao-Yang Chin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
8
|
Ren L, Zhang J, Nie L, Shavandi A, Yunusov KE, Aharodnikau UE, Solomevich SO, Sun Y, Jiang G. Platelet Membrane-Camouflaged Copper Doped CaO 2 Biomimetic Nanomedicines for Breast Cancer Combination Treatment. ACS Biomater Sci Eng 2024; 10:7492-7506. [PMID: 39491550 DOI: 10.1021/acsbiomaterials.4c01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women worldwide. Chemodynamic therapy (CDT), photothermal therapy (PTT), and ion interference therapy (IIT), used in combination, represent a common treatment. In this study, platelet membrane-camouflaged copper-doped CaO2 biomimetic nanomedicines have been developed for breast cancer treatments. Copper-doped CaO2 nanoparticles were first coated by polydopamine (PDA) and subsequently camouflaged by platelet membrane (PM) to form platelet membrane-camouflaged copper doped CaO2 biomimetic nanomedicines (Cu-CaO2@PDA/PM). The as-fabricated Cu-CaO2@PDA/PM multifunctional nanomedicines could decompose within the tumor microenvironment to release Ca2+ for ion interference therapy, and the generated H2O2 could perform a Fenton-like reaction with the assistance of loaded copper ions to produce ·OH, thus realizing chemodynamic therapy. In addition, the copper ions could also consume glutathione and weaken its ability to scavenge reactive oxygen species, which was conducive to amplifying the effect of oxidative stress. The coating of the polydopamine layer could achieve local hyperthermia of the tumor site, and the surface modification of the platelet membrane could enhance the targeting and biocompatibility of nanomedicines. In vivo and in vitro tests demonstrated that the developed Cu-CaO2@PDA/PM biomimetic nanomedicines offer a promising biomimetic nanoplatform for efficient multimodal combination therapy for breast cancer.
Collapse
Affiliation(s)
- Luping Ren
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, China
| | - Junhao Zhang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Armin Shavandi
- Université libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO10 BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent, 100128, Uzbekistan
| | - Uladzislau E Aharodnikau
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220030, Belarus
| | - Sergey O Solomevich
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220030, Belarus
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
9
|
Cai X, Huang Y, Wang T, Wang Z, Jiao L, Liao J, Zhou L, Zhu C, Rong S. A biocompatible polydopamine platform for targeted delivery of nicotinamide mononucleotide and boosting NAD+ levels in the brain. NANOSCALE 2024; 16:19335-19343. [PMID: 39324237 DOI: 10.1039/d4nr02934h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Nicotinamide mononucleotide (NMN), a precursor of the coenzyme nicotinamide adenine dinucleotide (NAD+), has gained wide attention as an anti-aging agent, which plays a significant role in intracellular redox reactions. However, its effectiveness is limited by easy metabolism in the liver and subsequent excretion as nicotinamide, resulting in low bioavailability, particularly in the brain. Additionally, the blood-brain barrier (BBB) further hinders NMN supply to the brain, compromising its potential anti-aging effects. Herein, we developed a biocompatible polydopamine (PDA) platform to deliver NMN for boosting NAD+ levels in the brain for the first time. The lactoferrin (Lf) ligand was covalently attached to the PDA spheres to improve BBB transport efficiency. The resultant PDA-based system, referred to as PDA-Lf-NMN, not only exhibited superior BBB penetration ability but also improved the utilization rate of brain NMN in elevating NAD+ levels compared to NMN alone for both young (3 months) and old (21 months) mice. Moreover, after the old mice were treated with low-dose PDA-Lf-NMN (8 mg kg-1 day-1), they exhibited improved spatial cognition. Importantly, these nanomedicines did not induce any cellular necrosis or apoptosis. It provides a promising avenue for delivering NMN specifically to the brain, boosting NAD+ levels for promoting longevity and treating brain aging-related diseases.
Collapse
Affiliation(s)
- Xiaoli Cai
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yuteng Huang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Ting Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Ziping Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Lei Jiao
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Jingling Liao
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Li Zhou
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Shuang Rong
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
10
|
Komiyama M. Monomeric, Oligomeric, Polymeric, and Supramolecular Cyclodextrins as Catalysts for Green Chemistry. RESEARCH (WASHINGTON, D.C.) 2024; 7:0466. [PMID: 39253101 PMCID: PMC11381675 DOI: 10.34133/research.0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
This review comprehensively covers recent developments of cyclodextrin-mediated chemical transformations for green chemistry. These cyclic oligomers of glucose are nontoxic, eco-friendly, and recyclable to accomplish eminent functions in water. Their most important feature is to form inclusion complexes with reactants, intermediates, and/or catalysts. As a result, their cavities serve as sterically restricted and apolar reaction fields to promote the efficiency and selectivity of reactions. Furthermore, unstable reagents and intermediates are protected from undesired side reactions. The scope of their applications has been further widened through covalent or noncovalent modifications. Combinations of them with metal catalysis are especially successful. In terms of these effects, various chemical reactions are achieved with high selectivity and yield so that valuable chemicals are synthesized from multiple components in one-pot reactions. Furthermore, cyclodextrin units are orderly assembled in oligomers and polymers to show their cooperation for advanced properties. Recently, cyclodextrin-based metal-organic frameworks and polyoxometalate-cyclodextrin frameworks have been fabricated and employed for unique applications. Cyclodextrins fulfill many requirements for green chemistry and should make enormous contributions to this growing field.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
11
|
Bu JW, Wang ZG, Liu HY, Liu SL. Metal nanozymes modulation of reactive oxygen species as promising strategies for cancer therapy. Int J Pharm 2024; 662:124453. [PMID: 39013531 DOI: 10.1016/j.ijpharm.2024.124453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/11/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024]
Abstract
Nanozymes, nanostructured materials emulating natural enzyme activities, exhibit potential in catalyzing reactive oxygen species (ROS) production for cancer treatment. By facilitating oxidative reactions, elevating ROS levels, and influencing the tumor microenvironment (TME), nanozymes foster the eradication of cancer cells. Noteworthy are their superior stability, ease of preservation, and cost-effectiveness compared to natural enzymes, rendering them invaluable for medical applications. This comprehensive review intricately explores the interplay between ROS and tumor therapy, with a focused examination of metal-based nanozyme strategies mitigating tumor hypoxia. It provides nuanced insights into diverse catalytic processes, mechanisms, and surface modifications of various metal nanozymes, shedding light on their role in intra-tumoral ROS generation and applications in antioxidant therapy. The review concludes by delineating specific potential prospects and challenges associated with the burgeoning use of metal nanozymes in future tumor therapies.
Collapse
Affiliation(s)
- Jin-Wei Bu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Zhi-Gang Wang
- College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Hao-Yang Liu
- College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China.
| | - Shu-Lin Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China; College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
12
|
Chen YH, Liu IJ, Lin TC, Tsai MC, Hu SH, Hsu TC, Wu YT, Tzang BS, Chiang WH. PEGylated chitosan-coated nanophotosensitizers for effective cancer treatment by photothermal-photodynamic therapy combined with glutathione depletion. Int J Biol Macromol 2024; 266:131359. [PMID: 38580018 DOI: 10.1016/j.ijbiomac.2024.131359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has emerged as a promising strategy for cancer treatment. However, the poor photostability and photothermal conversion efficiency (PCE) of organic small-molecule photosensitizers, and the intracellular glutathione (GSH)-mediated singlet oxygen scavenging largely decline the antitumor efficacy of PTT and PDT. Herein, a versatile nanophotosensitizer (NPS) system is developed by ingenious incorporation of indocyanine green (ICG) into the PEGylated chitosan (PEG-CS)-coated polydopamine (PDA) nanoparticles via multiple π-π stacking, hydrophobic and electrostatic interactions. The PEG-CS-covered NPS showed prominent colloidal and photothermal stability as well as high PCE (ca 62.8 %). Meanwhile, the Michael addition between NPS and GSH can consume GSH, thus reducing the GSH-induced singlet oxygen scavenging. After being internalized by CT26 cells, the NPS under near-infrared laser irradiation produced massive singlet oxygen with the aid of thermo-enhanced intracellular GSH depletion to elicit mitochondrial damage and lipid peroxide formation, thus leading to ferroptosis and apoptosis. Importantly, the combined PTT and PDT delivered by NPS effectively inhibited CT26 tumor growth in vivo by light-activated intense hyperthermia and redox homeostasis disturbance. Overall, this work presents a new tactic of boosting antitumor potency of ICG-mediated phototherapy by PEG-CS-covered NPS.
Collapse
Affiliation(s)
- Yu-Hsin Chen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - I-Ju Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Tzu-Chen Lin
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Min-Chen Tsai
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yi-Ting Wu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
13
|
Shen J, Chen J, Qian Y, Wang X, Wang D, Pan H, Wang Y. Atomic Engineering of Single-Atom Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313406. [PMID: 38319004 DOI: 10.1002/adma.202313406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Single-atom nanozymes (SAzymes) showcase not only uniformly dispersed active sites but also meticulously engineered coordination structures. These intricate architectures bestow upon them an exceptional catalytic prowess, thereby captivating numerous minds and heralding a new era of possibilities in the biomedical landscape. Tuning the microstructure of SAzymes on the atomic scale is a key factor in designing targeted SAzymes with desirable functions. This review first discusses and summarizes three strategies for designing SAzymes and their impact on reactivity in biocatalysis. The effects of choices of carrier, different synthesis methods, coordination modulation of first/second shell, and the type and number of metal active centers on the enzyme-like catalytic activity are unraveled. Next, a first attempt is made to summarize the biological applications of SAzymes in tumor therapy, biosensing, antimicrobial, anti-inflammatory, and other biological applications from different mechanisms. Finally, how SAzymes are designed and regulated for further realization of diverse biological applications is reviewed and prospected. It is envisaged that the comprehensive review presented within this exegesis will furnish novel perspectives and profound revelations regarding the biomedical applications of SAzymes.
Collapse
Affiliation(s)
- Ji Shen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yuping Qian
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xinqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yuguang Wang
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
14
|
Xie X, Wang K, Zeng J, Xu MY, Qu XH, Xiang ZB, Tou FF, Huang S, Han XJ. A novel polymer enabled by polymerized small molecule strategy for tumor photothermal and photodynamic therapy. J Nanobiotechnology 2023; 21:497. [PMID: 38124097 PMCID: PMC10734082 DOI: 10.1186/s12951-023-02272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) are effective method for tumor treatment. However, the limited variety and quantity of photothermal agents (PTAs) and photosensitizer (PSs) are still major challenges. Moreover, the cell apoptosis mechanism induced by PDT and PTT is still elusive. A fused-ring small molecule acceptor-donor acceptor' donor-acceptor (A-DA'D-A) type of Y5 (Scheme 1) has a narrow band-gap and strong light absorption. Herein, we used Y5 to polymerize with thiophene unit to obtain polymer PYT based on polymerized small molecule strategy, and PYT nanoparticles (PYT NPs) was prepared via one-step nanoprecipitation strategy with DSPE-PEG2000. PYT NPs had excellent biocompatibility, good photostability, high photothermal conversion efficiency (67%) and reactive oxygen species (ROS) production capacity under 808 nm laser irradiation (PYT NPs + NIR). In vitro and in vivo experiments revealed that PYT NPs + NIR had the ability to completely ablate tumor cells. It was demonstrated that cell apoptosis induced by PYT NPs + NIR was closely related to mitochondrial damage. This study provides valuable guidance for constructing high-performance organic PTAs and PSs for tumor treatment. Scheme 1 PYT enabled by polymerized small molecule strategy for tumor photothermal and photodynamic therapy.
Collapse
Affiliation(s)
- Xin Xie
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Institute of Geriatrics, Jiangxi Provincial People's Hospital &, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Ke Wang
- Department of Clinical Laboratory, Jiangxi Provincial Children's Hospital, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jie Zeng
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Institute of Geriatrics, Jiangxi Provincial People's Hospital &, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Miao-Yan Xu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Institute of Geriatrics, Jiangxi Provincial People's Hospital &, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xin-Hui Qu
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zheng-Bin Xiang
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fang-Fang Tou
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shaorong Huang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
- Institute of Geriatrics, Jiangxi Provincial People's Hospital &, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital &, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China.
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|