1
|
Huang Y, Yang Y, Peng C, Li Y, Feng W. High Strength, Strain, and Resilience of Gold Nanoparticle Reinforced Eutectogels for Multifunctional Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416318. [PMID: 39973805 PMCID: PMC12005770 DOI: 10.1002/advs.202416318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/02/2025] [Indexed: 02/21/2025]
Abstract
Eutectogels with inherent ionic conductivity, mechanical flexibility, environment resistance, and cost-effectiveness have garnered considerable attention for the development of wearable devices. However, existing eutectogels rarely achieve a balance between strength, strain, and resilience, which are critical indicators of reliability in flexible electronics. Herein, poly(sodium styrenesulfonate) (PSS)-modified gold nanoparticles (AuNPs) in eutectic solvents are synthesized, and PSS-AuNP reinforced polyacrylic acid/polyvinylpyrrolidone (SAu-PAA/PVP) eutectogel is successfully prepared. Through the coordination between AuNPs and the PAA/PVP polymer chains, the SAu-PAA/PVP eutectogel exhibits significantly enhanced tensile strain (946%), mechanical strength (3.50 MPa), and resilience (85.3%). The high-performance eutectogel was demonstrated as a flexible sensor sensitive to strain and temperature, and the AuNPs provided near-infrared sensing capabilities. Furthermore, SAu-PAA/PVP eutectogel inherits the benefits of ES, including anti-drying and anti-freezing properties (-77 °C). Moreover, the eutectogel is microstructured using a simple molding method, and the resulting hierarchical pyramid microstructured eutectogel functions as ionic dielectric layer in a pressure sensor. This sensor exhibits high sensitivity (37.11 kPa-1), low detection limit (1 Pa), a fast response rate (36/54 ms), and excellent reproducibility over 5000 cycles, making them reliable and durable for detecting small vibrations, with potential applications in precision machinery, aerospace, and buildings.
Collapse
Affiliation(s)
- Yingxiang Huang
- Institute of Advanced Technology and EquipmentBeijing University of Chemical TechnologyBeijing100029China
| | - Yanzhao Yang
- School of Materials Science and EngineeringTianjin UniversityTianjin300350China
| | - Cong Peng
- Institute of Advanced Technology and EquipmentBeijing University of Chemical TechnologyBeijing100029China
| | - Yu Li
- Institute of Advanced Technology and EquipmentBeijing University of Chemical TechnologyBeijing100029China
| | - Wei Feng
- Institute of Advanced Technology and EquipmentBeijing University of Chemical TechnologyBeijing100029China
- School of Materials Science and EngineeringTianjin UniversityTianjin300350China
| |
Collapse
|
2
|
Zhang J, Li R, Lv S, Zhao X, Sun Y, Ma S, Zhou F. Green Manufacture of Hydrated Polymers Coatings with On-Demand Mechanics and Lubricity Based on Novel Biobased Polymerizable Deep Eutectic Solvents. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8369-8381. [PMID: 39869510 DOI: 10.1021/acsami.4c20488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The aging population necessitates a critical need for medical devices, where polymers-based surface lubrication coating is essential for optimal functionality. In fact, lubrication and mechanical requirements vary depending on the service environment of different medical devices. Until now, key mean is still blank for general preparation of hydrophilic polymers-based lubrication coatings with on-demand mechanics and lubricity. This study introduces a novel hydrophilic lubrication coating with tunable mechanical properties and lubricity, derived from eco-friendly polymerizable deep eutectic solvents (PDESs) containing betaine, hydroxyethyl acrylate, glycerol, and tannic acid. Unlike traditional high molecular weight polymers, this approach leverages small-molecule, high-biobased PDESs, thereby simplifying the synthesis process. The resulting coating demonstrates exceptional adhesion to a range of medical device materials─including glass, stainless steel, polyvinyl chloride, and polyurethane─thanks to the high content of hydroxyl groups and pyrogallol motifs from tannic acid. It also enables the precise tuning of mechanical strength, modulus, adhesion, hydrophilicity, and lubrication properties by varying the amounts of glycerol and tannic acid. Furthermore, the coating undergoes a hydration-induced transition from high-strength, high-friction to low-strength, low-friction states, maintaining repeatable performance. Additionally, the synergistic effects of betaine and tannic acid in the PDES contribute to its notable antimicrobial properties. In summary, these PDESs demonstrate significant potential for enhancing lubrication in a range of biomedical devices.
Collapse
Affiliation(s)
- Jinshuai Zhang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Renjie Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Siyao Lv
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Xiaoduo Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ying Sun
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Shuanhong Ma
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
3
|
Mercadal P, González A, Beloqui A, Tomé LC, Mecerreyes D, Calderón M, Picchio ML. Eutectogels: The Multifaceted Soft Ionic Materials of Tomorrow. JACS AU 2024; 4:3744-3758. [PMID: 39483226 PMCID: PMC11522931 DOI: 10.1021/jacsau.4c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024]
Abstract
Eutectogels, a rising category of soft materials, have recently garnered significant attention owing to their remarkable potential in various domains. This innovative class of materials consists of a eutectic solvent immobilized in a three-dimensional network structure. The use of eco-friendly and cost-effective eutectic solvents further emphasizes the appeal of these materials in multiple applications. Eutectogels exhibit key characteristics of most eutectic solvents, including environmental friendliness, facile preparation, low vapor pressure, and good ionic conductivity. Moreover, they can be tailored to display functionalities such as self-healing capability, adhesiveness, and antibacterial properties, which are facilitated by incorporating specific combinations of the eutectic mixture constituents. This perspective article delves into the current landscape and challenges associated with eutectogels, particularly focusing on their potential applications in CO2 separation, drug delivery systems, battery technologies, biocatalysis, and food packaging. By exploring these diverse realms, we aim to shed light on the transformative capabilities of eutectogels and the opportunities they present to address pressing industrial, academic, and environmental challenges.
Collapse
Affiliation(s)
- Pablo
A. Mercadal
- Facultad
de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Instituto
de Investigación y Desarrollo en Ingeniería de Procesos
y Química Aplicada (IPQA-CONICET), Córdoba 5000, Argentina
- Facultad
de Ciencias Agropecuarias, Departamento de Recursos Naturales, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Agustín González
- Facultad
de Ciencias Químicas, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Instituto
de Investigación y Desarrollo en Ingeniería de Procesos
y Química Aplicada (IPQA-CONICET), Córdoba 5000, Argentina
| | - Ana Beloqui
- POLYMAT,
Applied Chemistry Department, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Liliana C. Tomé
- CEMMPRE,
ARISE, Department of Chemical Engineering, University of Coimbra, Pólo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - David Mecerreyes
- POLYMAT,
Applied Chemistry Department, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Marcelo Calderón
- POLYMAT,
Applied Chemistry Department, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Matias L. Picchio
- POLYMAT,
Applied Chemistry Department, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| |
Collapse
|
4
|
Arjunan KK, Weng CY, Sheng YJ, Tsao HK. Formation of Self-Healing Granular Eutectogels through Jammed Carbopol Microgels in Supercooled Deep Eutectic Solvent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17081-17089. [PMID: 39078642 PMCID: PMC11325637 DOI: 10.1021/acs.langmuir.4c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Typically, gel-like materials consist of a polymer network structure in a solvent. In this work, a gel-like material is developed in a deep eutectic solvent (DES) without the presence of a polymer network, achieved simply by adding microgels. The DES is composed of choline chloride and citric acid and remains stably in a supercooled state at room temperature, exhibiting Newtonian fluid behavior with high viscosity. When the microgel (Carbopol) concentration exceeds 2 wt %, the DES undergoes a transition from a liquid to a soft gel state, characterized as a granular eutectogel. The soft gel characteristics of eutectogels exhibit a yield stress, and their storage moduli exceed the loss moduli. The yield stress and storage moduli are observed to increase with increasing microgel concentration. In contrast, the ion conductivity decreases with increasing microgel concentration but eventually levels off. Because the eutectogel can dissolve completely in excess water, it is a physical gel-like material, attributed to the densely packed structure of microgels in the supercooled DES. Due to the absence of networks, the granular eutectogel has the capability to self-heal simply by being pushed together after being cut into two pieces.
Collapse
Affiliation(s)
- Karthi Keyan Arjunan
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Chun-Yun Weng
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Yu-Jane Sheng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
5
|
Liu D, Wang S, Wang H, Zhang Z, Wang H. A flexible, stretchable and wearable strain sensor based on physical eutectogels for deep learning-assisted motion identification. J Mater Chem B 2024; 12:6102-6116. [PMID: 38836422 DOI: 10.1039/d4tb00809j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Physical eutectogels as a newly emerging type of conductive gel have gained extensive interest for the next generation multifunctional electronic devices. Nevertheless, some obstacles, including weak mechanical performance, low self-adhesive strength, lack of self-healing capacity, and low conductivity, hinder their practical use in wearable strain sensors. Herein, lignin as a green filler and a multifunctional hydrogen bond donor was directly dissolved in a deep eutectic solvent (DES) composed of acrylic acid (AA) and choline chloride, and lignin-reinforced physical eutectogels (DESL) were obtained by the polymerization of AA. Due to the unique features of lignin and DES, the prepared DESL eutectogels exhibit good transparency, UV shielding capacity, excellent mechanical performance, outstanding self-adhesiveness, superior self-healing properties, and high conductivity. Based on the aforementioned integrated functions, a wearable strain sensor displaying a wide working range (0-1500%), high sensitivity (GF = 18.15), rapid responsiveness, and excellent stability and durability (1000 cycles) and capable of detecting diverse human motions was fabricated. Additionally, by combining DESL sensors with a deep learning technique, a gesture recognition system with accuracy as high as 98.8% was achieved. Overall, this work provides an innovative idea for constructing multifunction-integrated physical eutectogels for application in wearable electronics.
Collapse
Affiliation(s)
- Dandan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Shiyu Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Hui Wang
- Sichuan Univ, West China Sch Basic Med Sci & Forens Med, Chengdu 610041, P. R. China
| | - Zhenyu Zhang
- Department of Plastic and Burn Surgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| | - Haibo Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
6
|
Tang N, Jiang Y, Wei K, Zheng Z, Zhang H, Hu J. Evolutionary Reinforcement of Polymer Networks: A Stepwise-Enhanced Strategy for Ultrarobust Eutectogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309576. [PMID: 37939373 DOI: 10.1002/adma.202309576] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Gel materials are appealing due to their diverse applications in biomedicine, soft electronics, sensors, and actuators. Nevertheless, the existing synthetic gels are often plagued by feeble network structures and inherent defects associated with solvents, which compromise their mechanical load-bearing capacity and cast persistent doubts about their reliability. Herein, combined with attractive deep eutectic solvent (DES), a stepwise-enhanced strategy is presented to fabricate ultrarobust eutectogels. It focuses on the continuous modulation and optimization of polymer networks through complementary annealing and solvent exchange processes, which drives a progressive increase in both quantity and mass of the interconnected polymer chains at microscopic scale, hence contributing to the evolutionary enhancement of network structure. The resultant eutectogel exhibits superb mechanical properties, including record-breaking strength (31.8 MPa), toughness (76.0 MJ m-3 ), and Young's modulus (25.6 MPa), together with exceptional resistance ability to tear and crack propagation. Moreover, this eutectogel is able to be further programmed through photolithography to in situ create patterned eutectogel for imparting specific functionalities. Enhanced by its broad applicability to various DES combinations, this stepwise-enhanced strategy is poised to serve as a crucial template and methodology for the future development of robust gels.
Collapse
Affiliation(s)
- Ning Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Yujia Jiang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Kailun Wei
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Zhiran Zheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Hao Zhang
- Department of Mechanical Engineering, Tsinghua University, Shuangqing Road 30, Haidian District, Beijing, 100084, China
| | - Jun Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| |
Collapse
|