1
|
Krishnan MR, Alsharaeh EH. Methodological Impact on Curing Kinetics of Bone Cement Based on Poly (Styrene- co-Methyl Methacrylate)-2D Nanofiller Nanocomposites. Polymers (Basel) 2025; 17:116. [PMID: 39795519 PMCID: PMC11722910 DOI: 10.3390/polym17010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Herein, we report the methodological impact on the curing kinetics of bone cement based on polymer nanocomposites prepared using different methods. Poly (styrene-co-methylmethacrylate)-2D nanofiller nanocomposites (P(S-MMA)-2D Nanofiller) were prepared using bulk and suspension polymerization methods to study the effect of the different methods. The prepared nanocomposites were well-characterized for chemical, thermal, mechanical, and structural characteristics using Fourier Transform Infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), nano-indentation, and scanning electron microscopy (SEM) techniques, respectively. The FT-IR results confirmed the successful formation of the polymer nanocomposites. The DSC results showed that the prepared nanocomposites have higher thermal stabilities than their copolymer counterparts. The nano-indentation results revealed that the elastic modulus of the copolymer nanocomposites (bulk polymerization) was as high as 7.89 GPa, and the hardness was 0.219 GPa. Incorporating the 2D nanofiller in the copolymer matrix synergistically enhances the thermo-mechanical properties of the bone cement samples. The polymer nanocomposites prepared using the suspension polymerization method exhibit faster-curing kinetics (15 min) than those prepared using the bulk polymerization (120-240 min) method.
Collapse
Affiliation(s)
| | - Edreese Housni Alsharaeh
- College of Science and General Studies, AlFaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
2
|
Kazemi SM, Mirahmadi A, Hosseini-Monfared P, Moghimi HR, Mahboubi A, Gandomkarzadeh M, Salmannezhad A, Farrokhi M. Impact of saline irrigation on the early mechanical characteristics and microstructure of bone cement. Sci Rep 2024; 14:31299. [PMID: 39733035 PMCID: PMC11682318 DOI: 10.1038/s41598-024-82737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Very high heat is generated during the polymerization of poly (methyl methacrylate) (PMMA) bone cement, which is used for implant fixation in orthopedic surgery. As such, it has been suggested that irrigating the bone cement layer in the surgical site with a saline solution is a way of cooling the layer. In this study, we aimed to determine the influence of irrigation with a saline solution on the flexural strength and the microstructure of the test specimens of two PMMA bone cement brands: Simplex P and FIX 1. Specimens were assigned to three groups: (1) irrigation with normal saline solution at 25 °C (RS group), (2) irrigation with cold saline at 4 °C (CS group), and (3) no irrigation (control group). For each of the groups, the specimens were tested after various times of aging in phosphate-buffered saline solution (PBS) at 37 °C for 1 h, 24 h, and 7 days. Flexural strength was measured following ISO 5833 protocol, and the surface microstructure was determined using scanning electron microscopy (SEM). The flexural strength results showed that for each of the cement brands, the difference between the groups was not significant, except for Simplex P specimens aged for 24 h, for which flexural strength of the RS and CS group specimens was lower than in the control group. The microstructural features of the surface of the specimens were similar across groups. These findings suggest that in a cemented arthroplasty, irrigation of the bone cement for the purpose of cooling it must only be used after very careful consideration.
Collapse
Affiliation(s)
- Seyed Morteza Kazemi
- Bone, Joint and Related Tissues Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Mirahmadi
- Bone, Joint and Related Tissues Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pooya Hosseini-Monfared
- Bone, Joint and Related Tissues Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Moghimi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Mahboubi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Gandomkarzadeh
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Salmannezhad
- Bone, Joint and Related Tissues Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Farrokhi
- Student Research Committee, Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Tavakoli M, Najafinezhad A, Mirhaj M, Karbasi S, Varshosaz J, Al-Musawi MH, Madaninasab P, Sharifianjazi F, Mehrjoo M, Salehi S, Kazemi N, Nasiri-Harchegani S. Graphene oxide-encapsulated baghdadite nanocomposite improved physical, mechanical, and biological properties of a vancomycin-loaded PMMA bone cement. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:823-850. [PMID: 38300323 DOI: 10.1080/09205063.2024.2308328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Polymethyl methacrylate (PMMA) bone cement is commonly used in orthopedic surgeries to fill the bone defects or fix the prostheses. These cements are usually containing amounts of a nonbioactive radiopacifying agent such as barium sulfate and zirconium dioxide, which does not have a good interface compatibility with PMMA, and the clumps formed from these materials can scratch metal counterfaces. In this work, graphene oxide encapsulated baghdadite (GOBgh) nanoparticles were applied as radiopacifying and bioactive agent in a PMMA bone cement containing 2 wt.% of vancomycin (VAN). The addition of 20 wt.% of GOBgh (GOBgh20) nanoparticles to PMMA powder caused a 33.6% increase in compressive strength and a 70.9% increase in elastic modulus compared to the Simplex® P bone cement, and also enhanced the setting properties, radiopacity, antibacterial activity, and the apatite formation in simulated body fluid. In vitro cell assessments confirmed the increase in adhesion and proliferation of MG-63 cells as well as the osteogenic differentiation of human adipose-derived mesenchymal stem cells on the surface of PMMA-GOBgh20 cement. The chorioallantoic membrane assay revealed the excellent angiogenesis activity of nanocomposite cement samples. In vivo experiments on a rat model also demonstrated the mineralization and bone integration of PMMA-GOBgh20 cement within four weeks. Based on the promising results obtained, PMMA-GOBgh20 bone cement is suggested as an optimal sample for use in orthopedic surgeries.
Collapse
Affiliation(s)
- Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Aliakbar Najafinezhad
- Department of Materials Engineering, Advanced Materials Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Novel Drug Delivery Systems Research Centre, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Science, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Pegah Madaninasab
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of GA, Tbilisi, Georgia
| | - Morteza Mehrjoo
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
- Iran National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Saeideh Salehi
- Department of Materials Engineering, Advanced Materials Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Nafise Kazemi
- Department of Materials Engineering, Advanced Materials Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Sepideh Nasiri-Harchegani
- Department of Materials Engineering, Advanced Materials Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
4
|
Liu D, Li H, Yang Y, Xu S, Zheng X, Liu J, Miyazaki T, Zhu Y. Preparation and characterizations of antibacterial poly(methyl methacrylate) bone cement via copolymerization with a quaternary ammonium monomer of dimethylaminotriclosan methacrylate. J Mech Behav Biomed Mater 2024; 151:106367. [PMID: 38194787 DOI: 10.1016/j.jmbbm.2023.106367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
Poly (methyl methacrylate) (PMMA) bone cement relies on the loaded antibiotic to realize the antibacterial purpose. But the exothermic behavior during setting often makes temperature-sensitive antibiotics inactivated. It is necessary to develop new material candidates to replace antibiotics. In this study, a new quaternary ammonium methacrylate (QAM) monomer called dimethylaminetriclosan methacrylate (DMATCM) was designed by the quaternization between 2-(Dimethylamino)ethyl methacrylate and triclosan, then employed as the modifier to explore the feasibility of equipping bone cement with antibacterial activity, and to investigate the variations on the physical and biological performances brought by the substitution ratio of DMATCM to MMA. Results showed that DMATCM opened its C=C bonding to participate in the MMA polymerization, and the quaternary ammonium group helped it to perform broad-spectrum antibacterial property against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. With an increased substitution ratio of DMATCM to MMA, the glass transition temperatures, the maximum exothermic temperatures, and the contact angles of bone cements declined, but the residual monomer contents, the fluid uptakes, and the setting times under Vical indentation increased. Long-term soaking made almost no changes to the weight loss and the mechanical properties of DMATCM-modified cements with lower substitution ratios of 0∼20%, and the activation rather enhanced the strengths of uncured AMBC-4 and AMBC-5 samples. Owing to more DMATCM exposed on the cement surface, the inhibition ring diameter produced by modified cement was improved to a maximum of 28.09 mm, and MC3T3-E1 cells performed the cell viabilities all beyond 70% and healthy adhesion after 72 h co-culturing. Taking all measured properties and ISO standards into account, the antibacterial bone cement under the ratio of 10% performed better, besides its good bactericidal effect, the other properties satisfied the requirements for clinical application.
Collapse
Affiliation(s)
- Dong Liu
- Faculty of Materials Science and Technology, Kunming University of Science and Technology, No. 68 Wenchang Road, Lianhua Campus, Kunming, Yunnan, 650093, China.
| | - Haoyang Li
- Faculty of Materials Science and Technology, Kunming University of Science and Technology, No. 68 Wenchang Road, Lianhua Campus, Kunming, Yunnan, 650093, China.
| | - Yunping Yang
- Spine Surgery Department, Affiliated Hospital of Yunnan University, No.176 Qingnian Road, Wuhua District, Kunming, Yunnan, 650021, China.
| | - Shan Xu
- Faculty of Materials Science and Technology, Kunming University of Science and Technology, No. 68 Wenchang Road, Lianhua Campus, Kunming, Yunnan, 650093, China.
| | - Xihao Zheng
- Faculty of Materials Science and Technology, Kunming University of Science and Technology, No. 68 Wenchang Road, Lianhua Campus, Kunming, Yunnan, 650093, China.
| | - Jinkun Liu
- Faculty of Materials Science and Technology, Kunming University of Science and Technology, No. 68 Wenchang Road, Lianhua Campus, Kunming, Yunnan, 650093, China.
| | - Toshiki Miyazaki
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu-ku, Kitakyushu-shi, 808-0196, Japan.
| | - Yan Zhu
- Faculty of Materials Science and Technology, Kunming University of Science and Technology, No. 68 Wenchang Road, Lianhua Campus, Kunming, Yunnan, 650093, China.
| |
Collapse
|
5
|
Lin Y, Li P, Liu W, Chen J, Liu X, Jiang P, Huang X. Application-Driven High-Thermal-Conductivity Polymer Nanocomposites. ACS NANO 2024; 18:3851-3870. [PMID: 38266182 DOI: 10.1021/acsnano.3c08467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Polymer nanocomposites combine the merits of polymer matrices and the unusual effects of nanoscale reinforcements and have been recognized as important members of the material family. Being a fundamental material property, thermal conductivity directly affects the molding and processing of materials as well as the design and performance of devices and systems. Polymer nanocomposites have been used in numerous industrial fields; thus, high demands are placed on the thermal conductivity feature of polymer nanocomposites. In this Perspective, we first provide roadmaps for the development of polymer nanocomposites with isotropic, in-plane, and through-plane high thermal conductivities, demonstrating the great effect of nanoscale reinforcements on thermal conductivity enhancement of polymer nanocomposites. Then the significance of the thermal conductivity of polymer nanocomposites in different application fields, including wearable electronics, thermal interface materials, battery thermal management, dielectric capacitors, electrical equipment, solar thermal energy storage, biomedical applications, carbon dioxide capture, and radiative cooling, are highlighted. In future research, we should continue to focus on methods that can further improve the thermal conductivity of polymer nanocomposites. On the other hand, we should pay more attention to the synergistic improvement of the thermal conductivity and other properties of polymer nanocomposites. Emerging polymer nanocomposites with high thermal conductivity should be based on application-oriented research.
Collapse
Affiliation(s)
- Ying Lin
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Pengli Li
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wenjie Liu
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jie Chen
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xiangyu Liu
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Pingkai Jiang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xingyi Huang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
6
|
Chen J, Huang X, Wang J, Chen W, Teng Y, Yin D. Incorporation of black phosphorus nanosheets into poly(propylene fumarate) biodegradable bone cement to enhance bioactivity and osteogenesis. J Orthop Surg Res 2024; 19:98. [PMID: 38291442 PMCID: PMC10829309 DOI: 10.1186/s13018-024-04566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Injectable bone cement is commonly used in clinical orthopaedics to fill bone defects, treat vertebral compression fractures, and fix joint prostheses during joint replacement surgery. Poly(propylene fumarate) (PPF) has been proposed as a biodegradable and injectable alternative to polymethylmethacrylate (PMMA) bone cement. Recently, there has been considerable interest in two-dimensional (2D) black phosphorus nanomaterials (BPNSs) in the biomedical field due to their excellent photothermal and osteogenic properties. In this study, we investigated the biological and physicochemical qualities of BPNSs mixed with PPF bone cement created through thermal cross-linking. METHODS PPF was prepared through a two-step process, and BPNSs were prepared via a liquid phase stripping method. BP/PPF was subsequently prepared through thermal cross-linking, and its characteristics were thoroughly analysed. The mechanical properties, cytocompatibility, osteogenic performance, degradation performance, photothermal performance, and in vivo toxicity of BP/PPF were evaluated. RESULTS BP/PPF exhibited low cytotoxicity levels and mechanical properties similar to that of bone, whereas the inclusion of BPNSs promoted preosteoblast adherence, proliferation, and differentiation on the surface of the bone cement. Furthermore, 200 BP/PPF demonstrated superior cytocompatibility and osteogenic effects, leading to the degradation of PPF bone cement and enabling it to possess photothermal properties. When exposed to an 808-nm laser, the temperature of the bone cement increased to 45-55 °C. Furthermore, haematoxylin and eosin-stained sections from the in vivo toxicity test did not display any anomalous tissue changes. CONCLUSION BP/PPF exhibited mechanical properties similar to that of bone: outstanding photothermal properties, cytocompatibility, and osteoinductivity. BP/PPF serves as an effective degradable bone cement and holds great potential in the field of bone regeneration.
Collapse
Affiliation(s)
- Jiahan Chen
- Graduate School of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Orthopedics, General Hospital of Xinjiang Military Region, Urumqi, Xinjiang, China
| | - Xiaoxia Huang
- Graduate School of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Orthopedics, General Hospital of Xinjiang Military Region, Urumqi, Xinjiang, China
| | - Jianghua Wang
- Department of Pharmacy, General Hospital of Xinjiang Military Region, Urumqi, Xinjiang, China
| | - Wen Chen
- Shihezi University College of Pharmacy, Shihezi, Xinjiang, China
| | - Yong Teng
- Department of Orthopedics, General Hospital of Xinjiang Military Region, Urumqi, Xinjiang, China.
| | - Dongfeng Yin
- Department of Pharmacy, General Hospital of Xinjiang Military Region, Urumqi, Xinjiang, China.
| |
Collapse
|
7
|
Ramanathan S, Lin YC, Thirumurugan S, Hu CC, Duann YF, Chung RJ. Poly(methyl methacrylate) in Orthopedics: Strategies, Challenges, and Prospects in Bone Tissue Engineering. Polymers (Basel) 2024; 16:367. [PMID: 38337256 PMCID: PMC10857151 DOI: 10.3390/polym16030367] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Poly(methyl methacrylate) (PMMA) is widely used in orthopedic applications, including bone cement in total joint replacement surgery, bone fillers, and bone substitutes due to its affordability, biocompatibility, and processability. However, the bone regeneration efficiency of PMMA is limited because of its lack of bioactivity, poor osseointegration, and non-degradability. The use of bone cement also has disadvantages such as methyl methacrylate (MMA) release and high exothermic temperature during the polymerization of PMMA, which can cause thermal necrosis. To address these problems, various strategies have been adopted, such as surface modification techniques and the incorporation of various bioactive agents and biopolymers into PMMA. In this review, the physicochemical properties and synthesis methods of PMMA are discussed, with a special focus on the utilization of various PMMA composites in bone tissue engineering. Additionally, the challenges involved in incorporating PMMA into regenerative medicine are discussed with suitable research findings with the intention of providing insightful advice to support its successful clinical applications.
Collapse
Affiliation(s)
- Susaritha Ramanathan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan; (S.R.); (Y.-C.L.); (S.T.); (Y.-F.D.)
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan; (S.R.); (Y.-C.L.); (S.T.); (Y.-F.D.)
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Senthilkumar Thirumurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan; (S.R.); (Y.-C.L.); (S.T.); (Y.-F.D.)
| | - Chih-Chien Hu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linko, Taoyuan City 33305, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linko, Taoyuan City 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Yeh-Fang Duann
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan; (S.R.); (Y.-C.L.); (S.T.); (Y.-F.D.)
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan; (S.R.); (Y.-C.L.); (S.T.); (Y.-F.D.)
- High-Value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| |
Collapse
|
8
|
Sui P, Yu T, Sun S, Chao B, Qin C, Wang J, Wang E, Zheng C. Advances in materials used for minimally invasive treatment of vertebral compression fractures. Front Bioeng Biotechnol 2023; 11:1303678. [PMID: 37954022 PMCID: PMC10634476 DOI: 10.3389/fbioe.2023.1303678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Vertebral compression fractures are becoming increasingly common with aging of the population; minimally invasive materials play an essential role in treating these fractures. However, the unacceptable processing-performance relationships of materials and their poor osteoinductive performance have limited their clinical application. In this review, we describe the advances in materials used for minimally invasive treatment of vertebral compression fractures and enumerate the types of bone cement commonly used in current practice. We also discuss the limitations of the materials themselves, and summarize the approaches for improving the characteristics of bone cement. Finally, we review the types and clinical efficacy of new vertebral implants. This review may provide valuable insights into newer strategies and methods for future research; it may also improve understanding on the application of minimally invasive materials for the treatment of vertebral compression fractures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Changjun Zheng
- Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Zhao Y, Liu F, Wang W. Treatment progress of spinal metastatic cancer: a powerful tool for improving the quality of life of the patients. J Orthop Surg Res 2023; 18:563. [PMID: 37537684 PMCID: PMC10399009 DOI: 10.1186/s13018-023-03975-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
Spinal metastasis is a common secondary malignant tumor of the bone, often resulting in spinal cord and nerve root compression, leading to obvious pain and related compression symptoms. This condition has a high incidence and mortality rate. The treatment approach for most patients with spinal metastasis is primarily palliative. Consultation with a multidisciplinary team is widely accepted as a comprehensive treatment approach for patients with spinal metastases. With advancements in research and technology, the evaluation and treatment of spinal metastatic cancer are continuously evolving. This study provides an overview of surgical treatment, minimally invasive treatment, and radiotherapy for spinal metastatic cancer and also analyzes the clinical effects, advantages, and current limitations associated with various treatment approaches.
Collapse
Affiliation(s)
- Yuliang Zhao
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, No. 44 Xiaoheyan Road, Dadong District, Liaoning, 110000, Shenyang, China
| | - Fei Liu
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, No. 44 Xiaoheyan Road, Dadong District, Liaoning, 110000, Shenyang, China
| | - Wei Wang
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, No. 44 Xiaoheyan Road, Dadong District, Liaoning, 110000, Shenyang, China.
| |
Collapse
|
10
|
Quan Q, Gongping X, Ruisi N, Shiwen L. New Research Progress of Modified Bone Cement Applied to Vertebroplasty. World Neurosurg 2023; 176:10-18. [PMID: 37087028 DOI: 10.1016/j.wneu.2023.04.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023]
Abstract
Percutaneous vertebroplasty and percutaneous kyphoplasty are effective methods to treat acute osteoporotic vertebral compression fractures that can quickly provide patients with pain relief, prevent further height loss of the vertebral body, and help correct kyphosis. Many clinical studies have investigated the characteristics of bone cement. Bone cement is a biomaterial injected into the vertebral body that must have good biocompatibility and biosafety. The optimization of the characteristics of bone cement has become of great interest. Bone cement can be mainly divided into 3 types: polymethyl methacrylate, calcium phosphate cement, and calcium sulfate cement. Each type of cement has its own advantages and disadvantages. In the past 10 years, the performance of bone cement has been greatly improved via different methods. The aim of our review is to provide an overview of the current progress in the types of modified bone cement and summarize the key clinical findings.
Collapse
Affiliation(s)
- Qi Quan
- Department of Spine Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Gongping
- Department of Spine Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Na Ruisi
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Li Shiwen
- Department of Spine Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
11
|
Efficacy of Cefazolin Versus Vancomycin Antibiotic Cement Spacers. J Orthop Trauma 2023; 37:e118-e121. [PMID: 36162060 DOI: 10.1097/bot.0000000000002496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cefazolin is a heat-labile antibiotic that is not usually added to polymethylmethacrylate (PMMA) cement spacers because it is believed to be inactivated by the high polymerization temperatures. The purpose of this study was to compare cefazolin versus vancomycin high-dose antibiotic cement spacers. METHODS High-dose antibiotic PMMA spacers with either cefazolin or vancomycin were fabricated. Setting time, compressive strength, and compression modulus of spacers were measured. Spacers were emerged in saline, and the eluent was tested on days 1, 2, 3, 7, 14, and 30 to determine the zone of inhibition of methicillin-sensitive Staphylococcus aureus and estimate the cumulative antibiotic released. RESULTS Cefazolin, compared with vancomycin-loaded spacers, had significantly shorter setting time [mean difference (MD) -1.8 minutes, 95% confidence interval (CI), -0.6 to -3.0], greater compressive strength (MD 20.1 megapascal, CI, 15.8 to 24.5), and compression modulus (MD 0.15 megapascal, CI, 0.06 to 0.23). The zone of inhibition of eluent from PMMA-C spacers was significantly greater than PMMA-V spacers at all time points, an average of 11.7 ± 0.8 mm greater across time points. The estimated cumulative antibiotic released from cefazolin spacers was significantly greater at all time points ( P < 0.0001). CONCLUSIONS Cefazolin was not inactivated by PMMA polymerization and resulted in spacers with superior antimicrobial and biomechanical properties than those made with vancomycin, suggesting that cefazolin could play a role in the treatment of infected bone defects with high-dose antibiotic PMMA spacers.
Collapse
|
12
|
Tan QC, Jiang XS, Chen L, Huang JF, Zhou QX, Wang J, Zhao Y, Zhang B, Sun YN, Wei M, Zhao X, Yang Z, Lei W, Tang YF, Wu ZX. Bioactive graphene oxide-functionalized self-expandable hydrophilic and osteogenic nanocomposite for orthopaedic applications. Mater Today Bio 2022; 18:100500. [DOI: 10.1016/j.mtbio.2022.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/30/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
|
13
|
Abstract
Tannic acid (TA) is a naturally occurring polyphenol compound commonly found in tea, wine, and fruits. Because of the excellent structural and functional properties afforded by TA, materials based on the structure of polyhydroxyphenols have great value, particularly for orthopedic transplantation. This compound, for example, can form a strong interaction with metals and can form a stable coating on their surfaces, thus, improving the physical and chemical properties of bone–implant surfaces and boosting implantation success rates. TA can also inhibit the activity of osteoclasts, thus, playing a potential role in the treatment of osteoporosis. Furthermore, if the body becomes polluted with heavy metals, TA can chelate the ions to protect bone morphology and structure. It also has a significant antibacterial effect and can reduce infections caused by surgical implantation and inhibit a variety of tumor cells, thereby promoting its potential application in spinal metastasis surgery. Furthermore, it can also slow the corrosion caused by magnesium alloys, thereby greatly improving the development of degradable orthopedic metal fixatives. Importantly, TA is cheap and easy to obtain, making it extremely valuable for use in orthopedics. This review focuses on the research status and practical applications of TA, and prospects for its future application for orthopedics (Figure 1).
Collapse
|
14
|
Tham DQ, Huynh MD, Linh NTD, Van DTC, Cong DV, Dung NTK, Trang NTT, Lam PV, Hoang T, Lam TD. PMMA Bone Cements Modified with Silane-Treated and PMMA-Grafted Hydroxyapatite Nanocrystals: Preparation and Characterization. Polymers (Basel) 2021; 13:polym13223860. [PMID: 34833161 PMCID: PMC8617905 DOI: 10.3390/polym13223860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, vinyltrimethoxysilane-treated hydroxyapatite (vHAP) and PMMA-grafted HAP (gHAP) were successfully prepared from original HAP (oHAP). Three kinds of HAP (oHAP, vHAP and g HAP) were used as additives for the preparation of three groups of HAP-modified PMMA bone cements (oHAP-BC, vHAP-BC and gHAP-BC). The setting, bending and compression properties of the bone cements were conducted according to ISO 5833:2002. The obtained results showed that the maximum temperature while curing the HAP-modified bone cements (HAP-BCs) decreased from 64.9 to 60.8 °C and the setting time increased from 8.1 to 14.0 min, respectively, with increasing HAP loading from 0 to 15 wt.%. The vHAP-BC and gHAP-BC groups exhibited higher mechanical properties than the required values in ISO 5833. Electron microscopy images showed that the vHAP and gHAP nanoparticles were dispersed better in the polymerized PMMA matrix than the oHAP nanoparticles. FTIR analysis indicated the polar interaction between the PO4 groups of the HAP nanoparticles and the ester groups of the polymerized PMMA matrix. Thermal gravimetric analysis indicated that mixtures of ZrO2/HAPs were not able to significantly improve the thermal stability of the HAP-BCs. DSC diagrams showed that the incorporation of gHAP to PMMA bone cement with loadings lower than 10 wt.% can increase Tg by about 2.4 °C.
Collapse
Affiliation(s)
- Do Quang Tham
- Institute for Tropical Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam; (M.D.H.); (D.V.C.); (N.T.T.T.); (T.H.); (T.D.L.)
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam;
- Correspondence:
| | - Mai Duc Huynh
- Institute for Tropical Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam; (M.D.H.); (D.V.C.); (N.T.T.T.); (T.H.); (T.D.L.)
| | - Nguyen Thi Dieu Linh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam;
| | - Do Thi Cam Van
- Hanoi University of Industry, 298 Cau Dien, Bac Tu Liem, Hanoi 10000, Vietnam;
| | - Do Van Cong
- Institute for Tropical Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam; (M.D.H.); (D.V.C.); (N.T.T.T.); (T.H.); (T.D.L.)
| | - Nguyen Thi Kim Dung
- National Academy of Education Management, 31 Phan Dinh Giot, Thanh Xuan, Hanoi 10000, Vietnam;
| | - Nguyen Thi Thu Trang
- Institute for Tropical Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam; (M.D.H.); (D.V.C.); (N.T.T.T.); (T.H.); (T.D.L.)
| | - Pham Van Lam
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam;
| | - Thai Hoang
- Institute for Tropical Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam; (M.D.H.); (D.V.C.); (N.T.T.T.); (T.H.); (T.D.L.)
| | - Tran Dai Lam
- Institute for Tropical Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam; (M.D.H.); (D.V.C.); (N.T.T.T.); (T.H.); (T.D.L.)
| |
Collapse
|
15
|
Huang C, Yu M, Li H, Wan X, Ding Z, Zeng W, Zhou Z. Research Progress of Bioactive Glass and Its Application in Orthopedics. ADVANCED MATERIALS INTERFACES 2021. [DOI: 10.1002/admi.202100606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chao Huang
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Min Yu
- Department of Anesthesiology North‐Kuanren General Hospital No. 69 Xingguang Avenue, Yubei District Chongqing 401121 P. R. China
| | - Hao Li
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Xufeng Wan
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Zichuan Ding
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Weinan Zeng
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Zongke Zhou
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| |
Collapse
|
16
|
Chiang CC, Hsieh MK, Wang CY, Tuan WH, Lai PL. Cytotoxicity and cell response of preosteoblast in calcium sulfate-augmented PMMA bone cement. Biomed Mater 2021; 16. [PMID: 34410226 DOI: 10.1088/1748-605x/ac1ab5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 08/04/2021] [Indexed: 12/25/2022]
Abstract
Poly(methyl methacrylate) (PMMA) has been widely used in orthopedic applications, but bone ingrowth and toxic monomer release are drawback of this material. Particle reinforcement with osteoconductive substitute, such as calcium sulfate (CaSO4), is one of the solutions used to modify PMMA bone cement. The current study investigated the mechanical, chemical and biological properties of CaSO4-augmented bone cement. Mechanical strength was measured by a material testing machine. The concentration of methyl methacrylate (MMA) monomer from the various formulations of PMMA mixed with CaSO4was measured by ultra-performance liquid chromatography (UPLC). CCK-8 assay and ALP assay were performed to evaluate cytotoxicity of released MMA monomer and cell differentiation. The attachment of cells to CaSO4-augmented bone cement discs was observed by confocal and scanning electron microscopy, and surface topography was also evaluated by atomic force microscopy. The results revealed that increased CaSO4weight ratios led to compromised mechanical strength and increased MMA monomer release. Cell density and cell differentiation on CaSO4-augmented bone cement discs were decreased at CaSO4weight ratios above 10%. In addition, the presence of micropores on the surface and surface roughness were both increased for PMMA composite discs containing higher levels of CaSO4. These results demonstrated that fewer MC3T3-E1 cells on the surface of CaSO4-PMMA composites was correlated to increased MMA monomer release, micropore number and surface roughness. In summary, the augmentation of a higher proportion of CaSO4(>10 wt. %) to PMMA did not promote the biological properties of traditional PMMA bone cement.
Collapse
Affiliation(s)
- Ching-Chien Chiang
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ming-Kai Hsieh
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chi-Yun Wang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Hsing Tuan
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Po-Liang Lai
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
17
|
Li J, Wei W, Xu F, Wang Y, Liu Y, Fu C. Clinical Therapy of Metastatic Spinal Tumors. Front Surg 2021; 8:626873. [PMID: 33937314 PMCID: PMC8084350 DOI: 10.3389/fsurg.2021.626873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Metastatic spinal tumors (MST) have high rates of morbidity and mortality. MST can destroy the vertebral body or compress the nerve roots, resulting in an increased risk of pathological fractures and intractable pain. Here, we elaborately reviewed the currently available therapeutic options for MST according to the following four aspects: surgical management, minimally invasive therapy (MIT), radiation therapy, and systemic therapy. In particular, these aspects were classified and introduced to show their developmental process, clinical effects, advantages, and current limitations. Furthermore, with the improvement of treatment concepts and techniques, we discovered the prevalent trend toward the use of radiation therapy and MIT in clinic therapies. Finally, the future directions of these treatment options were discussed. We hoped that along with future advances and study will lead to the improvement of living standard and present status of treatment in patients with MST.
Collapse
Affiliation(s)
- Jie Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Wenjie Wei
- Key Laboratory of Pathobiology, Ministry of Education, School of Basic Medical Sciences, Jilin University, Changchun, China
| | - Feng Xu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuanyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yadong Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Chen ZY, Gao S, Zhang YW, Zhou RB, Zhou F. Antibacterial biomaterials in bone tissue engineering. J Mater Chem B 2021; 9:2594-2612. [PMID: 33666632 DOI: 10.1039/d0tb02983a] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone infection is a devastating disease characterized by recurrence, drug-resistance, and high morbidity, that has prompted clinicians and scientists to develop novel approaches to combat it. Currently, although numerous biomaterials that possess excellent biocompatibility, biodegradability, porosity, and mechanical strength have been developed, their lack of effective antibacterial ability substantially limits bone-defect treatment efficacy. There is, accordingly, a pressing need to design antibacterial biomaterials for effective bone-infection prevention and treatment. This review focuses on antibacterial biomaterials and strategies; it presents recently reported biomaterials, including antibacterial implants, antibacterial scaffolds, antibacterial hydrogels, and antibacterial bone cement types, and aims to provide an overview of these antibacterial materials for application in biomedicine. The antibacterial mechanisms of these materials are discussed as well.
Collapse
Affiliation(s)
- Zheng-Yang Chen
- Orthopedic Department, Peking University Third Hospital, Beijing 100191, China.
| | | | | | | | | |
Collapse
|
19
|
Phull SS, Yazdi AR, Ghert M, Towler MR. Bone cement as a local chemotherapeutic drug delivery carrier in orthopedic oncology: A review. J Bone Oncol 2021; 26:100345. [PMID: 33552885 PMCID: PMC7856326 DOI: 10.1016/j.jbo.2020.100345] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 01/05/2023] Open
Abstract
Metastatic bone lesions are common among patients with advanced cancers. While chemotherapy and radiotherapy may be prescribed immediately after diagnosis, the majority of severe metastatic bone lesions are treated by reconstructive surgery, which, in some cases, is followed by postoperative radiotherapy or chemotherapy. However, despite recent advancements in orthopedic surgery, patients undergoing reconstruction still have the risk of developing severe complications such as tumor recurrence and reconstruction failure. This has led to the introduction and evaluation of poly (methyl methacrylate) and inorganic bone cements as local carriers for chemotherapeutic drugs (usually, antineoplastic drugs (ANPDs)). The present work is a critical review of the literature on the potential use of these cements in orthopedic oncology. While several studies have demonstrated the benefits of providing high local drug concentrations while minimizing systemic side effects, only six studies have been conducted to assess the local toxic effect of these drug-loaded cements and they all reported negative effects on healthy bone structure. These findings do not close the door on chemotherapeutic bone cements; rather, they should assist in materials selection when designing future materials for the treatment of metastatic bone disease.
Collapse
Affiliation(s)
- Sunjeev S. Phull
- Department of Biomedical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto M5B 1W8, Ontario, Canada
| | - Alireza Rahimnejad Yazdi
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto M5B 1W8, Ontario, Canada
- Department of Mechanical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada
| | - Michelle Ghert
- Department of Surgery, McMaster University, Hamilton L8V 5C2, Ontario, Canada
| | - Mark R. Towler
- Department of Biomedical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto M5B 1W8, Ontario, Canada
- Department of Mechanical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada
| |
Collapse
|
20
|
Chen L, Tang Y, Zhao K, Zha X, Wei M, Tan Q, Wu Z. Sequential release of double drug (graded distribution) loaded gelatin microspheres/PMMA bone cement. J Mater Chem B 2021; 9:508-522. [PMID: 33305784 DOI: 10.1039/d0tb01452d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drugs are loaded into PMMA bone cement to reduce the risk of infection in freshly implanted prostheses or to promote the differentiation and growth of osteoblasts. However, the same method of loading of drugs in the bone cement cannot simultaneously achieve an effective antibacterial response and long-term treatment outcomes for osteoporosis based on a patient's clinical needs. In the present study, gentamicin sulfate (GS)/alendronate (ALN)-dual-loaded gelatin modified PMMA bone cement (GAPBC) was fabricated to provide rapid and continuous antibiotic release and long-term anti-osteoporotic therapy. Specifically, the gelatin microspheres were loaded with the drugs using separate methodologies, namely, ALN was loaded during fabrication of the gelatin microspheres after which GS was absorbed onto the gelatin from solution. The results demonstrate that sequential release of the GS and ALN was achieved, GS release playing a major role over the first 24 hours and ALN release dominant after 3 weeks of immersion in PBS, resulting from the graded distribution within the gelatin microspheres, and the final drug release ratio of GS (73.6%) and ALN (68.5%) from the modified bone cement was significantly higher than from PMMA bone cement. Therefore, GAPBC represents a potential drug carrier for future clinical applications.
Collapse
Affiliation(s)
- Lei Chen
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, P. R. China.
| | - Yufei Tang
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, P. R. China.
| | - Kang Zhao
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, P. R. China.
| | - Xiang Zha
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, P. R. China.
| | - Min Wei
- Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, P. R. China.
| | - Quanchang Tan
- Institute of Orthopaedics, Xi'jing Hospital, Fourth Military Medical University, Xi'an 710032, P. R. China.
| | - Zixiang Wu
- Institute of Orthopaedics, Xi'jing Hospital, Fourth Military Medical University, Xi'an 710032, P. R. China.
| |
Collapse
|
21
|
Xia X, Shi R, Huang J, Li Y, Zuo Y, Li J. Development of a phase change microcapsule to reduce the setting temperature of PMMA bone cement. J Appl Biomater Funct Mater 2020; 18:2280800020940279. [PMID: 33147094 DOI: 10.1177/2280800020940279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The aim of the current study is to alleviate the adverse effect of the strongly exothermic polymerization of polymethyl methacrylate (PMMA) bone cement in clinical applications. In this study, paraffin/poly(methyl methacrylate-methylene bisacrylamide) (paraffin/P(MMA-MBA)) phase change microcapsules (MPn; n = 1, 2) were developed via the emulsion polymerization method. The reduction of the maximum temperature of polymerization (Tmax) and physicochemical properties were evaluated after doping commercial PMMA cement with MPn in specific proportions (10%, 20%, and 30%). The results reveal that the MPn-doped PMMA exhibited an effective reduction in Tmax, which can help alleviate the adverse effect of the strong exothermic reactions during PMMA setting. After doping with the MPn, the mechanical properties of the PMMA cement decrease and the values are close to that of body cancellous bone. The Tmax of the cement doped with 20 wt% MP1 is 37.6°C, which is close to body temperature. Significantly, the setting and compressive properties of the optimized group can still adhere to clinical requirements. The MPn doping PMMA technique holds much promise in clinical practice.
Collapse
Affiliation(s)
- Xue Xia
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Rui Shi
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jinhui Huang
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yubao Li
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yi Zuo
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jidong Li
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
22
|
Swelling behavior of expandable poly(methyl methacrylate‐acrylic acid)/polymethyl methacrylate bio‐composites with different crosslinking densities. J Appl Polym Sci 2020. [DOI: 10.1002/app.49567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Zhu J, Yang S, Cai K, Wang S, Qiu Z, Huang J, Jiang G, Wang X, Fang X. Bioactive poly (methyl methacrylate) bone cement for the treatment of osteoporotic vertebral compression fractures. Theranostics 2020; 10:6544-6560. [PMID: 32483469 PMCID: PMC7255031 DOI: 10.7150/thno.44428] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Poly (methyl methacrylate) (PMMA) bone cement is one of the most commonly used biomaterials for augmenting/stabilizing osteoporosis-induced vertebral compression fractures (OVCFs), such as percutaneous vertebroplasty (PVP) and balloon kyphoplasty (BKP). However, its clinical applications are limited by its poor performance in high compressive modulus and weak bonding to bone. To address these issues, a bioactive composite bone cement was developed for the treatment of osteoporotic vertebral compression fractures, in which mineralized collagen (MC) was incorporated into the PMMA bone cement (MC-PMMA). Methods: The in vitro properties of PMMA and MC-PMMA composite bone cement were determined, including setting time, compressive modulus, adherence, proliferation, and osteogenic differentiation of rat bone mesenchymal stem cells. The in vivo properties of both cements were evaluated in an animal study (36 osteoporotic New Zealand female rabbits divided equally between the two bone cement groups; PVP at L5) and a small-scale and short-term clinical study (12 patients in each of the two bone cement groups; follow-up: 2 years). Results: In terms of value for PMMA bone cement, the handling properties of MC-PMMA bone cement were not significantly different. However, both compressive strength and compressive modulus were found to be significantly lower. In the rabbit model study, at 8 and 12 weeks post-surgery, bone regeneration was more significant in MC-PMMA bone cement (cortical bone thickness, osteoblast area, new bone area, and bone ingrowth %; each significantly higher). In the clinical study, at a follow-up of 2 years, both the Visual Analogue Score and Oswestry Disability Index were significantly reduced when MC-PMMA cement was used. Conclusions: MC-PMMA bone cement demonstrated good adaptive mechanical properties and biocompatibility and may be a promising alternative to commercial PMMA bone cements for the treatment of osteoporotic vertebral fractures in clinical settings. While the present results for MC-PMMA bone cement are encouraging, further study of this cement is needed to explore its viability as an ideal alternative for use in PVP and BKP.
Collapse
Affiliation(s)
- Jinjin Zhu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
- Department of Spinal Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Kaiwen Cai
- Department of Spinal Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Shuo Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhiye Qiu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Junfei Huang
- Shimadzu (China) Co., Ltd. Shenzhen Branch, Shenzhen 518042, China
| | - Guoqiang Jiang
- Department of Spinal Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
| |
Collapse
|
24
|
Leu TH, Wei Y, Hwua YS, Huang XJ, Huang JT, Chung RJ. Fabrication of PLLA/C 3S Composite Membrane for the Prevention of Bone Cement Leakage. Polymers (Basel) 2019; 11:polym11121971. [PMID: 31801199 PMCID: PMC6960822 DOI: 10.3390/polym11121971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/28/2022] Open
Abstract
Kyphoplasty is an important treatment for stabilizing spine fractures due to osteoporosis. However, leakage of polymethyl-methacrylate (PMMA) bone cement during this procedure into the spinal canal has been reported to cause many adverse effects. In this study, we prepared an implantable membrane to serve as a barrier that avoids PMMA cement leakage during kyphoplasty procedures through a hybrid composite made of poly-l-lactic acid (PLLA) and tricalcium silicate (C3S), with the addition of C3S into PLLA matrix, showing enhanced mechanical and anti-degradation properties while keeping good cytocompatibility when compared to PLLA alone and most importantly, when this material design was applied under standardized PMMA cement injection conditions, no posterior wall leakage was observed after the kyphoplasty procedure in pig lumbar vertebral bone models. Testing results assess its effectiveness for clinical practice.
Collapse
Affiliation(s)
- Tsai-Hsueh Leu
- Department of Mechanical Engineering, College of Mechanical & Electrical Engineering, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan;
- Department of Orthopedics, Taipei City Hospital, Renai Branch, Taipei 10629, Taiwan
| | - Yang Wei
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan; (Y.W.); (X.-J.H.)
| | - Yi-Shi Hwua
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan;
| | - Xiao-Juan Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan; (Y.W.); (X.-J.H.)
| | - Jung-Tang Huang
- Department of Mechanical Engineering, College of Mechanical & Electrical Engineering, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan;
- Correspondence: (J.-T.H.); (R.-J.C.); Tel.: +(886-2)-2771-2171 (ext. 2547) (R.-J.C.)
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan; (Y.W.); (X.-J.H.)
- Correspondence: (J.-T.H.); (R.-J.C.); Tel.: +(886-2)-2771-2171 (ext. 2547) (R.-J.C.)
| |
Collapse
|
25
|
Liang B, Zuo D, Yu K, Cai X, Qiao B, Deng R, Yang J, Chu L, Deng Z, Zheng Y, Zuo G. Multifunctional bone cement for synergistic magnetic hyperthermia ablation and chemotherapy of osteosarcoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110460. [PMID: 31923975 DOI: 10.1016/j.msec.2019.110460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/08/2019] [Accepted: 11/17/2019] [Indexed: 12/31/2022]
Abstract
Myelosuppression, gastrointestinal toxicity and hypersensitivities always accompany chemotherapy of osteosarcoma (OS). In addition, the intricate karyotype of OS, the lack of targeted antitumor drugs and the bone microenvironment that provides a protective alcove for tumor cells reduce the therapeutic efficacy of chemotherapy. Here, we developed a multifunctional bone cement loaded with Fe3O4 nanoparticles and the antitumor drug doxorubicin (DOX/Fe3O4@PMMA) for synergistic MH ablation and chemotherapy of OS. The localized intratumorally administered DOX/Fe3O4@PMMA can change from liquid into solid at the tumor site via a polyreaction. The designed multifunctional bone cement was constructed with Fe3O4 nanoparticles, PMMA, and an antitumor drug approved by the U.S. Food and Drug administration (FDA). The injectability, magnetic hyperthermia (MH) performance, controlled drug release profile, and synergistic therapeutic effect of DOX/Fe3O4@PMMA in vitro were investigated in detail. Furthermore, the designed DOX/Fe3O4@PMMA controlled the release of DOX, enhanced the apoptosis of OS tissue, and inhibited the proliferation of tumor cells, demonstrating synergistic MH ablation and chemotherapy of OS in vivo. The biosafety of DOX/Fe3O4@PMMA was also evaluated in detail. This strategy significantly reduced surgical time, avoided operative wounds and prevented patient pain, showing a great clinical translational potential for OS treatment.
Collapse
Affiliation(s)
- Bing Liang
- Institute of Ultrasound Imaging of Chongqing Medical University, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, PR China; Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, PR China
| | - Deyu Zuo
- Institute of Ultrasound Imaging of Chongqing Medical University, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, PR China
| | - Kexiao Yu
- Chongqing Hospital of Traditional Chinese Medicine, 6 Panxi Road, Jiangbei District, Chongqing 400021, PR China
| | - Xiaojun Cai
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui District, Shanghai 200233, PR China.
| | - Bin Qiao
- Institute of Ultrasound Imaging of Chongqing Medical University, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, PR China
| | - Rui Deng
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, PR China
| | - Junsong Yang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, PR China
| | - Lei Chu
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, PR China
| | - Zhongliang Deng
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, PR China
| | - Yuanyi Zheng
- Institute of Ultrasound Imaging of Chongqing Medical University, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, PR China; Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui District, Shanghai 200233, PR China.
| | - Guoqing Zuo
- Institute of Ultrasound Imaging of Chongqing Medical University, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing 400010, PR China; Chongqing Hospital of Traditional Chinese Medicine, 6 Panxi Road, Jiangbei District, Chongqing 400021, PR China.
| |
Collapse
|
26
|
Yu K, Liang B, Zheng Y, Exner A, Kolios M, Xu T, Guo D, Cai X, Wang Z, Ran H, Chu L, Deng Z. PMMA-Fe 3O 4 for internal mechanical support and magnetic thermal ablation of bone tumors. Am J Cancer Res 2019; 9:4192-4207. [PMID: 31281541 PMCID: PMC6592182 DOI: 10.7150/thno.34157] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/09/2019] [Indexed: 12/28/2022] Open
Abstract
Background: Minimally invasive modalities are of great interest in the field of treating bone tumors. However, providing reliable mechanical support and fast killing of tumor cells to achieve rapid recovery of physical function is still challenging in clinical works. Methods: A material with two functions, mechanical support and magnetic thermal ablation, was developed from Fe3O4 nanoparticles (NPs) distributed in a polymethylmethacrylate (PMMA) bone cement. The mechanical properties and efficiency of magnetic field-induced thermal ablation were systematically and successfully evaluated in vitro and ex vivo. CT images and pathological examination were successfully applied to evaluate therapeutic efficacy with a rabbit bone tumor model. Biosafety evaluation was performed with a rabbit in vivo, and a cytotoxicity test was performed in vitro. Results: An NP content of 6% Fe3O4 (PMMA-6% Fe3O4, mFe: 0.01 g) gave the most suitable performance for in vivo study. At the 56-day follow-up after treatment, bone tumors were ablated without obvious side effects. The pathological examination and new bone formation in CT images clearly illustrate that the bone tumors were completely eliminated. Correspondingly, after treatment, the tendency of bone tumors toward metastasis significantly decreased. Moreover, with well-designed mechanical properties, PMMA-6%Fe3O4 implantation endowed tumor-bearing rabbit legs with excellent bio-mimic bone structure and internal support. Biosafety evaluation did not induce an increase or decrease in the immune response, and major functional parameters were all at normal levels. Conclusion: We have presented a novel, highly efficient and minimally invasive approach for complete bone tumor regression and bone defect repair by magnetic thermal ablation based on PMMA containing Fe3O4 NPs; this approach shows excellent heating ability for rabbit VX2 tibial plateau tumor ablation upon exposure to an alternating magnetic field (AMF) and provides mechanical support for bone repair. The new and powerful dual-function implant is a promising minimally invasive agent for the treatment of bone tumors and has good clinical translation potential.
Collapse
|
27
|
No YJ, Xin X, Ramaswamy Y, Li Y, Roohaniesfahani S, Mustaffa S, Shi J, Jiang X, Zreiqat H. Novel injectable strontium-hardystonite phosphate cement for cancellous bone filling applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:103-115. [PMID: 30678894 DOI: 10.1016/j.msec.2018.11.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 10/10/2018] [Accepted: 11/27/2018] [Indexed: 12/16/2022]
Abstract
Injectable bone cement (IBC) such as those based on methacrylates and hydraulic calcium phosphate and calcium sulfate-based cements have been used extensively for filling bone defects with acceptable clinical outcomes. There is a need however for novel IBC materials that can address some of the inherent limitations of currently available formulations to widen the clinical application of IBC. In this study, we characterized a novel hydraulic IBC formulation consisting of bioactive strontium-doped hardystonite (Sr-HT) ceramic microparticles and sodium dihydrogen phosphate, herein named Sr-HT phosphate cement (SPC). The resultant cement is comprised of two distinct amorphous phases with embedded partially reacted crystalline reactants. The novel SPC formulation possesses a unique combination of physicochemical properties suitable for use as an IBC, and demonstrates in vitro cytocompatibility when seeded with primary human osteoblasts. In vivo injection of SPC into rabbit sinus defects show minor new bone formation at the SPC periphery, similar to those exhibited in sinus defects filled with a clinically available calcium phosphate cement. The current SPC formulation presented in this paper shows promise as a clinically applicable IBC which can be further enhanced with additives.
Collapse
Affiliation(s)
- Young Jung No
- Biomaterials and Tissue Engineering Unit, School of AMME, Faculty of Engineering and IT, University of Sydney, NSW 2006, Australia; Joint Bioengineering and Regenerative Medicine Lab, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
| | - Xianzhen Xin
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China; Joint Bioengineering and Regenerative Medicine Lab, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
| | - Yogambha Ramaswamy
- Biomaterials and Tissue Engineering Unit, School of AMME, Faculty of Engineering and IT, University of Sydney, NSW 2006, Australia; Joint Bioengineering and Regenerative Medicine Lab, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
| | - Yihan Li
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China; Joint Bioengineering and Regenerative Medicine Lab, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
| | - Seyediman Roohaniesfahani
- Biomaterials and Tissue Engineering Unit, School of AMME, Faculty of Engineering and IT, University of Sydney, NSW 2006, Australia
| | - Siti Mustaffa
- Biomaterials and Tissue Engineering Unit, School of AMME, Faculty of Engineering and IT, University of Sydney, NSW 2006, Australia
| | - Jeffrey Shi
- School of Chemical and Biomolecular Engineering, Faculty of Engineering and IT, University of Sydney, NSW 2006, Australia
| | - Xinquan Jiang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China; Joint Bioengineering and Regenerative Medicine Lab, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China.
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Unit, School of AMME, Faculty of Engineering and IT, University of Sydney, NSW 2006, Australia; Joint Bioengineering and Regenerative Medicine Lab, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China.
| |
Collapse
|
28
|
Komang-Agung IS, Hydravianto L, Sindrawati O, William PS. Effect of Polymethylmethacrylate-Hydroxyapatite Composites on Callus Formation and Compressive Strength in Goat Vertebral Body. Malays Orthop J 2018; 12:6-13. [PMID: 30555640 PMCID: PMC6287135 DOI: 10.5704/moj.1811.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Introduction: Percutaneous vertebroplasty (PV) is one of the available treatments for vertebral compression fracture (VCF). Polymethylmethacrylate (PMMA) is the most common bone substitute used in the procedure, but it has several disadvantages. Bioceramic material, such as hydroxyapatite (HA), has better biological activity compared to PMMA. The aim of this study was to find an optimal biomaterial compound which offers the best mechanical and biological properties to be used in PV. Materials and Methods: This was an experimental study with goat (Capra aegagrus hircus) as an animal model. The animals’ vertebral columns were injected with PMMA-HA compound. Animal samples were divided into four groups, and each group received a different proportion of PMMA:HA compound. The mechanical and biological effects of the compound on the bone were then analysed. The mechanical effect was assessed by measuring the vertebral body’s compressive strength. Meanwhile, the biological effect was assessed by analysing the callus formation in the vertebral body. Results: The optimal callus formation and compressive strength was observed in the group receiving PMMA:HA with a 1:2 ratio. Conclusion: A mixture of PMMA and HA increases the quality of callus formation and the material’s compressive strength. The optimum ratio of PMMA:HA in the compound is 1:2.
Collapse
Affiliation(s)
- I S Komang-Agung
- Department of Orthopaedics, Airlangga University, Surabaya, Indonesia
| | - L Hydravianto
- Department of Orthopaedics, Airlangga University, Surabaya, Indonesia
| | - O Sindrawati
- Department of Pathology, Widya Mandala Katholic University, Surabaya, Indonesia
| | - P S William
- *Emergency Room Department, Jombang General Hospital, Jombang, Indonesia
| |
Collapse
|
29
|
Zhu W, Liu F, He J. Synthesis of imidazolium-containing mono-methacrylates as polymerizable antibacterial agents for acrylic bone cements. J Mech Behav Biomed Mater 2017; 74:176-182. [DOI: 10.1016/j.jmbbm.2017.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/30/2017] [Accepted: 06/04/2017] [Indexed: 10/18/2022]
|
30
|
Percutaneous Vertebroplasty and Kyphoplasty: Current Status, New Developments and Old Controversies. Cardiovasc Intervent Radiol 2017; 40:1815-1823. [DOI: 10.1007/s00270-017-1779-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 08/22/2017] [Indexed: 12/26/2022]
|
31
|
Abstract
There are many unanswered questions about giant cell tumor (GCT) treatment and not enough attention is paid to the biomechanics of the current treatment methods. Treatment methods have not changed much, and the best method remains controversial to some degree, due to the lack of adequate clinical and biomechanical investigations. Biomechanical tests, including in vitro mechanical experiments combined with finite element analysis, are very helpful in assessing the efficiency of the surgical methods employed and in determining the optimal method of surgery. Tests can be tailored to meet a patient’s needs, while limiting postoperative complications. One of the complications, following tumor surgery, is the frequency of postoperative fractures. In order to prevent postoperative fractures, defect reconstruction is recommended. The reconstruction usually consists of defect infilling with bone cement, and in the case of large defects cement augmentation is employed. Whether cement augmentation is essential and offers enough mechanical strength and what is the best fixation device for cement augmentation are areas of debate. In this article, the biomechanical studies comparing different methods of tumor surgery and cement augmentation, highlighting the areas needing more attention to advance GCT treatment, are critically reviewed. Based on our review, we recommend a biomechanical criterion for the essence of defect reconstruction, which must include patient specific factors, in addition to the tumor geometrical properties.
Collapse
|
32
|
Zhu T, Ren H, Li A, Liu B, Cui C, Dong Y, Tian Y, Qiu D. Novel bioactive glass based injectable bone cement with improved osteoinductivity and its in vivo evaluation. Sci Rep 2017; 7:3622. [PMID: 28620229 PMCID: PMC5472605 DOI: 10.1038/s41598-017-03207-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/24/2017] [Indexed: 11/09/2022] Open
Abstract
Recently, more and more attention has been paid to the development of a new generation of injectable bone cements that are bioactive, biodegradable and are able to have appropriate mechanical properties for treatment of vertebral compression fractures (VCFs). In this study, a novel PSC/CS composite cement with high content of PSC (a phytic acid-derived bioactive glass) was prepared and evaluated in both vitro and vivo. The PSC/CS cement showed excellent injectability, good resistance to disintegration, radiopacity and suitable mechanical properties. The in vitro test showed that the cement was bioactive, biocompatible and could maintain its shape sustainably, which made it possible to provide a long-term mechanical support for bone regeneration. Radiography, microcomputed tomography and histology of critical sized rabbit femoral condyle defects implanted with the cements proved the resorption and osteoinductivity of the cement. Compared with the PMMA and CSPC, there were more osteocyte and trabeculae at the Bone-Cement interface in the group PSC/CS cement. The volume of the residual bone cement suggested that PSC/CS had certain ability of degradation and the resorption rate was much lower than that of the CSPC cement. Together, the results indicated that the cement was a promising bone cement to treat the VCFs.
Collapse
Affiliation(s)
- Tengjiao Zhu
- Orthopedic Department, Peking University Third Hospital, Beijing, 100191, P.R. China
- Orthopedic Department, Peking University International Hospital, Beijing, 102206, P.R. China
| | - Huihui Ren
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Ailing Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Bingchuan Liu
- Orthopedic Department, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Caiyun Cui
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, 100081, P.R. China
| | - Yanmei Dong
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, 100081, P.R. China
| | - Yun Tian
- Orthopedic Department, Peking University Third Hospital, Beijing, 100191, P.R. China.
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100190, P.R. China.
| |
Collapse
|
33
|
A novel nano-hydroxyapatite — PMMA hybrid scaffolds adopted by conjugated thermal induced phase separation (TIPS) and wet-chemical approach: Analysis of its mechanical and biological properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:221-228. [DOI: 10.1016/j.msec.2016.12.133] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/04/2016] [Accepted: 12/21/2016] [Indexed: 12/27/2022]
|
34
|
G R, S B, Venkatesan B, Vellaichamy E. WITHDRAWN: A novel nano-hydroxyapatite - PMMA hybrid scaffolds adopted by conjugated thermal induced phase separation (TIPS) and wet-chemical approach: Analysis of its mechanical and biological properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:164-172. [PMID: 28183594 DOI: 10.1016/j.msec.2016.11.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 01/10/2023]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published in Mater. Sci. Eng.: C, 73 (2017) 164–172, 10.1016/http://dx.doi.org/j.msec.2016.12.133. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Radha G
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai 600025, India
| | - Balakumar S
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai 600025, India.
| | - Balaji Venkatesan
- Department of Biochemistry, University of Madras, Guindy campus, Chennai 600025, India
| | - Elangovan Vellaichamy
- Department of Biochemistry, University of Madras, Guindy campus, Chennai 600025, India
| |
Collapse
|