1
|
Liu L, Pan Y, Ye L, Liang C, Mou X, Dong X, Cai Y. Optical functional nanomaterials for cancer photoimmunotherapy. Coord Chem Rev 2024; 517:216006. [DOI: 10.1016/j.ccr.2024.216006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Bhadla D, Parekh K, Jain N. Cytotoxic evaluation of pure and doped iron oxide nanoparticles on cancer cells: a magnetic fluid hyperthermia perspective. Nanotoxicology 2024; 18:464-478. [PMID: 39091195 DOI: 10.1080/17435390.2024.2386019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The need of the hour with respect to cancer treatment is a targeted approach with minimal or nil ramifications. Apropos, magnetic fluid hyperthermia (MFH) is emerging as a potential therapeutic strategy with anticipated reduced side effects for solid tumors. MFH causes cytotoxicity due to the heat generated owing to Hysteresis, Neel, and Brownian relaxation losses once magnetic nanoparticles (MNPs) carrying cancer cells are placed under an alternating magnetic field. With respect to MFH, iron oxide-based MNPs have been most extensively studied to date compared to other metal oxides with magnetic properties. The effectiveness of MFH relies on the composition, coating, size, physical and biocompatible properties of the MNPs. Pure iron oxide and doped iron oxide MNPs have been utilized to study their effects on cancer cell killing through MFH. This review evaluates the biocompatibility of pure and doped iron oxide MNPs and their subsequent hyperthermic effect for effectively killing cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Dharti Bhadla
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, India
| | - Kinnari Parekh
- Dr. K C Patel Research and Development Centre, University Research Centre(s), Charotar University of Science and Technology (CHARUSAT), Changa, India
| | - Neeraj Jain
- Dr. K C Patel Research and Development Centre, University Research Centre(s), Charotar University of Science and Technology (CHARUSAT), Changa, India
| |
Collapse
|
3
|
Duraisamy K, Gangadharan A, Martirosyan KS, Sahu NK, Manogaran P, Easwaradas Kreedapathy G. Fabrication of Multifunctional Drug Loaded Magnetic Phase Supported Calcium Phosphate Nanoparticle for Local Hyperthermia Combined Drug Delivery and Antibacterial Activity. ACS APPLIED BIO MATERIALS 2023; 6:104-116. [PMID: 36511628 DOI: 10.1021/acsabm.2c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Magnetic calcium phosphate nanoparticles are biocompatible and have attracted much attention as biomaterials for bone tissue engineering and theranostic applications. In this study, we report the fabrication of a biocompatible magnetic nickel ferrite supported fluorapatite nanoparticle as a bone substitute material with hyperthermia potential using a facile wet precipitation approach. The composition and magnetic properties of the sample were analyzed using X-ray diffraction (XRD) and a vibrating sample magnetometer (VSM). The presence of both magnetic (NiFe2O4 and γ-Fe2O3) and fluorapatite phases was identified, and the sample exhibited ferromagnetic behavior with saturation magnetization and coercivity of 3.08 emu/g and 109 Oe, respectively. The fabricated sample achieved the hyperthermia temperature of ∼43 °C under tumor mimic conditions (neglecting Brownian relaxation) in 2.67 min, and the specific loss power (SLP) was estimated to be 898 W/g(Ni+Fe) which is sufficient to prompt irreversible cell apoptosis. Biocompatibility of the synthesized nanoparticle was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium (MTT) assay with fibroblast NIH 3T3 and L929 cells. An in vitro drug release experiment was conducted at pH 5 (tumor mimic) and 7.4 (physiological), which revealed a release of 49.8% in the former and 11.6% in the latter pH for 11 days. The prepared sample showed antibacterial activity against S. aureus.
Collapse
Affiliation(s)
| | - Ajithkumar Gangadharan
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas78249-1644, United States
| | - Karen S Martirosyan
- Department of Physics and Astronomy, University of Texas at Rio Grande Valley, Brownsville, Texas78520, United States
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, Tamil Nadu632014, India
| | - Prasath Manogaran
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu641 046, India
| | | |
Collapse
|
4
|
Ren B, Han Z, Li W, Liu J. Feasibility Study of a Novel Magnetic Bone Cement for the Treatment of Bone Metastases. Life (Basel) 2022; 12:life12091342. [PMID: 36143378 PMCID: PMC9503349 DOI: 10.3390/life12091342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Bone cement is a crucial material to treat bone metastases defects, and can fill the bone defect and provide mechanical support simultaneously, but the antitumor effect is very limited. Magnetic bone cement not only supports bone metastasis defects but can also achieve magnetic hyperthermia to eliminate tumor cells around the bone defect. However, the physicochemical properties of the bone cement matrix will change if the weight ratio of the magnetic nanoparticles in the cement is too high. We mixed 1 weight percent Zn0.3Fe2.7O4 with good biocompatibility and high heating efficiency into a polymethyl methacrylate matrix to prepare magnetic bone cement, which minimized the affection for physicochemical properties and satisfied the hyperthermia requirement of the alternating magnetic field.
Collapse
Affiliation(s)
- Bowen Ren
- Department of Orthopedics, The Fourth Medical Centre of Chinese PLA General Hospital, Beijing 100089, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Zhenchuan Han
- Department of Orthopedics, The Fourth Medical Centre of Chinese PLA General Hospital, Beijing 100089, China
- Department of Orthopedics, Chinese PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Wenyi Li
- Department of Orthopedics, Hebei General Hospital, Shijiazhuang 050051, China
- Correspondence: (W.L.); (J.L.)
| | - Jianheng Liu
- Department of Orthopedics, The Fourth Medical Centre of Chinese PLA General Hospital, Beijing 100089, China
- Correspondence: (W.L.); (J.L.)
| |
Collapse
|
5
|
Shivanna AT, Dash BS, Chen JP. Functionalized Magnetic Nanoparticles for Alternating Magnetic Field- or Near Infrared Light-Induced Cancer Therapies. MICROMACHINES 2022; 13:1279. [PMID: 36014201 PMCID: PMC9413965 DOI: 10.3390/mi13081279] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 05/14/2023]
Abstract
The multi-faceted nature of functionalized magnetic nanoparticles (fMNPs) is well-suited for cancer therapy. These nanocomposites can also provide a multimodal platform for targeted cancer therapy due to their unique magnetic guidance characteristics. When induced by an alternating magnetic field (AMF), fMNPs can convert the magnetostatic energy to heat for magnetic hyperthermia (MHT), as well as for controlled drug release. Furthermore, with the ability to convert near-infrared (NIR) light energy to heat energy, fMNPs have attracted interest for photothermal therapy (PTT). Other than MHT and PTT, fMNPs also have a place in combination cancer therapies, such as chemo-MHT, chemo-PTT, and chemo-PTT-photodynamic therapy, among others, due to their versatile properties. Thus, this review presents multifunctional nanocomposites based on fMNPs for cancer therapies, induced by an AMF or NIR light. We will first discuss the different fMNPs induced with an AMF for cancer MHT and chemo-MHT. Secondly, we will discuss fMNPs irradiated with NIR lasers for cancer PTT and chemo-PTT. Finally, fMNPs used for dual-mode AMF + NIR-laser-induced magneto-photo-hyperthermia (MPHT) will be discussed.
Collapse
Affiliation(s)
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
6
|
Khursheed R, Dua K, Vishwas S, Gulati M, Jha NK, Aldhafeeri GM, Alanazi FG, Goh BH, Gupta G, Paudel KR, Hansbro PM, Chellappan DK, Singh SK. Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives. Pharmacotherapy 2022; 150:112951. [PMID: 35447546 DOI: 10.1016/j.biopha.2022.112951] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
Abstract
The current advancements in nanotechnology are as an outcome of the development of engineered nanoparticles. Various metallic nanoparticles have been extensively explored for various biomedical applications. They attract lot of attention in biomedical field due to their significant inert nature, and nanoscale structures, with size similar to many biological molecules. Their intrinsic characteristics which include electronic, optical, physicochemical and, surface plasmon resonance, that can be changed by altering certain particle characteristics such as size, shape, environment, aspect ratio, ease of synthesis and functionalization properties have led to numerous applications in various fields of biomedicine. These include targeted drug delivery, sensing, photothermal and photodynamic therapy, imaging, as well as the modulation of two or three applications. The current article also discusses about the various properties of metallic nanoparticles and their applications in cancer imaging and therapeutics. The associated bottlenecks related to their clinical translation are also discussed.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34 Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | | | - Fayez Ghadeer Alanazi
- Lemon Pharmacies, Eastern region, Kingdom of Saudi Arabia, Hafr Al Batin 39957, Saudi Arabia
| | - Bey Hing Goh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Philip M Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
7
|
Jiao W, Zhang T, Peng M, Yi J, He Y, Fan H. Design of Magnetic Nanoplatforms for Cancer Theranostics. BIOSENSORS 2022; 12:38. [PMID: 35049666 PMCID: PMC8774163 DOI: 10.3390/bios12010038] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 05/04/2023]
Abstract
Cancer is the top cause of death globally. Developing smart nanomedicines that are capable of diagnosis and therapy (theranostics) in one-nanoparticle systems are highly desirable for improving cancer treatment outcomes. The magnetic nanoplatforms are the ideal system for cancer theranostics, because of their diverse physiochemical properties and biological effects. In particular, a biocompatible iron oxide nanoparticle based magnetic nanoplatform can exhibit multiple magnetic-responsive behaviors under an external magnetic field and realize the integration of diagnosis (magnetic resonance imaging, ultrasonic imaging, photoacoustic imaging, etc.) and therapy (magnetic hyperthermia, photothermal therapy, controlled drug delivery and release, etc.) in vivo. Furthermore, due to considerable variation among tumors and individual patients, it is a requirement to design iron oxide nanoplatforms by the coordination of diverse functionalities for efficient and individualized theranostics. In this article, we will present an up-to-date overview on iron oxide nanoplatforms, including both iron oxide nanomaterials and those that can respond to an externally applied magnetic field, with an emphasis on their applications in cancer theranostics.
Collapse
Affiliation(s)
- Wangbo Jiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (W.J.); (T.Z.); (M.P.)
| | - Tingbin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (W.J.); (T.Z.); (M.P.)
| | - Mingli Peng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (W.J.); (T.Z.); (M.P.)
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Newcastle, NSW 2308, Australia;
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (W.J.); (T.Z.); (M.P.)
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (W.J.); (T.Z.); (M.P.)
| |
Collapse
|
8
|
Bioactive Calcium Phosphate-Based Composites for Bone Regeneration. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5090227] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Calcium phosphates (CaPs) are widely accepted biomaterials able to promote the regeneration of bone tissue. However, the regeneration of critical-sized bone defects has been considered challenging, and the development of bioceramics exhibiting enhanced bioactivity, bioresorbability and mechanical performance is highly demanded. In this respect, the tuning of their chemical composition, crystal size and morphology have been the matter of intense research in the last decades, including the preparation of composites. The development of effective bioceramic composite scaffolds relies on effective manufacturing techniques able to control the final multi-scale porosity of the devices, relevant to ensure osteointegration and bio-competent mechanical performance. In this context, the present work provides an overview about the reported strategies to develop and optimize bioceramics, while also highlighting future perspectives in the development of bioactive ceramic composites for bone tissue regeneration.
Collapse
|
9
|
Kumar R, Chauhan A, Kuanr BK. A robust in vitro anticancer activity via magnetic hyperthermia mediated by colloidally stabilized mesoporous silica encapsulated La0.7Sr0.3MnO3 core- shell structure. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Xue Y, Lofland S, Hu X. Comparative Study of Silk-Based Magnetic Materials: Effect of Magnetic Particle Types on the Protein Structure and Biomaterial Properties. Int J Mol Sci 2020; 21:E7583. [PMID: 33066665 PMCID: PMC7589181 DOI: 10.3390/ijms21207583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
This study investigates combining the good biocompatibility and flexibility of silk protein with three types of widely used magnetic nanoparticles to comparatively explore their structures, properties and potential applications in the sustainability and biomaterial fields. The secondary structure of silk protein was quantitatively studied by infrared spectroscopy. It was found that magnetite (Fe3O4) and barium hexaferrite (BaFe12O19) can prohibit β-sheet crystal due to strong coordination bonding between Fe3+ ions and carboxylate ions on silk fibroin chains where cobalt particles showed minimal effect. This was confirmed by thermal analysis, where a high temperature degradation peak was found above 640 °C in both Fe3O4 and BaFe12O19 samples. This was consistent with the magnetization studies that indicated that part of the Fe in the Fe3O4 and BaFe12O19 was no longer magnetic in the composite, presumably forming new phases. All three types of magnetic composites films maintained high magnetization, showing potential applications in MRI imaging, tissue regeneration, magnetic hyperthermia and controlled drug delivery in the future.
Collapse
Affiliation(s)
- Ye Xue
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (Y.X.); (S.L.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Samuel Lofland
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (Y.X.); (S.L.)
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (Y.X.); (S.L.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
11
|
Brero F, Albino M, Antoccia A, Arosio P, Avolio M, Berardinelli F, Bettega D, Calzolari P, Ciocca M, Corti M, Facoetti A, Gallo S, Groppi F, Guerrini A, Innocenti C, Lenardi C, Locarno S, Manenti S, Marchesini R, Mariani M, Orsini F, Pignoli E, Sangregorio C, Veronese I, Lascialfari A. Hadron Therapy, Magnetic Nanoparticles and Hyperthermia: A Promising Combined Tool for Pancreatic Cancer Treatment. NANOMATERIALS 2020; 10:nano10101919. [PMID: 32993001 PMCID: PMC7600442 DOI: 10.3390/nano10101919] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022]
Abstract
A combination of carbon ions/photons irradiation and hyperthermia as a novel therapeutic approach for the in-vitro treatment of pancreatic cancer BxPC3 cells is presented. The radiation doses used are 0–2 Gy for carbon ions and 0–7 Gy for 6 MV photons. Hyperthermia is realized via a standard heating bath, assisted by magnetic fluid hyperthermia (MFH) that utilizes magnetic nanoparticles (MNPs) exposed to an alternating magnetic field of amplitude 19.5 mTesla and frequency 109.8 kHz. Starting from 37 °C, the temperature is gradually increased and the sample is kept at 42 °C for 30 min. For MFH, MNPs with a mean diameter of 19 nm and specific absorption rate of 110 ± 30 W/gFe3o4 coated with a biocompatible ligand to ensure stability in physiological media are used. Irradiation diminishes the clonogenic survival at an extent that depends on the radiation type, and its decrease is amplified both by the MNPs cellular uptake and the hyperthermia protocol. Significant increases in DNA double-strand breaks at 6 h are observed in samples exposed to MNP uptake, treated with 0.75 Gy carbon-ion irradiation and hyperthermia. The proposed experimental protocol, based on the combination of hadron irradiation and hyperthermia, represents a first step towards an innovative clinical option for pancreatic cancer.
Collapse
Affiliation(s)
- Francesca Brero
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, 27100 Pavia, Italy; (M.A.); (M.C.); (M.M.)
- Correspondence: (F.B.); (A.L.); Tel.: +39-0382-987-483 (F.B. & A.L.)
| | - Martin Albino
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy; (M.A.); (A.G.); (C.I.); (C.S.)
| | - Antonio Antoccia
- Dipartimento di Scienze and INFN, Università Roma Tre, 00146 Roma, Italy; (A.A.); (F.B.)
| | - Paolo Arosio
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Matteo Avolio
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, 27100 Pavia, Italy; (M.A.); (M.C.); (M.M.)
| | - Francesco Berardinelli
- Dipartimento di Scienze and INFN, Università Roma Tre, 00146 Roma, Italy; (A.A.); (F.B.)
| | - Daniela Bettega
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Paola Calzolari
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Mario Ciocca
- Fondazione CNAO, 27100 Pavia, Italy; (M.C.); (A.F.)
| | - Maurizio Corti
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, 27100 Pavia, Italy; (M.A.); (M.C.); (M.M.)
| | | | - Salvatore Gallo
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Flavia Groppi
- Dipartimento di Fisica, Università degli Studi di Milano and INFN, Lab. LASA, 20090 Segrate (MI), Italy; (F.G.); (S.M.)
| | - Andrea Guerrini
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy; (M.A.); (A.G.); (C.I.); (C.S.)
| | - Claudia Innocenti
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy; (M.A.); (A.G.); (C.I.); (C.S.)
- ICCOM-CNR, 50019 Sesto Fiorentino (FI), Italy
| | - Cristina Lenardi
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
- C.I.Ma.I.Na., Centro Interdisciplinare Materiali e Interfacce Nanostrutturati, 20133 Milano, Italy
| | - Silvia Locarno
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Simone Manenti
- Dipartimento di Fisica, Università degli Studi di Milano and INFN, Lab. LASA, 20090 Segrate (MI), Italy; (F.G.); (S.M.)
| | - Renato Marchesini
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Manuel Mariani
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, 27100 Pavia, Italy; (M.A.); (M.C.); (M.M.)
| | - Francesco Orsini
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Emanuele Pignoli
- Fondazione IRCSS Istituto Nazionale dei tumori, 20133 Milano, Italy;
| | - Claudio Sangregorio
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy; (M.A.); (A.G.); (C.I.); (C.S.)
- ICCOM-CNR, 50019 Sesto Fiorentino (FI), Italy
- INFN, Sezione di Firenze, 50019 Sesto Fiorentino (FI), Italy
| | - Ivan Veronese
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Alessandro Lascialfari
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, 27100 Pavia, Italy; (M.A.); (M.C.); (M.M.)
- Correspondence: (F.B.); (A.L.); Tel.: +39-0382-987-483 (F.B. & A.L.)
| |
Collapse
|
12
|
Ruskin EI, Coomar PP, Sikder P, Bhaduri SB. Magnetic Calcium Phosphate Cement for Hyperthermia Treatment of Bone Tumors. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3501. [PMID: 32784386 PMCID: PMC7475887 DOI: 10.3390/ma13163501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022]
Abstract
This article reports, for the first time, the 'proof-of-concept' results on magnetic monetite (CaHPO4)-based calcium phosphate cements (CPCs) compositions developed for the hyperthermia treatment of bone tumors. Hyperthermia involves the heating of a tumor within a temperature range of 40-45 °C, inducing apoptosis in the tumor cells. This process holds promising potential in the field of cancer treatment and has been proven to be more effective than conventional therapeutics. Hence, we aimed to develop cement compositions that are capable of the hyperthermia treatment of bone tumors. To achieve that central goal, we incorporated iron oxide (Fe3O4), a ferromagnetic material, into monetite and hypothesized that, upon the application of a magnetic field, magnetite will generate heat and ablate the tumor cells near the implantation site. The results confirmed that an optimized content of magnetite incorporation in monetite can generate heat in the range of 40-45 °C upon the application of a magnetic field. Furthermore, the compositions were bioactive and cytocompatible with an osteoblastic cell line.
Collapse
Affiliation(s)
- Ethel Ibinabo Ruskin
- Department of Mechanical Industrial & Manufacturing Engineering, The University of Toledo, Toledo, OH 43606, USA; (E.I.R.); (S.B.B.)
| | - Paritosh Perry Coomar
- College of Literature, Sciences & Arts, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Prabaha Sikder
- Department of Mechanical Industrial & Manufacturing Engineering, The University of Toledo, Toledo, OH 43606, USA; (E.I.R.); (S.B.B.)
| | - Sarit B. Bhaduri
- Department of Mechanical Industrial & Manufacturing Engineering, The University of Toledo, Toledo, OH 43606, USA; (E.I.R.); (S.B.B.)
- ENG-EEC Division, The National Science Foundation (NSF), Alexandria, VA 22314, USA
| |
Collapse
|
13
|
Zhou B, Pu Y, Lin H, Yue W, Yin H, Yin Y, Ren W, Zhao C, Chen Y, Xu H. In situ phase-changeable 2D MXene/zein bio-injection for shear wave elastography-guided tumor ablation in NIR-II bio-window. J Mater Chem B 2020; 8:5257-5266. [PMID: 32436561 DOI: 10.1039/d0tb00519c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Localized tumor photothermal cancer ablation is a minimally invasive therapeutic modality for combating cancer, but it often suffers from low therapeutic efficacy and poor precision due to the poor accumulation and non-uniform distribution of used photothermal-conversion agents in tumor tissue via the typical intravenous administration. To address this, an injectable and phase-changeable composite bio-injection consisting of biocompatible two-dimensional (2D) niobium carbide (Nb2C) MXene and the plant-originating protein, zein, has been engineered for near infrared (NIR)-II-triggered tumor photothermal ablation. Zein can respond to aqueous microenvironments and also external photo-triggers from the NIR-II bio-window (1064 nm), and transforms into a solid bio-implant after solvent exchange between ethanol and water. Which, thus, traps Nb2C MXene and heat, improving ablation efficiency and enabling the precise and complete eradication of 4T1 breast tumor cells without additional safety concerns. More significantly, shear wave elastography (SWE) as a deep-penetration imaging mode that can reflect the ablated outcomes via monitoring tissue density variation, has been employed to guide the photo-thermal ablation process to further improve the ablation precision. Thus, this compatible and phase-changeable bio-injection capable of improving photo-thermal ablation efficiency holds great potential in clinical applications.
Collapse
Affiliation(s)
- Bangguo Zhou
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Tongji University School of Medicine, 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China.
| | - Yinying Pu
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Tongji University School of Medicine, 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China.
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| | - Wenwen Yue
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Tongji University School of Medicine, 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China.
| | - Haohao Yin
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Tongji University School of Medicine, 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China.
| | - Yifei Yin
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Tongji University School of Medicine, 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China.
| | - Weiwei Ren
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Tongji University School of Medicine, 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China.
| | - Chongke Zhao
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Tongji University School of Medicine, 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China.
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| | - Huixiong Xu
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Tongji University School of Medicine, 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China.
| |
Collapse
|
14
|
Jose J, Kumar R, Harilal S, Mathew GE, Parambi DGT, Prabhu A, Uddin MS, Aleya L, Kim H, Mathew B. Magnetic nanoparticles for hyperthermia in cancer treatment: an emerging tool. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19214-19225. [PMID: 31884543 DOI: 10.1007/s11356-019-07231-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/02/2019] [Indexed: 05/07/2023]
Abstract
Cancer remains as the major cause of death worldwide. The main reason why available therapies fail is that a vicious cycle in established which initiates multiple pathways and recurrence after metastasis. Hyperthermic treatment, which involves heating tumor tissues to a moderate temperature of 40-43 °C, has emerged as an effective strategy for treating tumors. This method is highly efficient at destroying tumor cells and does not induce the side effects of conventional cancer treatments. On the other hand, hyperthermic treatment method can be co-administered with conventional treatments. Nanotechnology had created huge opportunities in almost all areas of research, including the field of hyperthermic treatment. The utilization of magnetic nanoparticles (MNPs) offers functionalities not possible using conventional magnetic materials. In this review, we detail recent developments and applications of MNPs for hyperthermic treatment and discuss future possibilities.
Collapse
Affiliation(s)
- Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Science, NITTE Deemed to be University, Mangalore, 575018, India
| | - Rajesh Kumar
- Kerala University of Health Sciences, Thrissur, Kerala, 680596, India
| | - Seetha Harilal
- Kerala University of Health Sciences, Thrissur, Kerala, 680596, India
| | | | | | - Ankitha Prabhu
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Science, NITTE Deemed to be University, Mangalore, 575018, India
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Lotfi Aleya
- Chrono-Environment Laboratory, CNRS-6249, Bourgogne Franche-Comte University, Besancon, France
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry Research Lab, Ahalia School of Pharmacy, Palakkad, Kerala, 678557, India.
| |
Collapse
|
15
|
Zhang SF, Lü S, Yang J, Huang M, Liu Y, Liu M. Synthesis of Multiarm Peptide Dendrimers for Dual Targeted Thrombolysis. ACS Macro Lett 2020; 9:238-244. [PMID: 35638687 DOI: 10.1021/acsmacrolett.0c00054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Current thrombolytic agents generally possess low specificity and pose a high risk of intracranial hemorrhage. Here, various generations of multiarm polylactic acid-polyglutamic acid peptide dendrimers were synthesized, and then nattokinase-combining magnetic Fe3O4 nanoparticles and RGD-modified dendrimers (Fe3O4-(4-PLA(G3)4)-RGD) were fabricated for targeted thrombi dissolution. Their in vitro and in vivo thrombolytic properties were determined. In vitro determination indicated that Fe3O4-(4-PLA(G3)4)-RGD/nattokinase provided 3-fold higher blood clot dissolution than that obtained with free nattokinase. An in vivo thrombolytic examination revealed that most of the thrombi were dissolved under an external magnetic field. In addition, there were many nanoparticles in vascular endothelial cells, demonstrating the RGD and magnetic dual targeting capacity of Fe3O4-(4-PLA(G3)4)-RGD/nattokinase. These results demonstrated that Fe3O4-(4-PLA(G3)4)-RGD nanoparticles not only will deliver targeted thrombolytic agents to enhance the efficacy of site-specific thrombolytic treatment but also have potential in the diagnosis of thrombotic disease in its early stages.
Collapse
Affiliation(s)
- Shao-Fei Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Agriculture and Forestry Technology, Longnan Teacher’s College, Longnan 742500, China
| | - Shaoyu Lü
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiandong Yang
- School of Agriculture and Forestry Technology, Longnan Teacher’s College, Longnan 742500, China
| | - Mengjie Huang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yongming Liu
- The First School of Clinical Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Mingzhu Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
16
|
Zhou H, Liang C, Wei Z, Bai Y, Bhaduri SB, Webster TJ, Bian L, Yang L. Injectable biomaterials for translational medicine. MATERIALS TODAY 2019; 28:81-97. [DOI: 10.1016/j.mattod.2019.04.020] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Yu K, Liang B, Zheng Y, Exner A, Kolios M, Xu T, Guo D, Cai X, Wang Z, Ran H, Chu L, Deng Z. PMMA-Fe 3O 4 for internal mechanical support and magnetic thermal ablation of bone tumors. Am J Cancer Res 2019; 9:4192-4207. [PMID: 31281541 PMCID: PMC6592182 DOI: 10.7150/thno.34157] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/09/2019] [Indexed: 12/28/2022] Open
Abstract
Background: Minimally invasive modalities are of great interest in the field of treating bone tumors. However, providing reliable mechanical support and fast killing of tumor cells to achieve rapid recovery of physical function is still challenging in clinical works. Methods: A material with two functions, mechanical support and magnetic thermal ablation, was developed from Fe3O4 nanoparticles (NPs) distributed in a polymethylmethacrylate (PMMA) bone cement. The mechanical properties and efficiency of magnetic field-induced thermal ablation were systematically and successfully evaluated in vitro and ex vivo. CT images and pathological examination were successfully applied to evaluate therapeutic efficacy with a rabbit bone tumor model. Biosafety evaluation was performed with a rabbit in vivo, and a cytotoxicity test was performed in vitro. Results: An NP content of 6% Fe3O4 (PMMA-6% Fe3O4, mFe: 0.01 g) gave the most suitable performance for in vivo study. At the 56-day follow-up after treatment, bone tumors were ablated without obvious side effects. The pathological examination and new bone formation in CT images clearly illustrate that the bone tumors were completely eliminated. Correspondingly, after treatment, the tendency of bone tumors toward metastasis significantly decreased. Moreover, with well-designed mechanical properties, PMMA-6%Fe3O4 implantation endowed tumor-bearing rabbit legs with excellent bio-mimic bone structure and internal support. Biosafety evaluation did not induce an increase or decrease in the immune response, and major functional parameters were all at normal levels. Conclusion: We have presented a novel, highly efficient and minimally invasive approach for complete bone tumor regression and bone defect repair by magnetic thermal ablation based on PMMA containing Fe3O4 NPs; this approach shows excellent heating ability for rabbit VX2 tibial plateau tumor ablation upon exposure to an alternating magnetic field (AMF) and provides mechanical support for bone repair. The new and powerful dual-function implant is a promising minimally invasive agent for the treatment of bone tumors and has good clinical translation potential.
Collapse
|
18
|
Das P, Colombo M, Prosperi D. Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids Surf B Biointerfaces 2018; 174:42-55. [PMID: 30428431 DOI: 10.1016/j.colsurfb.2018.10.051] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
Recently, magnetic fluid hyperthermia using biocompatible magnetic nanoparticles as heat mediators for cancer therapy has been extensively investigated due to its high efficiency and limited side effects. However, the development of more efficient heat nanomediators that exhibit very high specific absorption rate (SAR) value is essential for clinical application to overcome the several restrictions previously encountered due to the large quantity of nanomaterial required for effective treatment. In this review, we focus on the current progress in the development of magnetic nanoparticles based hyperthermia therapy as well as combined therapy harnessing hyperthermia with heat-mediated drug delivery for cancer treatment. We also address the fundamental principles of magnetic hyperthermia, basics of magnetism including the effect of several parameters on heating capacity, synthetic methods and nanoparticle surface chemistry needed to design and develop an ideal magnetic nanoparticle heat mediator suitable for clinical translation in cancer therapy.
Collapse
Affiliation(s)
- Pradip Das
- NanoBioLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 20126, Milan, Italy
| | - Miriam Colombo
- NanoBioLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 20126, Milan, Italy
| | - Davide Prosperi
- NanoBioLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 20126, Milan, Italy.
| |
Collapse
|
19
|
Saeed M, Ren W, Wu A. Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances. Biomater Sci 2018; 6:708-725. [PMID: 29363682 DOI: 10.1039/c7bm00999b] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanotechnology has introduced new techniques and phototherapy approaches to fabricate and utilize nanoparticles for cancer therapy. These phototherapy approaches, such as photothermal therapy (PTT) and photodynamic therapy (PDT), hold great promise to overcome the limitations of traditional treatment methods. In phototherapy, magnetic iron oxide nanoparticles (IONPs) are of paramount importance due to their wide range of biomedical applications. This review discusses the basic concepts, various therapy approaches (PTT, PDT, magnetic hyperthermia therapy (MHT), chemotherapy and immunotherapy), intrinsic properties, and mechanisms of cell death of IONPs; it also provides a brief overview of recent developments in IONPs, with focus on their therapeutic applications. Much attention is devoted to elaborating the various parameters, intracellular behaviors and limitations of MHT. Bimodal therapies which act alone or in combination with other modalities are also discussed. The review highlights some limitations in the explored research areas and suggests future directions to overcome these limitations.
Collapse
Affiliation(s)
- Madiha Saeed
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China.
| | | | | |
Collapse
|
20
|
He S, Zhang H, Liu Y, Sun F, Yu X, Li X, Zhang L, Wang L, Mao K, Wang G, Lin Y, Han Z, Sabirianov R, Zeng H. Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard-Soft Mixed Ferrites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800135. [PMID: 29931802 DOI: 10.1002/smll.201800135] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/03/2018] [Indexed: 05/22/2023]
Abstract
Maximized specific loss power and intrinsic loss power approaching theoretical limits for alternating-current (AC) magnetic-field heating of nanoparticles are reported. This is achieved by engineering the effective magnetic anisotropy barrier of nanoparticles via alloying of hard and soft ferrites. 22 nm Co0.03 Mn0.28 Fe2.7 O4 /SiO2 nanoparticles reach a specific loss power value of 3417 W g-1metal at a field of 33 kA m-1 and 380 kHz. Biocompatible Zn0.3 Fe2.7 O4 /SiO2 nanoparticles achieve specific loss power of 500 W g-1metal and intrinsic loss power of 26.8 nHm2 kg-1 at field parameters of 7 kA m-1 and 380 kHz, below the clinical safety limit. Magnetic bone cement achieves heating adequate for bone tumor hyperthermia, incorporating an ultralow dosage of just 1 wt% of nanoparticles. In cellular hyperthermia experiments, these nanoparticles demonstrate high cell death rate at low field parameters. Zn0.3 Fe2.7 O4 /SiO2 nanoparticles show cell viabilities above 97% at concentrations up to 500 µg mL-1 within 48 h, suggesting toxicity lower than that of magnetite.
Collapse
Affiliation(s)
- Shuli He
- Department of Physics, Capital Normal University, Beijing, 10048, China
- Department of Physics, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
- Beijing Advanced Innovation Center for Imaging Technology, Beijing, 10048, China
| | - Hongwang Zhang
- Department of Physics, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| | - Yihao Liu
- Department of Physics, Capital Normal University, Beijing, 10048, China
- Chinese PLA General Hospital, Beijing, 10048, China
| | - Fan Sun
- Department of Physics, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| | - Xiang Yu
- Department of Physics, Capital Normal University, Beijing, 10048, China
| | - Xueyan Li
- Department of Physics, Capital Normal University, Beijing, 10048, China
| | - Li Zhang
- Department of Physics, Capital Normal University, Beijing, 10048, China
| | - Lichen Wang
- Department of Physics, Capital Normal University, Beijing, 10048, China
| | - Keya Mao
- Chinese PLA General Hospital, Beijing, 10048, China
| | - Gangshi Wang
- Chinese PLA General Hospital, Beijing, 10048, China
| | - Yunjuan Lin
- Chinese PLA General Hospital, Beijing, 10048, China
| | | | - Renat Sabirianov
- Department of Physics, University of Nebraska-Omaha, Omaha, NE, 68182, USA
| | - Hao Zeng
- Department of Physics, University at Buffalo, SUNY, Buffalo, NY, 14260, USA
| |
Collapse
|
21
|
Tang X, Xu Y, Chen J, Ying T, Wang L, Jiang L, Wang Y, Wang Z, Ling Y, Wang F, Yao L, Ran H, Wang Z, Hu B, Zheng Y. Intermittent time-set technique controlling the temperature of magnetic-hyperthermia-ablation for tumor therapy. RSC Adv 2018; 8:16410-16418. [PMID: 35540534 PMCID: PMC9080322 DOI: 10.1039/c8ra01176a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/30/2018] [Indexed: 11/21/2022] Open
Abstract
Magnetic-hyperthermia-ablation is considered as an effective and minimally invasive technology for tumor therapy. However, inappropriate temperature control could induce an excessively high temperature which brings potential safety problems and limits clinical transformation of this technique. Herein, aiming to control the temperature during magnetic hyperthermia ablation, we develop an intermittent time-set technique for temperature control in magnetic hyperthermia ablation of tumors using a polylactic-co-glycolic acid (PLGA)-Fe3O4 implant. In vitro, the intermittent time is set as follows: tubes are continuously heated for 110 seconds. Then the heating process is paused for 20 seconds, and then the tubes are reheated for 10 seconds, followed by repeating the last two processes. The temperature elevation profile upon magnetic hyperthermia interestingly also demonstrates good controllability despite some differences in time-setting between in vitro and in vivo. The in vivo results show the temperature fluctuates within the range of 6.45 ± 1.34 °C after reaching the target temperature. Furthermore, we observe the deformation of an implant employing three-dimensional (3D) ultrasound to better understand the temperature change. The results show no significant deformation of the implant after being heated. The microscopic images prove that this simple technique can successfully cause tumor regression. This temperature control technique provides great benefits for hyperthermia ablation against tumors, advancing the magnetic hyperthermal ablation technology in clinical translation.
Collapse
Affiliation(s)
- Xiuzhen Tang
- Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 PR China
- Department of Ultrasound & Department of Biomedical Engineering, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 PR China
| | - Yanjun Xu
- Department of Ultrasound & Department of Biomedical Engineering, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 PR China
| | - Jie Chen
- Department of Ultrasound & Department of Biomedical Engineering, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 PR China
| | - Tao Ying
- Department of Ultrasound & Department of Biomedical Engineering, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 PR China
| | - Longchen Wang
- Department of Ultrasound & Department of Biomedical Engineering, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 PR China
| | - Lixin Jiang
- Department of Ultrasound & Department of Biomedical Engineering, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 PR China
| | - Yan Wang
- Department of Ultrasound & Department of Biomedical Engineering, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 PR China
| | - Zhenhai Wang
- General Hospital of Ningxia Medical University Ningxia 750004 PR China
| | - Yi Ling
- Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 PR China
| | - Fengjuan Wang
- Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 PR China
| | - Li Yao
- Department of Ultrasound & Department of Biomedical Engineering, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 PR China
| | - Haitao Ran
- Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 PR China
| | - Zhigang Wang
- Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 PR China
| | - Bing Hu
- Department of Ultrasound & Department of Biomedical Engineering, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 PR China
| | - Yuanyi Zheng
- Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 PR China
- Department of Ultrasound & Department of Biomedical Engineering, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 PR China
| |
Collapse
|
22
|
Qi C, Lin J, Fu LH, Huang P. Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chem Soc Rev 2018; 47:357-403. [PMID: 29261194 DOI: 10.1039/c6cs00746e] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Calcium-based (CaXs) biomaterials including calcium phosphates, calcium carbonates, calcium silicate and calcium fluoride have been widely utilized in the biomedical field owing to their excellent biocompatibility and biodegradability. In recent years, CaXs biomaterials have been strategically integrated with imaging contrast agents and therapeutic agents for various molecular imaging modalities including fluorescence imaging, magnetic resonance imaging, ultrasound imaging or multimodal imaging, as well as for various therapeutic approaches including chemotherapy, gene therapy, hyperthermia therapy, photodynamic therapy, radiation therapy, or combination therapy, even imaging-guided therapy. Compared with other inorganic biomaterials such as silica-, carbon-, and gold-based biomaterials, CaXs biomaterials can dissolve into nontoxic ions and participate in the normal metabolism of organisms. Thus, they offer safer clinical solutions for disease theranostics. This review focuses on the state-of-the-art progress in CaXs biomaterials, which covers from their categories, characteristics and preparation methods to their bioapplications including diagnosis, treatment, and theranostics. Moreover, the current trends and key problems as well as the future prospects and challenges of CaXs biomaterials are also discussed at the end.
Collapse
Affiliation(s)
- Chao Qi
- Guangdong Key Laboratory for Biomedical, Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | | | | | | |
Collapse
|
23
|
Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv Healthc Mater 2017; 6. [PMID: 28990364 DOI: 10.1002/adhm.201700306] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/14/2017] [Indexed: 12/13/2022]
Abstract
In order to translate nanotechnology into medical practice, magnetic nanoparticles (MNPs) have been presented as a class of non-invasive nanomaterials for numerous biomedical applications. In particular, MNPs have opened a door for simultaneous diagnosis and brisk treatment of diseases in the form of theranostic agents. This review highlights the recent advances in preparation and utilization of MNPs from the synthesis and functionalization steps to the final design consideration in evading the body immune system for therapeutic and diagnostic applications with addressing the most recent examples of the literature in each section. This study provides a conceptual framework of a wide range of synthetic routes classified mainly as wet chemistry, state-of-the-art microfluidic reactors, and biogenic routes, along with the most popular coating materials to stabilize resultant MNPs. Additionally, key aspects of prolonging the half-life of MNPs via overcoming the sequential biological barriers are covered through unraveling the biophysical interactions at the bio-nano interface and giving a set of criteria to efficiently modulate MNPs' physicochemical properties. Furthermore, concepts of passive and active targeting for successful cell internalization, by respectively exploiting the unique properties of cancers and novel targeting ligands are described in detail. Finally, this study extensively covers the recent developments in magnetic drug targeting and hyperthermia as therapeutic applications of MNPs. In addition, multi-modal imaging via fusion of magnetic resonance imaging, and also innovative magnetic particle imaging with other imaging techniques for early diagnosis of diseases are extensively provided.
Collapse
Affiliation(s)
- Jalal Mosayebi
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Mehdi Kiyasatfar
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging; University of Mons; Mons Belgium
| |
Collapse
|
24
|
Wen L, Yang S, Zhong J, Zhou Q, Xing D. Thermoacoustic Imaging and Therapy Guidance based on Ultra-short Pulsed Microwave Pumped Thermoelastic Effect Induced with Superparamagnetic Iron Oxide Nanoparticles. Am J Cancer Res 2017. [PMID: 28638483 PMCID: PMC5479284 DOI: 10.7150/thno.17846] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy.
Collapse
|
25
|
Singh RK, Srivastava M, Prasad NK, Awasthi S, Dhayalan A, Kannan S. Iron doped β-Tricalcium phosphate: Synthesis, characterization, hyperthermia effect, biocompatibility and mechanical evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:715-726. [PMID: 28576042 DOI: 10.1016/j.msec.2017.04.130] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 01/22/2023]
Abstract
The ability of β-Tricalcium phosphate [β-TCP, β-Ca3(PO4)2] to host iron at its structural lattice and its associated magnetic susceptibility, hyperthermia effect, biocompatibility and mechanical characteristics is investigated. The studies revealed the ability of β-Ca3(PO4)2 to host 5.02mol% of Fe3+ at its Ca2+(5) site. Excess Fe3+ additions led to the formation of trigonal Ca9Fe(PO4)7 and moreover a minor amount of CaFe3(PO4)3O crystallization was also observed. A gradual increment in the iron content at β-Ca3(PO4)2 results in the simultaneous effect of pronounced hyperthermia effect and mechanical stability. However, the presence of CaFe3(PO4)3O contributes for the reduced hyperthermia effect and mechanical stability of iron substituted β-Ca3(PO4)2. Haemolytic tests, cytotoxicity tests and ALP gene expression analysis confirmed the biocompatibility of the investigated systems.
Collapse
Affiliation(s)
- Ram Kishore Singh
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605 014, India
| | - M Srivastava
- Department of Metallurgical Engineering, Indian Institute of Technology, Banaras Hindu University, India
| | - N K Prasad
- Department of Metallurgical Engineering, Indian Institute of Technology, Banaras Hindu University, India
| | - Sharad Awasthi
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - Arunkumar Dhayalan
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - S Kannan
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605 014, India.
| |
Collapse
|
26
|
Wang F, Yang Y, Ling Y, Liu J, Cai X, Zhou X, Tang X, Liang B, Chen Y, Chen H, Chen D, Li C, Wang Z, Hu B, Zheng Y. Injectable and thermally contractible hydroxypropyl methyl cellulose/Fe 3O 4 for magnetic hyperthermia ablation of tumors. Biomaterials 2017; 128:84-93. [PMID: 28301803 DOI: 10.1016/j.biomaterials.2017.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 03/04/2017] [Accepted: 03/05/2017] [Indexed: 01/24/2023]
Abstract
The development of efficient strategies for the magnetic hyperthermia ablation of tumors remains challenging. To overcome the significant safety limitations, we developed a thermally contractible, injectable and biodegradable material for the minimally invasive and highly efficient magnetic hyperthermia ablation of tumors. This material was composed of hydroxypropyl methyl cellulose (HPMC), polyvinyl alcohol (PVA) and Fe3O4. The thermal contractibility of HPMC/Fe3O4 was designed to avoid damaging the surrounding normal tissue upon heating, which was confirmed by visual inspection, ultrasound imaging and computed tomography (CT). The efficient injectability of HPMC/Fe3O4 was proven using a very small needle. The biosafety of HPMC/Fe3O4 was evaluated by MTT and biochemical assays as well as flow cytometry (FCM). All the aforementioned data demonstrated the safety of HPMC/Fe3O4. The results of in vitro and ex vivo experiments showed that the temperature and necrotic volume of excised bovine liver were positively correlated with the HPMC/Fe3O4 weight, iron content and heating duration. The in vivo experimental results showed that the tumors could be completely ablated using 0.06 ml of HPMC/60%Fe3O4 after 180 s of induction heating. We believe that this novel, safe and biodegradable material will promote the rapid bench-to-bed translation of magnetic hyperthermia technology, and it is also expected to bring a new concept for the biomaterial research field.
Collapse
Affiliation(s)
- Fengjuan Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Yang Yang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Yi Ling
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Jianxin Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Xiaojun Cai
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Xiaohan Zhou
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Xiuzhen Tang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Bing Liang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Yini Chen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Dengming Chen
- The Center of Material Analysis and Testing of Chongqing University of Science & Technology, Chongqing, 400010, PR China
| | - Chunhong Li
- The Center of Material Analysis and Testing of Chongqing University of Science & Technology, Chongqing, 400010, PR China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Bing Hu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yuanyi Zheng
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China; Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| |
Collapse
|
27
|
Zhao M, Liu J, Lei Z. PLA-PEG-grafted hollow magnetic silica microspheres as the carrier of iodinated contrast media. J Appl Polym Sci 2017. [DOI: 10.1002/app.44914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Min Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry; School of Chemistry & Chemical Engineering, Shaanxi Normal University; Xi'an 710062 People's Republic of China
| | - Jiangtao Liu
- Key Laboratory of Applied Surface and Colloid Chemistry; School of Chemistry & Chemical Engineering, Shaanxi Normal University; Xi'an 710062 People's Republic of China
- College of Pharmacy; Shaanxi University of Chinese Medicine; Xianyang 712046 People's Republic of China
| | - Zhongli Lei
- Key Laboratory of Applied Surface and Colloid Chemistry; School of Chemistry & Chemical Engineering, Shaanxi Normal University; Xi'an 710062 People's Republic of China
| |
Collapse
|
28
|
Zhang J, Li J, Wang X, Kawazoe N, Chen G. Targeting ligand-functionalized photothermal scaffolds for cancer cell capture and in situ ablation. Biomater Sci 2017; 5:2276-2284. [DOI: 10.1039/c7bm00639j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Targeting ligands with different grafting densities were introduced into photothermal scaffolds for cancer cell specific capture and ablation.
Collapse
Affiliation(s)
- Jing Zhang
- Research Center for Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
- Department of Materials Science and Engineering
| | - Jingchao Li
- Research Center for Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
- Department of Materials Science and Engineering
| | - Xiuhui Wang
- Research Center for Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
- Department of Materials Science and Engineering
| | - Naoki Kawazoe
- Research Center for Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Guoping Chen
- Research Center for Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
- Department of Materials Science and Engineering
| |
Collapse
|
29
|
Ling Y, Tang X, Wang F, Zhou X, Wang R, Deng L, Shang T, Liang B, Li P, Ran H, Wang Z, Hu B, Li C, Zuo G, Zheng Y. Highly efficient magnetic hyperthermia ablation of tumors using injectable polymethylmethacrylate–Fe3O4. RSC Adv 2017. [DOI: 10.1039/c6ra20860f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Magnetic hyperthermia is a promising minimally invasive technique for tumor therapy which has drawn much attention.
Collapse
|
30
|
Shah RR, Dombrowsky AR, Paulson AL, Johnson MP, Nikles DE, Brazel CS. Determining iron oxide nanoparticle heating efficiency and elucidating local nanoparticle temperature for application in agarose gel-based tumor model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:18-29. [PMID: 27523991 PMCID: PMC4987542 DOI: 10.1016/j.msec.2016.05.086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/08/2016] [Accepted: 05/19/2016] [Indexed: 11/25/2022]
Abstract
Magnetic iron oxide nanoparticles (MNPs) have been developed for magnetic fluid hyperthermia (MFH) cancer therapy, where cancer cells are treated through the heat generated by application of a high frequency magnetic field. This heat has also been proposed as a mechanism to trigger release of chemotherapy agents. In each of these cases, MNPs with optimal heating performance can be used to maximize therapeutic effect while minimizing the required dosage of MNPs. In this study, the heating efficiencies (or specific absorption rate, SAR) of two types of MNPs were evaluated experimentally and then predicted from their magnetic properties. MNPs were also incorporated in the core of poly(ethylene glycol-b-caprolactone) micelles, co-localized with rhodamine B fluorescent dye attached to polycaprolactone to monitor local, nanoscale temperatures during magnetic heating. Despite a relatively high SAR produced by these MNPs, no significant temperature rise beyond that observed in the bulk solution was measured by fluorescence in the core of the magnetic micelles. MNPs were also incorporated into a macro-scale agarose gel system that mimicked a tumor targeted by MNPs and surrounded by healthy tissues. The agarose-based tumor models showed that targeted MNPs can reach hyperthermia temperatures inside a tumor with a sufficient MNP concentration, while causing minimal temperature rise in the healthy tissue surrounding the tumor.
Collapse
Affiliation(s)
- Rhythm R Shah
- The University of Alabama, Department of Chemical and Biological Engineering, Tuscaloosa, AL, United States.
| | - Alexander R Dombrowsky
- The University of Alabama, Department of Chemical and Biological Engineering, Tuscaloosa, AL, United States.
| | - Abigail L Paulson
- The University of Alabama, Department of Chemistry, Tuscaloosa, AL, United States.
| | - Margaret P Johnson
- The University of Alabama, Department of Chemistry, Tuscaloosa, AL, United States.
| | - David E Nikles
- The University of Alabama, Department of Chemistry, Tuscaloosa, AL, United States.
| | - Christopher S Brazel
- The University of Alabama, Department of Chemical and Biological Engineering, Tuscaloosa, AL, United States.
| |
Collapse
|
31
|
Magnetic induction heating of superparamagnetic nanoparticles during rewarming augments the recovery of hUCM-MSCs cryopreserved by vitrification. Acta Biomater 2016; 33:264-74. [PMID: 26802443 DOI: 10.1016/j.actbio.2016.01.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 12/24/2015] [Accepted: 01/19/2016] [Indexed: 01/03/2023]
Abstract
Cryopreservation by vitrification has been recognized as a promising strategy for long-term banking of living cells. However, the difficulty to generate a fast enough heating rate to minimize devitrification and recrystallization-induced intracellular ice formation during rewarming is one of the major obstacles to successful vitrification. We propose to overcome this hurdle by utilizing magnetic induction heating (MIH) of magnetic nanoparticles to enhance rewarming. In this study, superparamagnetic (SPM) Fe3O4 nanoparticles were synthesized by a chemical coprecipitation method. We successfully applied the MIH of Fe3O4 nanoparticles for rewarming human umbilical cord matrix mesenchymal stem cells (hUCM-MSCs) cryopreserved by vitrification. Our results show that extracellular Fe3O4 nanoparticles with MIH may efficiently suppress devitrification and/or recrystallization during rewarming and significantly improve the survival of vitrified cells. We further optimized the concentration of Fe3O4 nanoparticles and the current of an alternating current (AC) magnetic field for generating the MIH to maximize cell viability. Our results indicate that MIH in an AC magnetic field with 0.05% (w/v) Fe3O4 nanoparticles significantly facilitates rewarming and improves the cryopreservation outcome of hUCM-MSCs by vitrification. The application of MIH of SPM nanoparticles to achieve rapid and spatially homogeneous heating is a promising strategy for enhanced cryopreservation of stem cells by vitrification. STATEMENT OF SIGNIFICANCE Here we report the successful synthesis and application of Fe3O4 nanoparticles for magnetic induction heating (MIH) to enhance rewarming of vitrification-cryopreserved human umbilical cord matrix mesenchymal stem cells (hUCM-MSCs). We found that MIH-enhanced rewarming greatly improves the survival of vitrification-cryopreserved hUCM-MSCs. Moreover, the hUCM-MSCs retain their intact stemness and multilineage potential of differentiation post cryopreservation by vitrification with the MIH-enhanced rewarming. Therefore, the novel MIH-enhanced cell vitrification is valuable to facilitate the long-term storage of hUCM-MSCs and possibly many other important cells to meet their ever-increasing demand by the burgeoning cell-based medicine.
Collapse
|
32
|
Kemp JA, Shim MS, Heo CY, Kwon YJ. "Combo" nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv Drug Deliv Rev 2016; 98:3-18. [PMID: 26546465 DOI: 10.1016/j.addr.2015.10.019] [Citation(s) in RCA: 357] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/23/2022]
Abstract
The dynamic and versatile nature of diseases such as cancer has been a pivotal challenge for developing efficient and safe therapies. Cancer treatments using a single therapeutic agent often result in limited clinical outcomes due to tumor heterogeneity and drug resistance. Combination therapies using multiple therapeutic modalities can synergistically elevate anti-cancer activity while lowering doses of each agent, hence, reducing side effects. Co-administration of multiple therapeutic agents requires a delivery platform that can normalize pharmacokinetics and pharmacodynamics of the agents, prolong circulation, selectively accumulate, specifically bind to the target, and enable controlled release in target site. Nanomaterials, such as polymeric nanoparticles, gold nanoparticles/cages/shells, and carbon nanomaterials, have the desired properties, and they can mediate therapeutic effects different from those generated by small molecule drugs (e.g., gene therapy, photothermal therapy, photodynamic therapy, and radiotherapy). This review aims to provide an overview of developing multi-modal therapies using nanomaterials ("combo" nanomedicine) along with the rationale, up-to-date progress, further considerations, and the crucial roles of interdisciplinary approaches.
Collapse
Affiliation(s)
- Jessica A Kemp
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea
| | - Chan Yeong Heo
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States; Department of Plastic Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Plastic Surgery, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States; Department of Chemical Engineering and Materials Science,University of California, Irvine, CA 92697, United States; Department of Biomedical Engineering,University of California, Irvine, CA 92697, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States.
| |
Collapse
|
33
|
Luo X, Wang Y, Lin H, Qu F. DOX-Fe3O4@mSiO2-PO-FA nanocomposite for synergistic chemo- and photothermal therapy. RSC Adv 2016. [DOI: 10.1039/c6ra23292b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A DOX-Fe3O4@mSiO2-PO-FA nanocomposite based drug delivery system for cancer chemotherapy and photothermal therapy.
Collapse
Affiliation(s)
- Xiangjie Luo
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin
- PR China
| | - Ying Wang
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin
- PR China
| | - Huiming Lin
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin
- PR China
| | - Fengyu Qu
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin
- PR China
| |
Collapse
|