1
|
Goranov V. Biomaterials functionalized with magnetic nanoparticles for tissue engineering: Between advantages and challenges. BIOMATERIALS AND BIOSYSTEMS 2024; 15:100100. [PMID: 39297073 PMCID: PMC11409007 DOI: 10.1016/j.bbiosy.2024.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
The integration of magnetic nanoparticles (MNPs) into biomaterials offers exciting opportunities for tissue engineering as they enable better control over cell guidance, release of bioactive factors and tissue maturation. Despite their potential, challenges such as the heterogeneity of MNPs, their cytotoxicity and the need for precise control of MNP`s properties hinder their widespread application. Overcoming these challenges will require new interdisciplinary efforts and technological advances, including the development of mathematical tools and additional elaborations to ensure the biocompatibility of MNPs.
Collapse
Affiliation(s)
- V Goranov
- BioDevice Systems s.r.o., Bulharska 996/20, Praha 10, Czech Republic
| |
Collapse
|
2
|
Lodi MB, Corda EMA, Desogus F, Fanti A, Mazzarella G. Modeling of Magnetic Scaffolds as Drug Delivery Platforms for Tissue Engineering and Cancer Therapy. Bioengineering (Basel) 2024; 11:573. [PMID: 38927809 PMCID: PMC11200873 DOI: 10.3390/bioengineering11060573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Magnetic scaffolds (MagSs) are magneto-responsive devices obtained by the combination of traditional biomaterials (e.g., polymers, bioceramics, and bioglasses) and magnetic nanoparticles. This work analyzes the literature about MagSs used as drug delivery systems for tissue repair and cancer treatment. These devices can be used as innovative drugs and/or biomolecules delivery systems. Through the application of a static or dynamic stimulus, MagSs can trigger drug release in a controlled and remote way. However, most of MagSs used as drug delivery systems are not optimized and properly modeled, causing a local inhomogeneous distribution of the drug's concentration and burst release. Few physical-mathematical models have been presented to study and analyze different MagSs, with the lack of a systematic vision. In this work, we propose a modeling framework. We modeled the experimental data of drug release from different MagSs, under various magnetic field types, taken from the literature. The data were fitted to a modified Gompertz equation and to the Korsmeyer-Peppas model (KPM). The correlation coefficient (R2) and the root mean square error (RMSE) were the figures of merit used to evaluate the fitting quality. It has been found that the Gompertz model can fit most of the drug delivery cases, with an average RMSE below 0.01 and R2>0.9. This quantitative interpretation of existing experimental data can foster the design and use of MagSs for drug delivery applications.
Collapse
Affiliation(s)
- Matteo B. Lodi
- Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy; (M.B.L.); (E.M.A.C.); (G.M.)
- Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Cagliari Research Unit, Department of Eletrical and Electronic Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy
| | - Eleonora M. A. Corda
- Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy; (M.B.L.); (E.M.A.C.); (G.M.)
| | - Francesco Desogus
- Department of Mechanical, Chemical and Material Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy;
| | - Alessandro Fanti
- Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy; (M.B.L.); (E.M.A.C.); (G.M.)
- Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Cagliari Research Unit, Department of Eletrical and Electronic Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy
| | - Giuseppe Mazzarella
- Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy; (M.B.L.); (E.M.A.C.); (G.M.)
- Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Cagliari Research Unit, Department of Eletrical and Electronic Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
3
|
Wei H, Sun B, Zhang S, Tang J. Magnetoactive Millirobots with Ternary Phase Transition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3944-3954. [PMID: 38214466 DOI: 10.1021/acsami.3c13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Magnetoactive soft millirobots have made significant advances in programmable deformation, multimodal locomotion, and untethered manipulation in unreachable regions. However, the inherent limitations are manifested in the solid-phase millirobot as limited deformability and in the liquid-phase millirobot as low stiffness. Herein, we propose a ternary-state magnetoactive millirobot based on a phase transitional polymer embedded with magnetic nanoparticles. The millirobot can reversibly transit among the liquid, solid, and viscous-fluid phases through heating and cooling. The liquid-phase millirobot has elastic deformation and mobility for unimpeded navigation in a constrained space. The viscous-fluid phase millirobot shows irreversible deformation and large ductility. The solid-phase millirobot shows good shape stability and controllable locomotion. Moreover, the ternary-state magnetoactive millirobot can achieve prominent capabilities including stiffness change and shape reconfiguration through phase transition. The millirobot can perform potential functions of navigation in complex terrain, three-dimensional circuit connection, and simulated treatment in a stomach model. This magnetoactive millirobot may find new applications in flexible electronics and biomedicine.
Collapse
Affiliation(s)
- Huangsan Wei
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bonan Sun
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengyuan Zhang
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingda Tang
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
4
|
A Review of Biomimetic and Biodegradable Magnetic Scaffolds for Bone Tissue Engineering and Oncology. Int J Mol Sci 2023; 24:ijms24054312. [PMID: 36901743 PMCID: PMC10001544 DOI: 10.3390/ijms24054312] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Bone defects characterized by limited regenerative properties are considered a priority in surgical practice, as they are associated with reduced quality of life and high costs. In bone tissue engineering, different types of scaffolds are used. These implants represent structures with well-established properties that play an important role as delivery vectors or cellular systems for cells, growth factors, bioactive molecules, chemical compounds, and drugs. The scaffold must provide a microenvironment with increased regenerative potential at the damage site. Magnetic nanoparticles are linked to an intrinsic magnetic field, and when they are incorporated into biomimetic scaffold structures, they can sustain osteoconduction, osteoinduction, and angiogenesis. Some studies have shown that combining ferromagnetic or superparamagnetic nanoparticles and external stimuli such as an electromagnetic field or laser light can enhance osteogenesis and angiogenesis and even lead to cancer cell death. These therapies are based on in vitro and in vivo studies and could be included in clinical trials for large bone defect regeneration and cancer treatments in the near future. We highlight the scaffolds' main attributes and focus on natural and synthetic polymeric biomaterials combined with magnetic nanoparticles and their production methods. Then, we underline the structural and morphological aspects of the magnetic scaffolds and their mechanical, thermal, and magnetic properties. Great attention is devoted to the magnetic field effects on bone cells, biocompatibility, and osteogenic impact of the polymeric scaffolds reinforced with magnetic nanoparticles. We explain the biological processes activated due to magnetic particles' presence and underline their possible toxic effects. We present some studies regarding animal tests and potential clinical applications of magnetic polymeric scaffolds.
Collapse
|
5
|
Cojocaru FD, Balan V, Verestiuc L. Advanced 3D Magnetic Scaffolds for Tumor-Related Bone Defects. Int J Mol Sci 2022; 23:16190. [PMID: 36555827 PMCID: PMC9788029 DOI: 10.3390/ijms232416190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The need for bone substitutes is a major challenge as the incidence of serious bone disorders is massively increasing, mainly attributed to modern world problems, such as obesity, aging of the global population, and cancer incidence. Bone cancer represents one of the most significant causes of bone defects, with reserved prognosis regarding the effectiveness of treatments and survival rate. Modern therapies, such as hyperthermia, immunotherapy, targeted therapy, and magnetic therapy, seem to bring hope for cancer treatment in general, and bone cancer in particular. Mimicking the composition of bone to create advanced scaffolds, such as bone substitutes, proved to be insufficient for successful bone regeneration, and a special attention should be given to control the changes in the bone tissue micro-environment. The magnetic manipulation by an external field can be a promising technique to control this micro-environment, and to sustain the proliferation and differentiation of osteoblasts, promoting the expression of some growth factors, and, finally, accelerating new bone formation. By incorporating stimuli responsive nanocarriers in the scaffold's architecture, such as magnetic nanoparticles functionalized with bioactive molecules, their behavior can be rigorously controlled under external magnetic driving, and stimulates the bone tissue formation.
Collapse
Affiliation(s)
| | | | - Liliana Verestiuc
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| |
Collapse
|
6
|
Topçu AA. The adsorption performance of magnetic gelatin nanofiber for Orange G removal. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04464-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Drobota M, Vlad S, Gradinaru LM, Bargan A, Radu I, Butnaru M, Rîmbu CM, Ciobanu RC, Aflori M. Composite Materials Based on Gelatin and Iron Oxide Nanoparticles for MRI Accuracy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3479. [PMID: 35629506 PMCID: PMC9147670 DOI: 10.3390/ma15103479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023]
Abstract
The majority of recent studies have focused on obtaining MRI materials for internal use. However, this study focuses on a straightforward method for preparing gelatin-based materials with iron oxide nanoparticles (G-Fe2O3 and G-Fe3O4) for external use. The newly obtained materials must be precisely tuned to match the requirements and usage situation because they will be in close touch with human/animal skin. The biocompatible structures formed by gelatin, tannic acid, and iron oxide nanoparticles were investigated by using FTIR spectroscopy, SEM-EDAX analysis, and contact angle methods. The physico-chemical properties were obtained by using mechanical investigations, dynamic vapor sorption analysis, and bulk magnetic determination. The size and shape of iron oxide nanoparticles dictates the magnetic behavior of the gelatin-based samples. The magnetization curves revealed a typical S-shaped superparamagnetic behavior which is evidence of improved MRI image accuracy. In addition, the MTT assay was used to demonstrate the non-toxicity of the samples, and the antibacterial test confirmed satisfactory findings for all G-based materials.
Collapse
Affiliation(s)
- Mioara Drobota
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. GhicaVoda, 41A, 700487 Iasi, Romania; (S.V.); (L.M.G.); (A.B.); (M.B.)
| | - Stelian Vlad
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. GhicaVoda, 41A, 700487 Iasi, Romania; (S.V.); (L.M.G.); (A.B.); (M.B.)
| | - Luiza Madalina Gradinaru
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. GhicaVoda, 41A, 700487 Iasi, Romania; (S.V.); (L.M.G.); (A.B.); (M.B.)
| | - Alexandra Bargan
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. GhicaVoda, 41A, 700487 Iasi, Romania; (S.V.); (L.M.G.); (A.B.); (M.B.)
| | - Iulian Radu
- Department of Surgery, Regional Institute of Oncology, I-st Surgical Oncology, “Grigore T. Popa” University of Medicine and Pharmacy, 700483 Iasi, Romania;
| | - Maria Butnaru
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. GhicaVoda, 41A, 700487 Iasi, Romania; (S.V.); (L.M.G.); (A.B.); (M.B.)
- Department of Biomedical Sciences, “Grigore T. Popa” University of Medicine and Pharmacy, Kogalniceanu Street, 9-13, 700115 Iasi, Romania
| | - Cristina Mihaela Rîmbu
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, Mihail Sadoveanu Alley no. 8, 700490 Iasi, Romania;
| | - Romeo Cristian Ciobanu
- SC All Green SRL, I. Bacalu Street, 5, 700029 Iasi, Romania;
- Electrical Engineering Faculty, “Gheorghe Asachi” Technical University of Iasi, Dimitrie Mangeron Bd., 67, 700050 Iasi, Romania
| | - Magdalena Aflori
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. GhicaVoda, 41A, 700487 Iasi, Romania; (S.V.); (L.M.G.); (A.B.); (M.B.)
| |
Collapse
|
8
|
Engineering the surfaces of orthopedic implants with osteogenesis and antioxidants to enhance bone formation in vitro and in vivo. Colloids Surf B Biointerfaces 2022; 212:112319. [PMID: 35051792 DOI: 10.1016/j.colsurfb.2022.112319] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022]
Abstract
Limited osteointegration of orthopedic implants with surrounding tissues has been the leading issue until the failure of orthopedic implants in the long term, which could be induced by multiple factors, including infection, limited abilities for bone formation and remodeling, and an overstressed reactive oxygen species (ROS) environment around implants. To address this challenge, a multifunctional coating composed of tannic acid (TA), nanohydroxyapatite (nHA) and gelatin (Gel) was fabricated by a layer-by-layer (LBL) technique, into which TA, nHA, and Gel were integrated, and their respective functions were utilized to synergistically promote osteogenesis. The fabrication process of (TA@nHA/Gel)n coatings and related bio-multifunctionalities were thoroughly investigated by various techniques. We found that the (TA@nHA/Gel)n coatings showed strong antioxidant activity and accelerated cellular attachment in the early stage and proliferation in the long term, largely enhancing osteogenesis in vitro and promoting bone formation in vivo. We believe our findings will guide the design of orthopedic implants in the future, and the strategy developed here could pave the way for multifunctional orthopedic implant coating and protein-related coatings with various potential applications, including biosensors, catalysis, tissue engineering, and life science.
Collapse
|
9
|
Luo J, Zhu J, Wang L, Kang J, Wang X, Xiong J. Co-electrospun nano-/microfibrous composite scaffolds with structural and chemical gradients for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111622. [PMID: 33321664 DOI: 10.1016/j.msec.2020.111622] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022]
Abstract
Recent trends in scaffold design for tissue engineering have focused on providing structural, mechanical and chemical cues for guiding cell behaviors. In this study, we presented a structural/compositional gradient nano-/microfibrous mesh by co-electrospinning, using silk fibroin-poly(ε-caprolactone) (SF-PCL) nanofibers and PCL microfibers. The pore size, porosity, and physical property of the gradient meshes were qualified. Cell proliferation of mouse osteoblast-like MC3T3-E1 cells was carried out to estimate the effect of structural and compositional gradients on biocompatibility. Furthermore, the 2-D mesh was rolled up and the compressive property of 3-D cylinder was investigated. The results suggested that the rolled-up gradient cylinder scaffold exhibited higher osteogenic differentiation compared to the pristine nanofibrous cylinder sample. By incorporating Chinese medicine ginsenoside Rg1, sustained release was achieved in composite meshes. Rg1-containing nanofibrous meshes and Rg1 gradient cylinders enhanced the cell proliferation of human umbilical vein endothelial cells (HUVECs). The developed fibrous scaffold may provide structural, compositional, and chemical gradients for bone regeneration. BRIEFS: Structural and chemical gradient fibrous scaffold fabricated by co-electrospinning.
Collapse
Affiliation(s)
- Jingjing Luo
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jiang Zhu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Lijun Wang
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jing Kang
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xin Wang
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jie Xiong
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
10
|
Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2019. [PMID: 33066127 PMCID: PMC7601994 DOI: 10.3390/nano10102019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
One of the most important ideas ever produced by the application of materials science to the medical field is the notion of biomaterials. The nanostructured biomaterials play a crucial role in the development of new treatment strategies including not only the replacement of tissues and organs, but also repair and regeneration. They are designed to interact with damaged or injured tissues to induce regeneration, or as a forest for the production of laboratory tissues, so they must be micro-environmentally sensitive. The existing materials have many limitations, including impaired cell attachment, proliferation, and toxicity. Nanotechnology may open new avenues to bone tissue engineering by forming new assemblies similar in size and shape to the existing hierarchical bone structure. Organic and inorganic nanobiomaterials are increasingly used for bone tissue engineering applications because they may allow to overcome some of the current restrictions entailed by bone regeneration methods. This review covers the applications of different organic and inorganic nanobiomaterials in the field of hard tissue engineering.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Meenu Saini
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Brijnandan S. Dehiya
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India;
| | - Vinod Kumar
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, India
| | - Luciano Lamberti
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy;
| | - Catalin I. Pruncu
- Department of Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Rajesh Thakur
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| |
Collapse
|
11
|
Dragostin OM, Tatia R, Samal SK, Oancea A, Zamfir AS, Dragostin I, Lisă EL, Apetrei C, Zamfir CL. Designing of Chitosan Derivatives Nanoparticles with Antiangiogenic Effect for Cancer Therapy. NANOMATERIALS 2020; 10:nano10040698. [PMID: 32272625 PMCID: PMC7221956 DOI: 10.3390/nano10040698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/26/2022]
Abstract
Angiogenesis is a physiological process involving the growth of new blood vessels, which provides oxygen and required nutrients for the development of various pathological conditions. In a tumor microenvironment, this process upregulates the growth and proliferation of tumor cells, thus any stage of angiogenesis can be a potential target for cancer therapies. In the present study, chitosan and his derivatives have been used to design novel polymer-based nanoparticles. The therapeutic potential of these newly designed nanoparticles has been evaluated. The antioxidant and MTT assays were performed to know the antioxidant properties and their biocompatibility. The in vivo antiangiogenic properties of the nanoparticles were evaluated by using a chick Chorioallantoic Membrane (CAM) model. The obtained results demonstrate that chitosan derivatives-based nanostructures strongly enhance the therapeutic effect compared to chitosan alone, which also correlates with antitumor activity, demonstrated by the in vitro MTT assay on human epithelial cervical Hep-2 tumor cells. This study opens up new direction for the use of the chitosan derivatives-based nanoparticles for designing of antiangiogenic nanostructured materials, for future cancer therapy.
Collapse
Affiliation(s)
- Oana-Maria Dragostin
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania;
- Correspondence: (O.-M.D.); (C.A.)
| | - Rodica Tatia
- Romanian National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania; (R.T.); (A.O.)
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, Indian Council of Medical Research-Regional Medical Research Center, Bhubaneswar-751 023, Odisha, India;
| | - Anca Oancea
- Romanian National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania; (R.T.); (A.O.)
| | - Alexandra Simona Zamfir
- Department of Morpho-Functional Sciences I, Faculty of Medicine, University of Medicine and Pharmacy “Gr.T.Popa”, 700115 Iasi, Romania; (A.S.Z.); (I.D.); (C.L.Z.)
| | - Ionuț Dragostin
- Department of Morpho-Functional Sciences I, Faculty of Medicine, University of Medicine and Pharmacy “Gr.T.Popa”, 700115 Iasi, Romania; (A.S.Z.); (I.D.); (C.L.Z.)
| | - Elena-Lăcrămioara Lisă
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania;
| | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, The European Centre of Excellence for the Environment, Faculty of Sciences and Environment, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
- Correspondence: (O.-M.D.); (C.A.)
| | - Carmen Lăcrămioara Zamfir
- Department of Morpho-Functional Sciences I, Faculty of Medicine, University of Medicine and Pharmacy “Gr.T.Popa”, 700115 Iasi, Romania; (A.S.Z.); (I.D.); (C.L.Z.)
| |
Collapse
|
12
|
Khodaei A, Bagheri R, Madaah Hosseini HR, Bagherzadeh E. RSM based engineering of the critical gelation temperature in magneto-thermally responsive nanocarriers. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Dragostin I, Dragostin OM, Samal SK, Dash S, Tatia R, Dragan M, Confederat L, Ghiciuc CM, Diculencu D, Lupușoru CE, Zamfir CL. New isoniazid derivatives with improved pharmaco-toxicological profile: Obtaining, characterization and biological evaluation. Eur J Pharm Sci 2019; 137:104974. [PMID: 31252051 DOI: 10.1016/j.ejps.2019.104974] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 06/10/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Tuberculostatic drugs are the most common drug groups with global hepatotoxicity. Awareness of potentially severe hepatotoxic reactions is vital, as hepatic impairment can be a devastating and often fatal condition. The treatment problems that may arise, within this class of medicines, are mainly of two types: adverse reactions (collateral, toxic or hypersensitive reactions) and the initial or acquired resistance of Mycobacterium tuberculosis to one or more antituberculosis drugs. Prevention of adverse reactions, increase treatment adherence and success rates, providing better control of tuberculosis (TB). In this regard, obtaining new drugs with low toxicity and high tuberculostatic potential is essential. Thus, in this work, we have designed or synthesized new derivatives of isoniazid (INH), such as new Isonicotinoylhydrazone (INH-a, INH-b and INH-c). These derivatives demonstrated good biocompatibility, antimicrobial property similar to that of parent isoniazid and last but not least, a significantly improved Pharmacotoxicological profile compared to that of isoniazid.
Collapse
Affiliation(s)
- Ionut Dragostin
- University of Medicine and Pharmacy Grigore T. Popa, Faculty of Medicine, Department of Histology, 16 Universitatii Str., 700115, Iasi, Romania
| | - Oana M Dragostin
- Dunarea de Jos University of Galati, Faculty of Medicine and Pharmacy, Research Centre in the Medical-Pharmaceutical Field, 47 Domneasca Str., Galati, Romania.
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, Materials Research Centre, Indian Institute of Science Bangalore, 560 012, Karnataka, India; Laboratory of Biomaterials and regenerative Medicine for Advanced Therapies, Indian Council of Medical Research-Regional Medical Research Centre, Bhubaneswar 751 023, Odisha, India
| | - Saumya Dash
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, Materials Research Centre, Indian Institute of Science Bangalore, 560 012, Karnataka, India
| | - Rodica Tatia
- Romanian National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Maria Dragan
- University of Medicine and Pharmacy Grigore T. Popa, Faculty of Pharmacy, 16 Universitatii Str., 700115, Iasi, Romania
| | - Luminița Confederat
- University of Medicine and Pharmacy Grigore T. Popa, Faculty of Medicine, Department of Microbiology, 16 Universitatii Str., 700115, Iasi, Romania
| | - Cristina M Ghiciuc
- University of Medicine and Pharmacy Grigore T. Popa, Faculty of Medicine, Department of Pharmacology, 16 Universitatii Str., 700115, Iasi, Romania
| | - Daniela Diculencu
- Clinical Pneumophysiology Hospital, Medical Analysis Laboratory, Iasi, Romania
| | - Cătălina E Lupușoru
- University of Medicine and Pharmacy Grigore T. Popa, Faculty of Medicine, Department of Pharmacology, 16 Universitatii Str., 700115, Iasi, Romania
| | - Carmen L Zamfir
- University of Medicine and Pharmacy Grigore T. Popa, Faculty of Medicine, Department of Histology, 16 Universitatii Str., 700115, Iasi, Romania
| |
Collapse
|
14
|
Tang Y, Guo Q, Chen Z, Zhang X, Lu C, Cao J, Zheng Z. Scalable Manufactured Self-Healing Strain Sensors Based on Ion-Intercalated Graphene Nanosheets and Interfacial Coordination. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23527-23534. [PMID: 31252504 DOI: 10.1021/acsami.9b06208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Desirable mechanical strength and self-healing performance are very important to highly sensitive and stretchable sensors to meet their practical applications. However, balancing these two key performance parameters is still a great challenge. Herein, we present a simple, large-scale, and cost-efficient route to fabricate autonomously self-healing strain sensors with satisfactory mechanical properties. Specifically, ion-intercalated mechanical milling was utilized to realize the large-scale preparation of graphene nanosheets (GNs). Then, a well-organized GN-nanostructured network was constructed in a rubber matrix based on interfacial metal-ligand coordination. The resultant nanocomposites show desirable mechanical properties (∼5 times higher than that of control sample without interfacial coordination), excellent self-healing performance (even healable in various harsh conditions, for example, underwater, at subzero temperature or exposed in acidic and alkaline conditions), and ultrahigh sensitivity (gauge factor ≈ 45 573.1). The elaborately designed strain sensors offer a feasible approach for the scalable production of self-healing strain-sensing devices, making it promising for further applications, including artificial skin, smart robotics, and other electrical devices.
Collapse
Affiliation(s)
- Yumeng Tang
- State Key Laboratory of Polymer Materials and Engineering , Sichuan University , Chengdu 610065 , China
| | - Quanquan Guo
- State Key Laboratory of Polymer Materials and Engineering , Sichuan University , Chengdu 610065 , China
| | - Zhenming Chen
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials & Environmental Engineering , Hezhou University , Hezhou 542899 , China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials and Engineering , Sichuan University , Chengdu 610065 , China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials and Engineering , Sichuan University , Chengdu 610065 , China
| | - Jie Cao
- State Key Laboratory of Polymer Materials and Engineering , Sichuan University , Chengdu 610065 , China
| | - Zhuo Zheng
- State Key Laboratory of Polymer Materials and Engineering , Sichuan University , Chengdu 610065 , China
| |
Collapse
|
15
|
Numerical Investigation of Bone Tumor Hyperthermia Treatment Using Magnetic Scaffolds. ACTA ACUST UNITED AC 2018. [DOI: 10.1109/jerm.2018.2866345] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Singh R, Wieser A, Reakasame S, Detsch R, Dietel B, Alexiou C, Boccaccini AR, Cicha I. Cell specificity of magnetic cell seeding approach to hydrogel colonization. J Biomed Mater Res A 2017. [PMID: 28639348 DOI: 10.1002/jbm.a.36147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tissue-engineered scaffolds require an effective colonization with cells. Superparamagnetic iron oxide nanoparticles (SPIONs) can enhance cell adhesion to matrices by magnetic cell seeding. We investigated the possibility of improving cell attachment and growth on different alginate-based hydrogels using fibroblasts and endothelial cells (ECs) loaded with SPIONs. Hydrogels containing pure alginate (Alg), alginate dialdehyde crosslinked with gelatin (ADA-G) and Alg blended with G or silk fibroin (SF) were prepared. Endothelial cells and fibroblasts loaded with SPIONs were seeded and grown on hydrogels for up to 7 days, in the presence of magnetic field during the first 24 h. Cell morphology (fluorescent staining) and metabolic activity (WST-8 assay) of magnetically-seeded versus conventionally seeded cells were compared. Magnetic seeding of ECs improved their initial attachment and further growth on Alg/G hydrogel surfaces. However, we did not achieve an efficient and stable colonization of ADA-G films with ECs even with magnetic cell seeding. Fibroblast showed good initial colonization and growth on ADA-G and on Alg/SF. This effect was further significantly enhanced by magnetic cell seeding. On pure Alg, initial attachment and spreading of magnetically-seeded cells was dramatically improved compared to conventionally-seeded cells, but the effect was transient and diminished gradually with the cessation of magnetic force. Our results demonstrate that magnetic seeding improves the strength and uniformity of initial cell attachment to hydrogel surface in cell-specific manner, which may play a decisive role for the outcome in tissue engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2948-2956, 2017.
Collapse
Affiliation(s)
- Raminder Singh
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Cardiology and Angiology, University Hospital Erlangen, Erlangen, Germany
| | - Anna Wieser
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Supachai Reakasame
- Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Detsch
- Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Dietel
- Department of Cardiology and Angiology, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Alexiou
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iwona Cicha
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
17
|
Preparation of green and gelatin-free nanocrystalline cellulose capsules. Carbohydr Polym 2017; 164:358-363. [DOI: 10.1016/j.carbpol.2017.01.096] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/12/2017] [Accepted: 01/27/2017] [Indexed: 12/30/2022]
|
18
|
Bañobre-López M, Bran C, Rodríguez-Abreu C, Gallo J, Vázquez M, Rivas J. A colloidally stable water dispersion of Ni nanowires as an efficient T2-MRI contrast agent. J Mater Chem B 2017; 5:3338-3347. [DOI: 10.1039/c7tb00574a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A colloidally stable dispersion of anisotropic Ni nanowires in water has been achieved showing good performance as a T2-contrast agent in MRI.
Collapse
Affiliation(s)
- Manuel Bañobre-López
- International Iberian Nanotechnology Laboratory
- Av. Mestre José Veiga s/n
- 4715-330 Braga
- Portugal
| | - Cristina Bran
- Institute of Materials Science of Madrid
- CSIC
- 28049 Madrid
- Spain
| | - Carlos Rodríguez-Abreu
- International Iberian Nanotechnology Laboratory
- Av. Mestre José Veiga s/n
- 4715-330 Braga
- Portugal
- Instituto de Química Avanzada de Cataluña
| | - Juan Gallo
- International Iberian Nanotechnology Laboratory
- Av. Mestre José Veiga s/n
- 4715-330 Braga
- Portugal
| | - Manuel Vázquez
- Institute of Materials Science of Madrid
- CSIC
- 28049 Madrid
- Spain
| | - José Rivas
- Department of Applied Physics
- Technological Research Institute
- Nanotechnology and Magnetism Lab
- Universidade de Santiago de Compostela
- Spain
| |
Collapse
|
19
|
Jedlovszky-Hajdu A, Molnar K, Nagy PM, Sinko K, Zrinyi M. Preparation and properties of a magnetic field responsive three-dimensional electrospun polymer scaffold. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|