1
|
Stone AE, Fortunato A, Wang X, Saggioro E, Snurr RQ, Hupp JT, Arcudi F, Ðorđević L. Photocatalytic Semi-Hydrogenation of Acetylene to Polymer-Grade Ethylene with Molecular and Metal-Organic Framework Cobaloximes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2408658. [PMID: 39439160 PMCID: PMC11707558 DOI: 10.1002/adma.202408658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/30/2024] [Indexed: 10/25/2024]
Abstract
The semi-hydrogenation of acetylene in ethylene-rich gas streams is a high-priority industrial chemical reaction for producing polymer-grade ethylene. Traditional thermocatalytic routes for acetylene reduction to ethylene, despite progress, still require high temperatures and high H2 consumption, possess relatively low selectivity, and use a noble metal catalyst. Light-powered strategies are starting to emerge, given that they have the potential to use directly the abundant and sustainable solar irradiation, but are ineffective. Here an efficient, >99.9% selective, visible-light powered, catalytic conversion of acetylene to ethylene is reported. The catalyst is a homogeneous molecular cobaloxime that operates in tandem with a photosensitizer at room temperature and bypasses the use of non-environmentally friendly and flammable H2 gas feed. The reaction proceeds through a cobalt-hydride intermediate with ≈100% conversion of acetylene under competitive (ethylene co-feed) conditions after only 50 min, and with no evolution of H2 or over-hydrogenation to ethane. The cobaloxime is further incorporated as a linker in a metal-organic framework; the result is a heterogeneous catalyst for the conversion of acetylene under competitive (ethylene co-feed) conditions that can be recycled up to six times and remains catalytically active for 48 h, before significant loss of performance is observed.
Collapse
Affiliation(s)
- Aaron E.B.S. Stone
- Department of ChemistryNorthwestern University2145 Sheridan Rd.EvanstonIL60208–3113USA
| | - Anna Fortunato
- Department of Chemical SciencesUniversity of PadovaVia F. Marzolo 1Padova35131Italy
| | - Xijun Wang
- Department of Chemical and Biological EngineeringNorthwestern University2145 Sheridan Rd.EvanstonIL60208–3120USA
| | - Edoardo Saggioro
- Department of Chemical SciencesUniversity of PadovaVia F. Marzolo 1Padova35131Italy
| | - Randall Q. Snurr
- Department of Chemical and Biological EngineeringNorthwestern University2145 Sheridan Rd.EvanstonIL60208–3120USA
| | - Joseph T. Hupp
- Department of ChemistryNorthwestern University2145 Sheridan Rd.EvanstonIL60208–3113USA
| | - Francesca Arcudi
- Department of Chemical SciencesUniversity of PadovaVia F. Marzolo 1Padova35131Italy
| | - Luka Ðorđević
- Department of Chemical SciencesUniversity of PadovaVia F. Marzolo 1Padova35131Italy
| |
Collapse
|
2
|
Tsai MD, Wu KC, Kung CW. Zirconium-based metal-organic frameworks and their roles in electrocatalysis. Chem Commun (Camb) 2024; 60:8360-8374. [PMID: 39034845 DOI: 10.1039/d4cc02793k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Due to their exceptional chemical stability in water and high structural tunability, zirconium(IV)-based MOFs (Zr-MOFs) have been considered attractive materials in the broad fields of electrocatalysis. Numerous studies published since 2015 have attempted to utilise Zr-MOFs in electrocatalysis, with the porous framework serving as either the active electrocatalyst or the scaffold or surface coating to further enhance the performance of the actual electrocatalyst. Herein, the roles of Zr-MOFs in electrocatalytic processes are discussed, and some selected examples reporting the applications of Zr-MOFs in various electrocatalytic reactions, including several studies from our group, are overviewed. Challenges, limitations and opportunities in using Zr-MOFs in electrocatalysis in future studies are discussed.
Collapse
Affiliation(s)
- Meng-Dian Tsai
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| | - Kuan-Chu Wu
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| |
Collapse
|
3
|
Abazari R, Sanati S, Bajaber MA, Javed MS, Junk PC, Nanjundan AK, Qian J, Dubal DP. Design and Advanced Manufacturing of NU-1000 Metal-Organic Frameworks with Future Perspectives for Environmental and Renewable Energy Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306353. [PMID: 37997226 DOI: 10.1002/smll.202306353] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Metal-organic frameworks (MOFs) represent a relatively new family of materials that attract lots of attention thanks to their unique features such as hierarchical porosity, active metal centers, versatility of linkers/metal nodes, and large surface area. Among the extended list of MOFs, Zr-based-MOFs demonstrate comparably superior chemical and thermal stabilities, making them ideal candidates for energy and environmental applications. As a Zr-MOF, NU-1000 is first synthesized at Northwestern University. A comprehensive review of various approaches to the synthesis of NU-1000 MOFs for obtaining unique surface properties (e.g., diverse surface morphologies, large surface area, and particular pore size distribution) and their applications in the catalysis (electro-, and photo-catalysis), CO2 reduction, batteries, hydrogen storage, gas storage/separation, and other environmental fields are presented. The review further outlines the current challenges in the development of NU-1000 MOFs and their derivatives in practical applications, revealing areas for future investigation.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Majed A Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Peter C Junk
- College of Science and Engineering, James Cook University, Townsville, 4811, Australia
| | - Ashok Kumar Nanjundan
- Schole of Engineering, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry & Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
4
|
Weng Y, Chen R, Hui Y, Chen D, Zhao CX. Boosting Enzyme Activity in Enzyme Metal-Organic Framework Composites. CHEM & BIO ENGINEERING 2024; 1:99-112. [PMID: 38566967 PMCID: PMC10983012 DOI: 10.1021/cbe.3c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/31/2024] [Indexed: 04/04/2024]
Abstract
Enzymes, as highly efficient biocatalysts, excel in catalyzing diverse reactions with exceptional activity and selective properties under mild conditions. Nonetheless, their broad applications are hindered by their inherent fragility, including low thermal stability, limited pH tolerance, and sensitivity to organic solvents and denaturants. Encapsulating enzymes within metal-organic frameworks (MOFs) can protect them from denaturation in these harsh environments. However, this often leads to a compromised enzyme activity. In recent years, extensive research efforts have been dedicated to enhancing enzymatic activity within MOFs, leading to the development of new enzyme-MOF composites that not only preserve their catalytic potential but also outperform their free counterparts. This Review provides a comprehensive review on recent developments in enzyme-MOF composites with a specific emphasis on their enhanced enzymatic activity compared to free enzymes.
Collapse
Affiliation(s)
- Yilun Weng
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Rui Chen
- School
of Chemical Engineering, The University
of Adelaide, Adelaide, SA 5005, Australia
| | - Yue Hui
- School
of Chemical Engineering, The University
of Adelaide, Adelaide, SA 5005, Australia
| | - Dong Chen
- State
Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310003, China
| | - Chun-Xia Zhao
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- School
of Chemical Engineering, The University
of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
5
|
Lakhan MN, Hanan A, Wang Y, Liu S, Arandiyan H. Recent Progress on Nickel- and Iron-Based Metallic Organic Frameworks for Oxygen Evolution Reaction: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2465-2486. [PMID: 38265034 DOI: 10.1021/acs.langmuir.3c03558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Developing sustainable energy solutions to safeguard the environment is a critical ongoing demand. Electrochemical water splitting (EWS) is a green approach to create effective and long-lasting electrocatalysts for the water oxidation process. Metal organic frameworks (MOFs) have become commonly utilized materials in recent years because of their distinguishing pore architectures, metal nodes easy accessibility, large specific surface areas, shape, and adaptable function. This review outlines the most significant developments in current work on developing improved MOFs for enhancing EWS. The benefits and drawbacks of MOFs are first discussed in this review. Then, some cutting-edge methods for successfully modifying MOFs are also highlighted. Recent progress on nickel (Ni) and iron (Fe) based MOFs have been critically discussed. Finally, a comprehensive analysis of the existing challenges and prospects for Ni- and Fe-based MOFs are summarized.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Abdul Hanan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor 47500, Malaysia
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Shaomin Liu
- School of Advanced Engineering, Great Bay University, Dongguan 523000, China
| | - Hamidreza Arandiyan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
6
|
Verma PK, Koellner CA, Hall H, Phister MR, Stone KH, Nichols AW, Dhakal A, Ashcraft E, Machan CW, Giri G. Solution Shearing of Zirconium (Zr)-Based Metal-Organic Frameworks NU-901 and MOF-525 Thin Films for Electrocatalytic Reduction Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53913-53923. [PMID: 37955400 DOI: 10.1021/acsami.3c12011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Solution shearing, a meniscus-guided coating process, can create large-area metal-organic framework (MOF) thin films rapidly, which can lead to the formation of uniform membranes for separations or thin films for sensing and catalysis applications. Although previous work has shown that solution shearing can render MOF thin films, examples have been limited to a few prototypical systems, such as HKUST-1, Cu-HHTP, and UiO-66. Here, we expand on the applicability of solution shearing by making thin films of NU-901, a zirconium-based MOF. We study how the NU-901 thin film properties (i.e., crystallinity, surface coverage, and thickness) can be controlled as a function of substrate temperature and linker concentration. High fractional surface coverage of small-area (∼1 cm2) NU-901 thin films (0.88 ± 0.06) is achieved on a glass substrate for all conditions after one blade pass, while a low to moderate fractional surface coverage (0.73 ± 0.18) is obtained for large-area (∼5 cm2) NU-901 thin films. The crystallinity of NU-901 crystals increases with temperature and decreases with linker concentration. On the other hand, the adjusted thickness of NU-901 thin films increases with both increasing temperature and linker concentration. We also extend the solution shearing technique to synthesize MOF-525 thin films on a transparent conductive oxide that are useful for electrocatalysis. We show that Fe-metalated MOF-525 films can reduce CO2 to CO, which has implications for CO2 capture and utilization. The demonstration of thin film formation of NU-901 and MOF-525 using solution shearing on a wide range of substrates will be highly useful for implementing these MOFs in sensing and catalytic applications.
Collapse
Affiliation(s)
- Prince K Verma
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Connor A Koellner
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Hailey Hall
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Meagan R Phister
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kevin H Stone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Asa W Nichols
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ankit Dhakal
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Earl Ashcraft
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles W Machan
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Gaurav Giri
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
7
|
Hu Y, Liu J, Lee C, Li M, Han B, Wu T, Pan H, Geng D, Yan Q. Integration of Metal-Organic Frameworks and Metals: Synergy for Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300916. [PMID: 37066724 DOI: 10.1002/smll.202300916] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Electrocatalysis is a highly promising technology widely used in clean energy conversion. There is a continuing need to develop advanced electrocatalysts to catalyze the critical electrochemical reactions. Integrating metal active species, including various metal nanostructures (NSs) and atomically dispersed metal sites (ADMSs), into metal-organic frameworks (MOFs) leads to the formation of promising heterogeneous electrocatalysts that take advantage of both components. Among them, MOFs can provide support and protection for the active sites on guest metals, and the resulting host-guest interactions can synergistically enhance the electrocatalytic performance. In this review, three key concerns on MOF-metal heterogeneous electrocatalysts regarding the catalytic sites, conductivity, and catalytic stability are first presented. Then, rational integration strategies of MOFs and metals, including the integration of metal NSs via surface anchoring, space confining, and MOF coating, as well as the integration of ADMSs either with the metal nodes/linkers or within the pores of MOFs, along with their recent progress on synergistic cooperation for specific electrochemical reactions are summarized. Finally, current challenges and possible solutions in applying these increasingly concerned electrocatalysts are also provided.
Collapse
Affiliation(s)
- Yue Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Carmen Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Meng Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Bin Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianci Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dongsheng Geng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| |
Collapse
|
8
|
Shrivastav V, Mansi, Gupta B, Dubey P, Deep A, Nogala W, Shrivastav V, Sundriyal S. Recent advances on surface mounted metal-organic frameworks for energy storage and conversion applications: Trends, challenges, and opportunities. Adv Colloid Interface Sci 2023; 318:102967. [PMID: 37523999 DOI: 10.1016/j.cis.2023.102967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Establishing green and reliable energy resources is very important to counteract the carbon footprints and negative impact of non-renewable energy resources. Metal-organic frameworks (MOFs) are a class of porous material finding numerous applications due to their exceptional qualities, such as high surface area, low density, superior structural flexibility, and stability. Recently, increased attention has been paid to surface mounted MOFs (SURMOFs), which is nothing but thin film of MOF, as a new category in nanotechnology having unique properties compared to bulk MOFs. With the advancement of material growth and synthesis technologies, the fine tunability of film thickness, consistency, size, and geometry with a wide range of MOF complexes is possible. In this review, we recapitulate various synthesis approaches of SURMOFs including epitaxial synthesis approach, direct solvothermal method, Langmuir-Blodgett LBL deposition, Inkjet printing technique and others and then correlated the synthesis-structure-property relationship in terms of energy storage and conversion applications. Further the critical assessment and current problems of SURMOFs have been briefly discussed to explore the future opportunities in SURMOFs for energy storage and conversion applications.
Collapse
Affiliation(s)
| | - Mansi
- CSIR-Central Scientific Instrument Organisation (CSIR-CSIO), Chandigarh 160030, India
| | - Bhavana Gupta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Prashant Dubey
- Advanced Carbon Products and Metrology Department, CSIR-National Physical Laboratory (CSIR-NPL), New Delhi 110012, India
| | - Akash Deep
- Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India
| | - Wojciech Nogala
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Vishal Shrivastav
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Shashank Sundriyal
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic,.
| |
Collapse
|
9
|
Pal N, Chakraborty D, Cho EB, Seo JG. Recent Developments on the Catalytic and Biosensing Applications of Porous Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2184. [PMID: 37570502 PMCID: PMC10420944 DOI: 10.3390/nano13152184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Nanoscopic materials have demonstrated a versatile role in almost every emerging field of research. Nanomaterials have come to be one of the most important fields of advanced research today due to its controllable particle size in the nanoscale range, capacity to adopt diverse forms and morphologies, high surface area, and involvement of transition and non-transition metals. With the introduction of porosity, nanomaterials have become a more promising candidate than their bulk counterparts in catalysis, biomedicine, drug delivery, and other areas. This review intends to compile a self-contained set of papers related to new synthesis methods and versatile applications of porous nanomaterials that can give a realistic picture of current state-of-the-art research, especially for catalysis and sensor area. Especially, we cover various surface functionalization strategies by improving accessibility and mass transfer limitation of catalytic applications for wide variety of materials, including organic and inorganic materials (metals/metal oxides) with covalent porous organic (COFs) and inorganic (silica/carbon) frameworks, constituting solid backgrounds on porous materials.
Collapse
Affiliation(s)
- Nabanita Pal
- Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad 500075, India;
| | - Debabrata Chakraborty
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Eun-Bum Cho
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Jeong Gil Seo
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
10
|
Kung CW, Otake KI, Drout RJ, Goswami S, Farha OK, Hupp JT. Post-Synthetic Cyano-ferrate(II) Functionalization of a Metal-Organic Framework, NU-1000. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4936-4942. [PMID: 36994868 DOI: 10.1021/acs.langmuir.2c03354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Starting with ferrocyanide ions in acidic aqueous solution, cyano-ferrate(II) species are post-synthetically grafted to the nodes of a mesoporous zirconium-based MOF, NU-1000. As indicated by single-crystal X-ray crystallography, grafting occurs by substitution of cyanide ligands by node-based hydroxo and oxo ligands rather than by substitution of node aqua ligands by cyanide ligands as bridges between Fe(II) and Zr(IV). The installed moieties yield a broad absorption band that is tentatively ascribed to iron-to-zirconium charge transfer. Consistent with Fe(III/II) redox activity, a modest fraction of the installed iron complexes are directly electrochemically addressable.
Collapse
Affiliation(s)
- Chung-Wei Kung
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan
| | - Ken-Ichi Otake
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshidahonmachi, Sakyo Ward, Kyoto 606-8317, Japan
| | - Riki J Drout
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Subhadip Goswami
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Li J, Huang JY, Meng YX, Li L, Zhang LL, Jiang HL. Zr- and Ti-based metal-organic frameworks: synthesis, structures and catalytic applications. Chem Commun (Camb) 2023; 59:2541-2559. [PMID: 36749364 DOI: 10.1039/d2cc06948b] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently, Zr- and Ti-based metal-organic frameworks (MOFs) have gathered increasing interest in the field of chemistry and materials science, not only for their ordered porous structure, large surface area, and high thermal and chemical stability, but also for their various potential applications. Particularly, the unique features of Zr- and Ti-based MOFs enable them to be a highly versatile platform for catalysis. Although much effort has been devoted to developing Zr- and Ti-based MOF materials, they still suffer from difficulties in targeted synthesis, especially for Ti-based MOFs. In this Feature Article, we discuss the evolution of Zr- and Ti-based MOFs, giving a brief overview of their synthesis and structures. Furthermore, the catalytic uses of Zr- and Ti-based MOF materials in the previous 3-5 years have been highlighted. Finally, perspectives on the Zr- and Ti-based MOF materials are also proposed. This work provides in-depth insight into the advances in Zr- and Ti-based MOFs and boosts their catalytic applications.
Collapse
Affiliation(s)
- Ji Li
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China. .,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, ShaanXi, P. R. China
| | - Jin-Yi Huang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China.
| | - Yu-Xuan Meng
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China.
| | - Luyan Li
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Liang-Liang Zhang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China. .,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, ShaanXi, P. R. China.,Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, Zhejiang, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
12
|
Abstract
AbstractThe development of efficient electrocatalysts based on non-noble metals for oxygen evolution reaction (OER) remains an important and challenging task. Multinuclear transition-metal clusters with high structural stability are promising OER catalysts but their catalytic role is poorly understood. Here we report the crystallographic observation of OER activity over robust {Ni12}-clusters immobilised in a porous metal-organic framework, NKU-100, by single-crystal X-ray diffraction as a function of external applied potential. We observed the aggregation of confined oxygen species around the {Ni12}-cluster as a function of applied potential during the electrocatalytic process. The refined occupancy of these oxygen species shows a strong correlation with the variation of current density. This study demonstrates that the enrichment of oxygen species in the secondary co-ordination sphere of multinuclear transition-metal clusters can promote the OER activity.
Collapse
|
13
|
Chang TE, Chuang CH, Chen YH, Wang YC, Gu YJ, Kung CW. Iridium‐functionalized metal–organic framework nanocrystals interconnected by carbon nanotubes competent for electrocatalytic water oxidation. ChemCatChem 2022. [DOI: 10.1002/cctc.202200199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tzu-En Chang
- National Cheng Kung University Department of Chemical Engineering 1 University Road Tainan City TAIWAN
| | - Cheng-Hsun Chuang
- National Cheng Kung University Department of Chemical Engineering 1 University Road Tainan City TAIWAN
| | - Yu-Hsiu Chen
- National Cheng Kung University Department of Chemical Engineering 1 University Road Tainan City TAIWAN
| | - Yi-Ching Wang
- National Cheng Kung University Department of Chemical Engineering 1 University Road Tainan City TAIWAN
| | - Yu-Juan Gu
- National Cheng Kung University Department of Chemical Engineering 1 University Road Tainan City TAIWAN
| | - Chung-Wei Kung
- National Cheng Kung University Department of Chemical Engineering 1 University Road 70101 Tainan TAIWAN
| |
Collapse
|
14
|
Kajal N, Singh V, Gupta R, Gautam S. Metal organic frameworks for electrochemical sensor applications: A review. ENVIRONMENTAL RESEARCH 2022; 204:112320. [PMID: 34740622 DOI: 10.1016/j.envres.2021.112320] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/01/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks (MOFs) are broadly known as porous coordination polymers, synthesized by metal-based nodes and organic linkers. MOFs are used in various fields like catalysis, energy storage, sensors, drug delivery etc., due to their versatile properties (tailorable pore size, high surface area, and exposed active sites). This review presents a detailed discussion of MOFs as an electrochemical sensor and their enhancement in the selectivity and sensitivity of the sensor. These sensors are used for the detection of heavy metal ions like Cd2+, Pb2+, Hg2+, and Cu2+ from groundwater. Various types of organic pollutants are also detected from the water bodies using MOFs. Furthermore, electrochemical sensing of antibiotics, phenolic compounds, and pesticides has been explored. In addition to this, there is also a detailed discussion of metal nano-particles and metal-oxide based composites which can sense various compounds like glucose, amino acids, uric acid etc. The review will be helpful for young researchers, and an inspiration to future research as challenges and future opportunities of MOF-based electrochemical sensors are also reported.
Collapse
Affiliation(s)
- Navdeep Kajal
- Advanced Functional Materials Lab., Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| | - Vishavjeet Singh
- Advanced Functional Materials Lab., Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| | - Ritu Gupta
- Advanced Functional Materials Lab., Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| | - Sanjeev Gautam
- Advanced Functional Materials Lab., Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
15
|
Wang Q, Pengmei Z, Pandharkar R, Gagliardi L, Hupp JT, Notestein JM. Investigating the Effect of Metal Nuclearity on Activity for Ethylene Hydrogenation by Metal-Organic-Framework-Supported oxy-Ni(II) Catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Metal organic frameworks as hybrid porous materials for energy storage and conversion devices: A review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214115] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
He Q, Hu H, Shao Y, Tang D, Zhao Z. Constructing 3D hierarchical MOFs nanospheres for oxygen evolution from high-throughput calculations. J Colloid Interface Sci 2021; 607:1944-1952. [PMID: 34695743 DOI: 10.1016/j.jcis.2021.09.180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/06/2023]
Abstract
In order to realize outstanding electrochemical performance in oxygen evolution reactions (OER), it is important to construct 3D hierarchical nanospheres consisting of 2D bimetal metal-organic framework (MOF) nanosheets. Based on high-throughput density-functional theory (DFT) calculations, we chose Ni and V as central ions and prepared Ni-V bimetal MOFs nanospheres (NiV-MNs) assembled from ultrathin 2D MOFs nanosheets through a simple one-step solvothermal method. So far, V-based ultrathin 2D MOFs have been firstly reported. Gradient experiments demonstrated that NiV-MNs shows the best catalytic activity when the amount of Ni is equal to that of V (denoted as Ni1V1-MNs). The Ni1V1-MNs can deliver a high current density of 50 mA·cm-2 at a low over-potential of 370 mV in alkaline condition even after 10000 s continuous catalytic testing. Coincidentally, the DFT calculations further confirmed that the ΔG of Ni1V1-MNs is much lower compared with Ni1V2-MNs and Ni2V1-MNs. Based upon the experimental results and DFT calculations, we propose that the better performance of Ni1V1-MNs should be attributed to the grater intrinsic activity of Ni and the coupling effect between Ni and V, as they are crucial for tuning the electrochemical activity.
Collapse
Affiliation(s)
- Qing He
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Huihui Hu
- Suzhou Beike Nano Technology Co. Ltd., Suzhou 215000, China
| | - Yabin Shao
- School of Jia Yang, Zhejiang Shuren University, Hangzhou 310015, China
| | - Di Tang
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhengzhi Zhao
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
18
|
Chen K, Downes CA, Goodpaster JD, Marinescu SC. Hydrogen Evolving Activity of Dithiolene-Based Metal-Organic Frameworks with Mixed Cobalt and Iron Centers. Inorg Chem 2021; 60:11923-11931. [PMID: 34352176 DOI: 10.1021/acs.inorgchem.1c00900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrocatalytic systems based on metal-organic frameworks (MOFs) have attracted great attention due to their potential application in commercially viable renewable energy-converting devices. We have recently shown that the cobalt 2,3,6,7,10,11-triphenylenehexathiolate (CoTHT) framework can catalyze the hydrogen evolution reaction (HER) in fully aqueous media with Tafel slopes as low as 71 mV/dec and near-unity Faradaic efficiency (FE). Taking advantage of the high synthetic tunability of MOFs, here, we synthesize a series of iron and mixed iron/cobalt THT-based MOFs. The incorporation of the iron and cobalt dithiolene moieties is verified by various spectroscopic techniques, and the integrity of the crystalline structure is maintained regardless of the stoichiometries of the two metals. The hydrogen evolving activity of the materials was explored in pH 1.3 aqueous electrolyte solutions. Unlike CoTHT, the FeTHT framework exhibits minimal activity due to a late catalytic onset [-0.440 V versus reversible hydrogen electrode (RHE)] and a large Tafel slope (210 mV/dec). The performance of the mixed-metal MOFs is adversely affected by the incorporation of Fe, where increasing Fe content results in MOFs with lower HER activity and diminished long-term stability and FE for H2 production. It is proposed that the FeTHT domains undergo alternative Faradaic processes under catalytic conditions, which alter its local structure and electrochemical behavior, eventually resulting in a material with diminished HER performance.
Collapse
Affiliation(s)
- Keying Chen
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Courtney A Downes
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jason D Goodpaster
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Smaranda C Marinescu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
19
|
Chen K, Ray D, Ziebel ME, Gaggioli CA, Gagliardi L, Marinescu SC. Cu[Ni(2,3-pyrazinedithiolate) 2] Metal-Organic Framework for Electrocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34419-34427. [PMID: 34275268 DOI: 10.1021/acsami.1c08998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The application of metal-organic frameworks (MOFs) as electrocatalysts for small molecule activation has been an emerging topic of research. Previous studies have suggested that two-dimensional (2D) dithiolene-based MOFs are among the most active for the hydrogen evolution reaction (HER). Here, a three-dimensional (3D) dithiolene-based MOF, Cu[Ni(2,3-pyrazinedithiolate)2] (1), is evaluated as an electrocatalyst for the HER. In pH 1.3 aqueous electrolyte solution, 1 exhibits a catalytic onset at -0.43 V vs the reversible hydrogen electrode (RHE), an overpotential (η10 mA/cm2) of 0.53 V to reach a current density of 10 mA/cm2, and a Tafel slope of 69.0 mV/dec. Interestingly, under controlled potential electrolysis, 1 undergoes an activation process that results in a more active catalyst with a 200 mV reduction in the catalytic onset and η10 mA/cm2. It is proposed that the activation process is a result of the cleavage of Cu-N bonds in the presence of protons and electrons. This hypothesis is supported by various experimental studies and density functional theory calculations.
Collapse
Affiliation(s)
- Keying Chen
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Debmalya Ray
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael E Ziebel
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Carlo A Gaggioli
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Smaranda C Marinescu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
20
|
Fan L, Kang Z, Li M, Sun D. Recent progress in pristine MOF-based catalysts for electrochemical hydrogen evolution, oxygen evolution and oxygen reduction. Dalton Trans 2021; 50:5732-5753. [PMID: 33949512 DOI: 10.1039/d1dt00302j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Among various kinds of materials that have been investigated as electrocatalysts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), metal-organic frameworks (MOFs) has emerged as a promising material for electrocatalyzing these vital processes owing to their structural merits that integrate advantages of both homogeneous and heterogeneous catalysts; however there is still big room for their improvement in terms of inferior activity and poor conductivity, as well as the ambiguity of real active sites. In this review, advanced strategies with the aim of solving the activity and conductivity problems are summarized as microstructure engineering and conductivity improvement, respectively. The structural evolution of some MOFs and their real active species has also been discussed. Finally, perspectives on the development of MOF materials for HER, OER and ORR electrocatalysis are provided.
Collapse
Affiliation(s)
- Lili Fan
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Zixi Kang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Mengfei Li
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Daofeng Sun
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| |
Collapse
|
21
|
Kinik FP, Ortega-Guerrero A, Ongari D, Ireland CP, Smit B. Pyrene-based metal organic frameworks: from synthesis to applications. Chem Soc Rev 2021; 50:3143-3177. [PMID: 33475661 DOI: 10.1039/d0cs00424c] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pyrene is one of the most widely investigated aromatic hydrocarbons given to its unique optical and electronic properties. Hence, pyrene-based ligands have been attractive for the synthesis of metal-organic frameworks (MOFs) in the last few years. In this review, we will focus on the most important characteristics of pyrene, in addition to the development and synthesis of pyrene-based molecules as bridging ligands to be used in MOF structures. We will summarize the synthesis attempts, as well as the post-synthetic modifications of pyrene-based MOFs by the incorporation of metals or ligands in the structure. The discussion of promising results of such MOFs in several applications; including luminescence, photocatalysis, adsorption and separation, heterogeneous catalysis, electrochemical applications and bio-medical applications will be highlighted. Finally, some insights and future prospects will be given based on the studies discussed in the review. This review will pave the way for the researchers in the field for the design and development of novel pyrene-based structures and their utilization for different applications.
Collapse
Affiliation(s)
- F Pelin Kinik
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Andres Ortega-Guerrero
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Daniele Ongari
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Christopher P Ireland
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| |
Collapse
|
22
|
Atomic layer deposition (ALD) assisting the visibility of metal-organic frameworks (MOFs) technologies. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Sun S, Wei C, Xiao Y, Li G, Zhang J. Zirconium-based metal-organic framework gels for selective luminescence sensing. RSC Adv 2020; 10:44912-44919. [PMID: 35516264 PMCID: PMC9058640 DOI: 10.1039/d0ra09035b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/03/2020] [Indexed: 01/15/2023] Open
Abstract
Metal-organic gelation represents a promising approach to fabricate functional nanomaterials. Herein a series of Zr-carboxylate gels are synthesized from rigid pyrene, porphyrin and tetraphenyl ethylene-derived tetracarboxylate linkers, namely Zr-TBAPy (H4TBAPy = 1,3,6,8-tetrakis(4-carboxylphenyl)pyrene), Zr-TCPE (H4TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene), and Zr-TCPP (H4TCPP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin). The gels are aggregated from metal-organic framework (MOF) nanoparticles. Zr-TBAPy gel consists of NU-901 nanoparticles, and Zr-TCPP gel consists of PCN-224 nanoparticles. The xerogels show high surface areas up to 1203 m2 g-1. MOF gel films are also anchored on the butterfly wing template to yield Zr-MOF/B composites. Zr-TBAPy and Zr-TCPE gels are luminescent for solution-phase sensing and vapour-phase sensing of volatile organic compounds, and exhibit a significant luminescence quenching effect for electron-deficient analytes. Arising from the high porosity and good dispersion of luminescent MOF gels, rapid and effective vapour-sensing of nitrobenzene and 2-nitrotoluene within 30 s has been achieved via Zr-TBAPy film or Zr-TBAPy/B.
Collapse
Affiliation(s)
- Shujian Sun
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Caifeng Wei
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Yali Xiao
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Guangqin Li
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Jianyong Zhang
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
24
|
Yang Y, Zhang X, Kanchanakungwankul S, Lu Z, Noh H, Syed ZH, Farha OK, Truhlar DG, Hupp JT. Unexpected “Spontaneous” Evolution of Catalytic, MOF-Supported Single Cu(II) Cations to Catalytic, MOF-Supported Cu(0) Nanoparticles. J Am Chem Soc 2020; 142:21169-21177. [DOI: 10.1021/jacs.0c10367] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuan Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Siriluk Kanchanakungwankul
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Zhiyong Lu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Hyunho Noh
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zoha H. Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Joseph T. Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
25
|
Liseev T, Howe A, Hoque MA, Gimbert-Suriñach C, Llobet A, Ott S. Synthetic strategies to incorporate Ru-terpyridyl water oxidation catalysts into MOFs: direct synthesis vs. post-synthetic approach. Dalton Trans 2020; 49:13753-13759. [PMID: 32996947 PMCID: PMC7116355 DOI: 10.1039/d0dt01890b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Incorporating molecular catalysts into metal-organic frameworks (MOFs) is a promising strategy for improving their catalytic longevity and recyclability. In this article, we investigate and compare synthetic routes for the incorporation of the potent water oxidation catalyst Ru(tda)(pyCO2H)2 (tda = 2,2':6',2''-terpyridine-6,6''-dicarboxylic acid, pyCO2H = iso-nicotinic acid) as a structural linker into a Zr-based UiO-type MOF. The task is challenging with this particular metallo-linker because of the equatorial dangling carboxylates that can potentially compete for Zr-coordination, as well as free rotation of the pyCO2H groups around the HO2CpyRupyCO2H axis. As a consequence, all attempts to synthesize a MOF with the metallo-linker directly under solvothermal conditions led to amorphous materials with the Ru(tda)(pyCO2H)2 linker coordinating to the Zr nodes in ill-defined ways, resulting in multiple waves in the cyclic voltammograms of the solvothermally obtained materials. On the other hand, an indirect post-synthetic approach in which the Ru(tda)(pyCO2H)2 linker is introduced into a preformed edba-MOF (edba = ethyne dibenzoic acid) of UiO topology results in the formation of the desired material. Interestingly, two distinctly different morphologies of the parent edba-MOF have been discovered, and the impact that the morphological difference has on linker incorporation is investigated.
Collapse
Affiliation(s)
- Timofey Liseev
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.
| | - Andrew Howe
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden. and Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Md Asmaul Hoque
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Sascha Ott
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.
| |
Collapse
|
26
|
Liu X, Yue T, Qi K, Qiu Y, Xia BY, Guo X. Metal-organic framework membranes: From synthesis to electrocatalytic applications. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Brandt AJ, Shakya DM, Metavarayuth K, Dolgopolova E, Hensley L, Duke AS, Farzandh S, Stefik M, Shustova NB, Chen DA. Growth of Crystalline Bimetallic Metal-Organic Framework Films via Transmetalation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9900-9908. [PMID: 32667804 DOI: 10.1021/acs.langmuir.0c01535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Crystalline films of the Cu3(BTC)2 (BTC3- = 1,3,5-benzenetricarboxylate) metal-organic framework (MOF) have been grown by dip-coating an alumina/Si(111) substrate in solutions of Cu(II) acetate and the organic linker H3BTC. Atomic force microscopy (AFM) experiments demonstrate that the substrate is completely covered by the MOF film, while grazing incidence wide-angle X-ray scattering (GIWAXS) establishes the crystallinity of the films. Forty cycles of dip-coating results in a film that is ∼70 nm thick with a root mean squared roughness of 25 nm and crystallites ranging from 50-160 nm in height. Co2+ ions were exchanged into the MOF framework by immersing the Cu3(BTC)2 films in solutions of CoCl2. By varying the temperature and exchange times, different concentrations of Co were incorporated into the films, as determined by X-ray photoelectron spectroscopy experiments. AFM studies showed that morphologies of the bimetallic films were largely unchanged after transmetalation, and GIWAXS indicated that the bimetallic films retained their crystallinity.
Collapse
Affiliation(s)
- Amy J Brandt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Deependra M Shakya
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Kamolrat Metavarayuth
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ekaterina Dolgopolova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Lauren Hensley
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Audrey S Duke
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sharfa Farzandh
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Morgan Stefik
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Donna A Chen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
28
|
Chang YS, Li JH, Chen YC, Ho WH, Song YD, Kung CW. Electrodeposition of pore-confined cobalt in metal–organic framework thin films toward electrochemical H2O2 detection. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136276] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
29
|
Xiao YH, Gu ZG, Zhang J. Surface-coordinated metal-organic framework thin films (SURMOFs) for electrocatalytic applications. NANOSCALE 2020; 12:12712-12730. [PMID: 32584342 DOI: 10.1039/d0nr03115a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design and development of highly efficient electrocatalysts are very important in energy storage and conversion. As a kind of inorganic organic hybrid material, metal-organic frameworks (MOFs) have been used as electrocatalysts in electrocatalytic reactions due to their structural diversities and fascinating functionalities. Particularly, MOF thin films are coordinated on substrate surfaces by a liquid phase epitaxial (LPE) layer by layer (LBL) growth method (called surface-coordinated MOF thin films, SURMOFs), and recently have been studied in various applications due to their precisely controlled thickness, preferred growth orientation and homogeneous surface. In this review, we will summarize the preparation and electrocatalysis of SURMOFs and their derived thin films (SURMOF-D). The SURMOF based thin films possess diverse topological structures and flexible properties, providing abundant catalytically active sites and fast charge transfer for efficient electrocatalytic performance in the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CRR), supercapacitors, tandem electrocatalysis and so on. The research challenges and problems of SURMOFs for electrocatalytic applications are also discussed at the end of the review.
Collapse
Affiliation(s)
- Yi-Hong Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| | | | | |
Collapse
|
30
|
Kung CW, Goswami S, Hod I, Wang TC, Duan J, Farha OK, Hupp JT. Charge Transport in Zirconium-Based Metal-Organic Frameworks. Acc Chem Res 2020; 53:1187-1195. [PMID: 32401008 DOI: 10.1021/acs.accounts.0c00106] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metal-organic frameworks (MOFs) are a class of crystalline porous materials characterized by inorganic nodes and multitopic organic linkers. Because of their molecular-scale porosity and periodic intraframework chemical functionality, MOFs are attractive scaffolds for supporting and/or organizing catalysts, photocatalysts, chemical-sensing elements, small enzymes, and numerous other functional-property-imparting, nanometer-scale objects. Notably, these objects can be installed after the synthesis of the MOF, eliminating the need for chemical and thermal compatibility of the objects with the synthesis milieu. Thus, postsynthetically functionalized MOFs can present three-dimensional arrays of high-density, yet well-separated, active sites. Depending on the application and corresponding morphological requirements, MOF materials can be prepared in thin-film form, pelletized form, isolated single-crystal form, polycrystalline powder form, mixed-matrix membrane form, or other forms. For certain applications, most obviously catalytic hydrolysis and electro- or photocatalytic water splitting, but also many others, an additional requirement is water stability. MOFs featuring hexa-zirconium(IV)-oxy nodes satisfy this requirement. For applications involving electrocatalysis, charge storage, photoelectrochemical energy conversion, and chemiresistive sensing, a further requirement is electrical conductivity, as embodied in electron or hole transport. As most MOFs, under most conditions, are electrically insulating, imparting controllable charge-transport behavior is both a chemically intriguing and chemically compelling challenge.Herein, we describe three strategies to render zirconium-based metal-organic frameworks (MOFs) tunably electrically conductive and, therefore, capable of transporting charge on the few nanometers (i.e., several molecular units) to few micrometers (i.e., typical dimensions for MOF microcrystallites) scale. The first strategy centers on redox-hopping between periodically arranged, chemically equivalent sites, essentially repetitive electron (or hole) self-exchange. Zirconium nodes are electrically insulating, but they can function as grafting sites for (a) redox-active inorganic clusters or (b) molecular redox couples. Alternatively, charge hopping based on linker redox properties can be exploited. Marcus's theory of electron transfer has proven useful for understanding/predicting trends in redox-hopping based conductivity, most notably, in accounting for variations as great as 3000-fold depending on the direction of charge propagation through structurally anisotropic MOFs. In MOF environments, propagation of electronic charge via redox hopping is necessarily accompanied by movement of charge-compensating ions. Consequently, rates of redox hopping can depend on both the identity and concentration of ions permeating the MOF. In the context of electrocatalysis, an important goal is to transport electronic charge fast enough to match or exceed the inherent activity of MOF-based or MOF-immobilized catalysts.Bandlike electronic conductivity is the focus of an alternative strategy: one based on the introduction of molecular guests capable of forming donor-acceptor charge transfer complexes with the host framework. Theory again can be applied predictively to alter conductivity. A third strategy similarly emphasizes electronic conductivity, but it makes use of added bridges in the form of molecular oligomers or inorganic clusters that can then be linked to span the length of a MOF crystallite. For all strategies, retention of molecular-scale porosity is emphasized, as this property is key to many applications. Finally, while our focus is on Zr-MOFs, the described approaches clearly are extendable to other MOF compositions, as has already been demonstrated, in part, in studies by others.
Collapse
Affiliation(s)
- Chung-Wei Kung
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan
| | - Subhadip Goswami
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Idan Hod
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of Negev, Beer-Sheva 8410501, Israel
| | - Timothy C. Wang
- NuMat Technologies, 8025 Lamon Avenue, Skokie, Illinois 60077, United States
| | - Jiaxin Duan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph T. Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
31
|
Wei YS, Zhang M, Zou R, Xu Q. Metal-Organic Framework-Based Catalysts with Single Metal Sites. Chem Rev 2020; 120:12089-12174. [PMID: 32356657 DOI: 10.1021/acs.chemrev.9b00757] [Citation(s) in RCA: 488] [Impact Index Per Article: 97.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of distinctive porous crystalline materials constructed by metal ions/clusters and organic linkers. Owing to their structural diversity, functional adjustability, and high surface area, different types of MOF-based single metal sites are well exploited, including coordinately unsaturated metal sites from metal nodes and metallolinkers, as well as active metal species immobilized to MOFs. Furthermore, controllable thermal transformation of MOFs can upgrade them to nanomaterials functionalized with active single-atom catalysts (SACs). These unique features of MOFs and their derivatives enable them to serve as a highly versatile platform for catalysis, which has actually been becoming a rapidly developing interdisciplinary research area. In this review, we overview the recent developments of catalysis at single metal sites in MOF-based materials with emphasis on their structures and applications for thermocatalysis, electrocatalysis, and photocatalysis. We also compare the results and summarize the major insights gained from the works in this review, providing the challenges and prospects in this emerging field.
Collapse
Affiliation(s)
- Yong-Sheng Wei
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Mei Zhang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan.,School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
32
|
|
33
|
Yang F, Hu W, Yang C, Patrick M, Cooksy AL, Zhang J, Aguiar JA, Fang C, Zhou Y, Meng YS, Huang J, Gu J. Tuning Internal Strain in Metal–Organic Frameworks via Vapor Phase Infiltration for CO
2
Reduction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fan Yang
- Department of Chemistry and Biochemistry San Diego State University 5500 Campanile Drive San Diego USA
| | - Wenhui Hu
- Department of Chemistry Marquette University Milwaukee WI 53201 USA
| | - Chongqing Yang
- The Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Margaret Patrick
- Department of Chemistry and Biochemistry San Diego State University 5500 Campanile Drive San Diego USA
| | - Andrew L. Cooksy
- Department of Chemistry and Biochemistry San Diego State University 5500 Campanile Drive San Diego USA
| | - Jian Zhang
- The Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Jeffery A. Aguiar
- Nuclear Materials Department Idaho National Laboratory 2525 Fremont Avenue Idaho Falls ID 83415 USA
| | - Chengcheng Fang
- Materials Science and Engineering Program University of California San Diego La Jolla CA 92093 USA
| | - Yinghua Zhou
- Department of Chemistry and Biochemistry San Diego State University 5500 Campanile Drive San Diego USA
- The Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 China
| | - Ying Shirley Meng
- Materials Science and Engineering Program University of California San Diego La Jolla CA 92093 USA
| | - Jier Huang
- Department of Chemistry Marquette University Milwaukee WI 53201 USA
| | - Jing Gu
- Department of Chemistry and Biochemistry San Diego State University 5500 Campanile Drive San Diego USA
| |
Collapse
|
34
|
Yang F, Hu W, Yang C, Patrick M, Cooksy AL, Zhang J, Aguiar JA, Fang C, Zhou Y, Meng YS, Huang J, Gu J. Tuning Internal Strain in Metal-Organic Frameworks via Vapor Phase Infiltration for CO 2 Reduction. Angew Chem Int Ed Engl 2020; 59:4572-4580. [PMID: 31914215 DOI: 10.1002/anie.202000022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Indexed: 01/10/2023]
Abstract
A gas-phase approach to form Zn coordination sites on metal-organic frameworks (MOFs) by vapor-phase infiltration (VPI) was developed. Compared to Zn sites synthesized by the solution-phase method, VPI samples revealed approximately 2.8 % internal strain. Faradaic efficiency towards conversion of CO2 to CO was enhanced by up to a factor of four, and the initial potential was positively shifted by 200-300 mV. Using element-specific X-ray absorption spectroscopy, the local coordination environment of the Zn center was determined to have square-pyramidal geometry with four Zn-N bonds in the equatorial plane and one Zn-OH2 bond in the axial plane. The fine-tuned internal strain was further supported by monitoring changes in XRD and UV/Visible absorption spectra across a range of infiltration cycles. The ability to use internal strain to increase catalytic activity of MOFs suggests that applying this strategy will enhance intrinsic catalytic capabilities of a variety of porous materials.
Collapse
Affiliation(s)
- Fan Yang
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, USA
| | - Wenhui Hu
- Department of Chemistry, Marquette University, Milwaukee, WI, 53201, USA
| | - Chongqing Yang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Margaret Patrick
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, USA
| | - Andrew L Cooksy
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, USA
| | - Jian Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jeffery A Aguiar
- Nuclear Materials Department, Idaho National Laboratory, 2525 Fremont Avenue, Idaho Falls, ID, 83415, USA
| | - Chengcheng Fang
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yinghua Zhou
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, USA.,The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
| | - Ying Shirley Meng
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jier Huang
- Department of Chemistry, Marquette University, Milwaukee, WI, 53201, USA
| | - Jing Gu
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, USA
| |
Collapse
|
35
|
Kim IS, Ahn S, Vermeulen NA, Webber TE, Gallington LC, Chapman KW, Penn RL, Hupp JT, Farha OK, Notestein JM, Martinson ABF. The Synthesis Science of Targeted Vapor-Phase Metal-Organic Framework Postmodification. J Am Chem Soc 2020; 142:242-250. [PMID: 31851505 DOI: 10.1021/jacs.9b10034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The postmodification of metal organic frameworks (MOFs) affords exceedingly high surface area materials with precisely installed chemical features, which provide new opportunities for detailed structure-function correlation in the field of catalysis. Here, we significantly expand upon the number of vapor-phase postmodification processes reported to date through screening a library of atomic layer deposition (ALD) precursors, which span metals across the periodic table and which include ligands from four distinct precursor classes. With a large library of precursors and synthesis conditions, we discern trends in the compatibility of precursor classes for well-behaved ALD in MOFs (AIM) and identify challenges and solutions to more precise postsynthetic modification.
Collapse
Affiliation(s)
| | | | | | - Thomas E Webber
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | | | | | - R Lee Penn
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | | | | | | | | |
Collapse
|
36
|
Yuan JT, Hou JJ, Liu XL, Feng YR, Zhang XM. Optimized trimetallic benzotriazole-5-carboxylate MOFs with coordinately unsaturated active sites as an efficient electrocatalyst for the oxygen evolution reaction. Dalton Trans 2020; 49:750-756. [DOI: 10.1039/c9dt04295d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Enhanced OER performance of bimetallic and trimetallic MOFs were gained through synergistic effect in Fe/Co/Ni unsaturated coordination sites.
Collapse
Affiliation(s)
- Jian-Tao Yuan
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education
- The School of Chemical and Material Science
- Shanxi Normal University
- Linfen
- China
| | - Juan-Juan Hou
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education
- The School of Chemical and Material Science
- Shanxi Normal University
- Linfen
- China
| | - Xue-Li Liu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education
- The School of Chemical and Material Science
- Shanxi Normal University
- Linfen
- China
| | - Ya-Ru Feng
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education
- The School of Chemical and Material Science
- Shanxi Normal University
- Linfen
- China
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education
- The School of Chemical and Material Science
- Shanxi Normal University
- Linfen
- China
| |
Collapse
|
37
|
Khiarak BN, Hasanzadeh M, Mojaddami M, Shahriyar Far H, Simchi A. In situ synthesis of quasi-needle-like bimetallic organic frameworks on highly porous graphene scaffolds for efficient electrocatalytic water oxidation. Chem Commun (Camb) 2020; 56:3135-3138. [DOI: 10.1039/c9cc09908e] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We present enhanced electrocatalytic activity of three-dimensional graphene scaffolds by decoration with one-dimensional CoxNi1−x MOF nanostructures (0 ≤ x ≤ 1).
Collapse
Affiliation(s)
| | | | - Majdoddin Mojaddami
- Department of Materials Science and Engineering
- Sharif University of Technology
- Tehran
- Iran
| | | | - Abdolreza Simchi
- Department of Materials Science and Engineering
- Sharif University of Technology
- Tehran
- Iran
- Institute for Nanoscience and Nanotechnology
| |
Collapse
|
38
|
Mukhopadhyay S, Basu O, Kar A, Das SK. Efficient Electrocatalytic Water Oxidation by Fe(salen)–MOF Composite: Effect of Modified Microenvironment. Inorg Chem 2019; 59:472-483. [DOI: 10.1021/acs.inorgchem.9b02745] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | - Olivia Basu
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Aranya Kar
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Samar K. Das
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
39
|
Goswami S, Hod I, Duan JD, Kung CW, Rimoldi M, Malliakas CD, Palmer RH, Farha OK, Hupp JT. Anisotropic Redox Conductivity within a Metal-Organic Framework Material. J Am Chem Soc 2019; 141:17696-17702. [PMID: 31608628 DOI: 10.1021/jacs.9b07658] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Engendering electrical conductivity in otherwise insulating metal-organic framework (MOF) materials is key to rendering these materials fully functional for a range of potential applications, including electrochemical and photo-electrochemical catalysis. Here we report that the platform MOF, NU-1000, can be made electrically conductive via reversible electrochemical oxidation of a fraction of the framework's tetraphenylpyrene linkers, where the basis for conduction is redox hopping. At a microscopic level, redox hopping is akin to electron self-exchange and is describable by Marcus' well-known theory of electron transfer. At a macroscopic level, the hopping behavior leads to diffusive charge transport and is quantifiable as an apparent diffusion coefficient, Dhopping. Theory suggests that the csq topology of NU-1000, together with its characteristic one-dimensional mesopores, will result in direction-dependent, that is, anisotropic, electrical conductivity. Detailed computations suggest that the governing factor is the strength of electronic coupling between pairs of linkers sited in the a,b plane of the MOF versus the mesopore-aligned c axis of the crystal. The notion has been put to the test experimentally by configuring the MOF as an array of selectively oriented, electrode-supported crystallites, where the rodlike crystallites are either oriented largely normal to the electrode (requiring redox hopping along the c direction) or mainly parallel (requiring redox hopping mainly through the a,b plane). The orientations are preselected by preparing MOF films either via interfacial solvothermal synthesis or via electrophoretic deposition. In semiquantitative accord with computational predictions, Dhopping is up to ∼3500 times larger in the c direction than through the a,b plane. In addition to their fundamental significance, the findings have clear implications for the design and optimization of MOFs for electrocatalysis and for other applications that rely upon electrical conductivity.
Collapse
Affiliation(s)
- Subhadip Goswami
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston 60208 , Illinois , United States
| | - Idan Hod
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology , Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Jiaxin Dawn Duan
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston 60208 , Illinois , United States
| | - Chung-Wei Kung
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston 60208 , Illinois , United States.,Department of Chemical Engineering , National Cheng Kung University , 1 University Road , Tainan City 70101 , Taiwan
| | - Martino Rimoldi
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston 60208 , Illinois , United States
| | - Christos D Malliakas
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston 60208 , Illinois , United States
| | - Rebecca H Palmer
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston 60208 , Illinois , United States
| | - Omar K Farha
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston 60208 , Illinois , United States
| | - Joseph T Hupp
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston 60208 , Illinois , United States
| |
Collapse
|
40
|
Meng J, Zhou Y, Chi H, Li K, Wan J, Hu Z. Bimetallic Porphyrin MOF Anchored onto rGO Nanosheets as a Highly Efficient 2D Electrocatalyst for Oxygen Evolution Reaction in Alkaline Conditions. ChemistrySelect 2019. [DOI: 10.1002/slct.201901713] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Junjing Meng
- National Engineering Lab of Textile Fiber Materials & Processing TechnologyZhejiang Sci-Tech University Hangzhou 310018 China
| | - Yan Zhou
- National Engineering Lab of Textile Fiber Materials & Processing TechnologyZhejiang Sci-Tech University Hangzhou 310018 China
| | - Hehai Chi
- National Engineering Lab of Textile Fiber Materials & Processing TechnologyZhejiang Sci-Tech University Hangzhou 310018 China
| | - Kuang Li
- National Engineering Lab of Textile Fiber Materials & Processing TechnologyZhejiang Sci-Tech University Hangzhou 310018 China
| | - Junmin Wan
- National Engineering Lab of Textile Fiber Materials & Processing TechnologyZhejiang Sci-Tech University Hangzhou 310018 China
- State Key Laboratory of advanced Textiles Materials and Manufacture Technology, MOEZhejiang Sci-Tech University Hangzhou 310018 China
| | - Zhiwen Hu
- State Key Laboratory of advanced Textiles Materials and Manufacture Technology, MOEZhejiang Sci-Tech University Hangzhou 310018 China
| |
Collapse
|
41
|
Abstract
Metal–organic frameworks (MOFs) are a class of porous materials constructed from metal-rich inorganic nodes and organic linkers. Because of their regular porosity in microporous or mesoporous scale and periodic intra-framework functionality, three-dimensional array of high-density and well-separated active sites can be built in various MOFs; such characteristics render MOFs attractive porous supports for a range of catalytic applications. Furthermore, the electrochemically addressable thin films of such MOF materials are reasonably considered as attractive candidates for electrocatalysis and relevant applications. Although it still constitutes an emerging subfield, the use of MOFs and relevant materials for electrocatalytic applications has attracted much attention in recent years. In this review, we aim to focus on the limitations and commonly seen issues for utilizing MOFs in electrocatalysis and the strategies to overcome these challenges. The research efforts on utilizing MOFs in a range of electrocatalytic applications are also highlighted.
Collapse
|
42
|
Wang YS, Chen YC, Li JH, Kung CW. Toward Metal-Organic-Framework-Based Supercapacitors: Room-Temperature Synthesis of Electrically Conducting MOF-Based Nanocomposites Decorated with Redox-Active Manganese. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900584] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yi-Sen Wang
- Department of Chemical Engineering; National Cheng Kung University; 1 University Road Tainan City 70101 Taiwan
| | - Yu-Chuan Chen
- Department of Chemical Engineering; National Cheng Kung University; 1 University Road Tainan City 70101 Taiwan
| | - Jun-Hong Li
- Department of Chemical Engineering; National Cheng Kung University; 1 University Road Tainan City 70101 Taiwan
| | - Chung-Wei Kung
- Department of Chemical Engineering; National Cheng Kung University; 1 University Road Tainan City 70101 Taiwan
| |
Collapse
|
43
|
Ibrahim S, Shehzadi K, Iqbal B, Abbas S, Turner DR, Nadeem MA. A trinuclear cobalt-based coordination polymer as an efficient oxygen evolution electrocatalyst at neutral pH. J Colloid Interface Sci 2019; 545:269-275. [PMID: 30897422 DOI: 10.1016/j.jcis.2019.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/21/2022]
Abstract
The dearth of an efficient, robust, abundant and cost-effective water oxidation catalyst is debatably the major hurdle for the technological advancement of artificial photosynthesis devices. Herein, a three dimensional (3D) cobalt-based coordination polymer {[Co3(pyz)(fa)3(dmso)2]·2H2O}n, (1) (pyz = pyrazine, fa = fumarate, dmso = dimethyl sulfoxide) has been synthesized and demonstrated to act as an efficient electrocatalyst towards water oxidation at neutral pH. Compound 1 displays a stair-like arrangement parallel to the b-axis, with the cobalt clusters arranged in a zigzag fashion, and contains small, honeycomb-like channels parallel to the c-axis. Compound 1 shows a remarkable activity for water oxidation and attains a current density of 1 mA.cm-2 at low overpotential (η = 257 mV) with a Tafel slope value of 80.5 mV.dec-1. This high performance of 1 in catalysing the water oxidation reaction is attributed to its unique 3-D architecture. The results of electrochemical investigations, including long-term and controlled potential electrolysis, are anticipated to guide the forthcoming advancement in creating efficient, cheap and noble metal (Pt/Ru/Ir) free catalysts for the water oxidation reaction.
Collapse
Affiliation(s)
- Shaista Ibrahim
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Kiran Shehzadi
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Bushra Iqbal
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saghir Abbas
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - David R Turner
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| | - Muhammad Arif Nadeem
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
44
|
Batool M, Ibrahim S, Iqbal B, Ali S, Badshah A, Abbas S, Turner DR, Nadeem MA. Novel cobalt-fumarate framework as a robust and efficient electrocatalyst for water oxidation at neutral pH. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Preferential deposition of cyanometallate coordination polymer nanoplates through evaporation of droplets. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Aulakh D, Liu L, Varghese JR, Xie H, Islamoglu T, Duell K, Kung CW, Hsiung CE, Zhang Y, Drout RJ, Farha OK, Dunbar KR, Han Y, Wriedt M. Direct Imaging of Isolated Single-Molecule Magnets in Metal-Organic Frameworks. J Am Chem Soc 2019; 141:2997-3005. [PMID: 30640459 DOI: 10.1021/jacs.8b11374] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Practical applications involving the magnetic bistability of single-molecule magnets (SMMs) for next-generation computer technologies require nanostructuring, organization, and protection of nanoscale materials in two- or three-dimensional networks, to enable read-and-write processes. Owing to their porous nature and structural long-range order, metal-organic frameworks (MOFs) have been proposed as hosts to facilitate these efforts. Although probing the channels of MOF composites using indirect methods is well established, the use of direct methods to elucidate fundamental structural information is still lacking. Herein we report the direct imaging of SMMs encapsulated in a mesoporous MOF matrix using high-resolution transmission electron microscopy. These images deliver, for the first time, direct and unambiguous evidence to support the adsorption of molecular guests within the porous host. Bulk magnetic measurements further support the successful nanostructuring of SMMs. The preparation of the first magnetic composite thin films of this kind furthers the development of molecular spintronics.
Collapse
Affiliation(s)
- Darpandeep Aulakh
- Department of Chemistry & Biomolecular Science , Clarkson University , Potsdam , New York 13699 , United States
| | - Lingmei Liu
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Saudi Arabia
| | - Juby R Varghese
- Department of Chemistry & Biomolecular Science , Clarkson University , Potsdam , New York 13699 , United States
| | - Haomiao Xie
- Department of Chemistry , Texas A&M University , College Station , Texas 77845 , United States
| | - Timur Islamoglu
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Kyle Duell
- Department of Chemistry & Biomolecular Science , Clarkson University , Potsdam , New York 13699 , United States
| | - Chung-Wei Kung
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Chia-En Hsiung
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Saudi Arabia
| | - Yuxin Zhang
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & College of Materials Science and Engineering , Chongqing University , Chongqing 400044 , People's Republic of China
| | - Riki J Drout
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Omar K Farha
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Kim R Dunbar
- Department of Chemistry , Texas A&M University , College Station , Texas 77845 , United States
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Saudi Arabia
| | - Mario Wriedt
- Department of Chemistry & Biomolecular Science , Clarkson University , Potsdam , New York 13699 , United States
| |
Collapse
|
47
|
Sun F, Li Q, Xue H, Pang H. Pristine Transition‐Metal‐Based Metal‐Organic Frameworks for Electrocatalysis. ChemElectroChem 2019. [DOI: 10.1002/celc.201801520] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Fancheng Sun
- School of Chemistry and Chemical Engineering, Guangling CollegeYangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Qing Li
- School of Chemistry and Chemical Engineering, Guangling CollegeYangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Guangling CollegeYangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Guangling CollegeYangzhou University Yangzhou 225009 Jiangsu P. R. China
| |
Collapse
|
48
|
Wu JX, Yuan WW, Xu M, Gu ZY. Ultrathin 2D nickel zeolitic imidazolate framework nanosheets for electrocatalytic reduction of CO2. Chem Commun (Camb) 2019; 55:11634-11637. [DOI: 10.1039/c9cc05487a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The FE of CO increased from 33.7% of bulk Ni(Im)2 to 78.8% of 2D Ni(Im)2-5 nm, which showed that the thinner the MOF nanosheets, the higher the catalytic selectivity.
Collapse
Affiliation(s)
- Jian-Xiang Wu
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of New Power Batteries
- School of Chemistry and Materials Science
- Nanjing Normal University
| | - Wei-Wen Yuan
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of New Power Batteries
- School of Chemistry and Materials Science
- Nanjing Normal University
| | - Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of New Power Batteries
- School of Chemistry and Materials Science
- Nanjing Normal University
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of New Power Batteries
- School of Chemistry and Materials Science
- Nanjing Normal University
| |
Collapse
|
49
|
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bing An
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wenbin Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
50
|
Palmer RH, Kung CW, Liu J, Farha OK, Hupp JT. Nickel-Carbon-Zirconium Material Derived from Nickel-Oxide Clusters Installed in a Metal-Organic Framework Scaffold by Atomic Layer Deposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14143-14150. [PMID: 30380883 DOI: 10.1021/acs.langmuir.8b02166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Atomic layer deposition is employed to install nickel oxide into NU-1000. Upon heating to 900 °C under nitrogen, a carbon material containing ZrO2 and Ni is formed. In notable contrast to the parent metal-organic framework, the pyrolyzed material is: (a) stable in highly alkaline solutions (typical conditions for water electro-oxidation) and (b) electrically conductive and thus able to deliver oxidizing equivalents (holes) to catalytic sites located far from the underlying conductive-glass electrode. The pyrolysis-derived material was characterized and its electrocatalytic activity for oxygen evolution was investigated.
Collapse
Affiliation(s)
| | | | | | - Omar K Farha
- Department of Chemistry, Faculty of Science , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
| | | |
Collapse
|