1
|
González-Sáenz P, Cosialls R, Texidó R, Dols-Pérez A, Cuenca AB, Borrós S, Fornaguera C. Designing Polyelectrolyte Microneedles Based on Borylated Poly(β-aminoester) Polymers To Enhance Transdermal pH-Controlled Delivery of Nucleic Acids. ACS APPLIED POLYMER MATERIALS 2024; 6:8842-8855. [PMID: 39144279 PMCID: PMC11320383 DOI: 10.1021/acsapm.4c00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 08/16/2024]
Abstract
The use of transdermal delivery for nucleic acid administration is an interesting approach to overcoming limitations of systemic administration routes, such as first-pass effects, the painful needle injection, or their poor biodistribution. Thus, the use of a microneedle-based patch could represent a turning point for nucleic acid delivery, thanks to the possibility of self-administration of the actives in a painless and easy procedure. However, the design of transdermal systems with a higher degree of precision release is a clear need that has not been fully resolved. Committed to tackling this challenge, we present here a microneedle patch that involves a smart delivery system supported by the well-established ability of boronic acid to interact with carbohydrates in a pH-dependent manner. This system builds up a multilayer structure over a solid microneedle platform whose surface has been modified to immobilize glucosamine units that are able to interact with an oligopeptide-end terminated poly(β-aminoester) that presents a 4-carboxy-3-fluorophenylboronic acid (Bor-pBAE). Thus, sequential layers of the Bor-pBAE and plasmid DNA have been assembled, thanks to the ability of the polymer to interact with the nucleic acid at a basic pH and then gradually release the plasmid under two different conditions of pH (the physiological pH = 7.4 and the acidic pH = 5.1). We set up the design and implementation of this first proof of concept while demonstrating microneedles' safety and functionality. Additionally, we have shown the efficacy of the construct to express the encoded genes in model cell lines. In conclusion, we have established the basis to confirm that this generation of borylated poly(β-aminoesters) holds great promise as a transdermal local nucleic acid delivery system.
Collapse
Affiliation(s)
- Patricia González-Sáenz
- Grup
d’Enginyeria de Materials (GEMAT, Insititut Químic de
Sarrià (IQS), Universitat Ramon Llull
(URL), Via Augusta 390, 08017 Barcelona, Spain
| | - Raúl Cosialls
- BISI-Bonds/CRISOL
Group, Department of Organic and Pharmaceutical Chemistry, Insititut
Químic de Sarrià (IQS), Universitat
Ramon Llull (URL), Via Augusta 390, 08017 Barcelona, Spain
| | - Robert Texidó
- Grup
d’Enginyeria de Materials (GEMAT, Insititut Químic de
Sarrià (IQS), Universitat Ramon Llull
(URL), Via Augusta 390, 08017 Barcelona, Spain
| | - Aurora Dols-Pérez
- Institut
de Bioenginyeria de Cataluña (IBEC), The Barcelona Institute of Science and Technology (BIST), C/Baldiri I Reixac 11-15, 08028 Barcelona, Spain
| | - Ana Belén Cuenca
- BISI-Bonds/CRISOL
Group, Department of Organic and Pharmaceutical Chemistry, Insititut
Químic de Sarrià (IQS), Universitat
Ramon Llull (URL), Via Augusta 390, 08017 Barcelona, Spain
| | - Salvador Borrós
- Grup
d’Enginyeria de Materials (GEMAT, Insititut Químic de
Sarrià (IQS), Universitat Ramon Llull
(URL), Via Augusta 390, 08017 Barcelona, Spain
| | - Cristina Fornaguera
- Grup
d’Enginyeria de Materials (GEMAT, Insititut Químic de
Sarrià (IQS), Universitat Ramon Llull
(URL), Via Augusta 390, 08017 Barcelona, Spain
| |
Collapse
|
2
|
Chaddha U, Agrawal A, Kurman J, Ortiz-Comino R, Dutau H, Freitag L, Trisolini R, Dooms C, Zuccatosta L, Gasparini S, Herth F, Saka H, Lee P, Fielding D, Oki M, Rosell A, Murgu S. World Association for Bronchology and Interventional Pulmonology (WABIP) guidelines on airway stenting for malignant central airway obstruction. Respirology 2024; 29:563-573. [PMID: 38812262 DOI: 10.1111/resp.14764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Malignant Central Airway Obstruction (MCAO) encompasses significant and symptomatic narrowing of the central airways that can occur due to primary lung cancer or metastatic disease. Therapeutic bronchoscopy is associated with high technical success and symptomatic relief and includes a wide range of airway interventions including airway stents. Published literature suggests that stenting practices vary significantly across the world primarily due to lack of guidance. This document aims to address this knowledge gap by addressing relevant questions related to airway stenting in MCAO. An international group of 17 experts from 17 institutions across 11 countries with experience in using airway stenting for MCAO was convened as part of this guideline statement through the World Association for Bronchology and Interventional Pulmonology (WABIP). We performed a literature and internet search for reports addressing six clinically relevant questions. This guideline statement, consisting of recommendations addressing these six PICO questions, was formulated by a systematic and rigorous process involving the evaluation of published evidence, augmented with expert experience when necessary. Panel members participated in the development of the final recommendations using the modified Delphi technique.
Collapse
Affiliation(s)
- Udit Chaddha
- Division of Pulmonary, Critical Care & Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Rosamaria Ortiz-Comino
- Department of Respiratory Medicine, University Hospital Coventry and Warwickshire, Coventry, UK
| | - Herve Dutau
- Interventional Pulmonology Department, North University Hospital, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Lutz Freitag
- Ruhrlandklinik, University Hospital, University Duisburg Essen, Essen, Germany
| | - Rocco Trisolini
- Catholic University of the Sacred Hearth-Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Christophe Dooms
- Department of Respiratory Diseases, University Hospital Leuven, Leuven, Belgium
| | - Lina Zuccatosta
- Azienda Ospedaliero-Universitaria delle Marche, Ancona, Italy
| | | | - Felix Herth
- Thoraxklinik and Translational Lung research Center Heidelberg, University of Heidelberg, Heidelberg, Germany
| | | | - Pyng Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Fielding
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Masahide Oki
- Department of Respiratory Medicine, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Antoni Rosell
- Hospital Universitari Germans Trias I Pujol, Barcelona, Spain
| | - Septimiu Murgu
- Section of Pulmonary and Critical Care, The University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
3
|
Abdelhamid AG, Yousef AE. Combating Bacterial Biofilms: Current and Emerging Antibiofilm Strategies for Treating Persistent Infections. Antibiotics (Basel) 2023; 12:1005. [PMID: 37370324 DOI: 10.3390/antibiotics12061005] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Biofilms are intricate multicellular structures created by microorganisms on living (biotic) or nonliving (abiotic) surfaces. Medically, biofilms often lead to persistent infections, increased antibiotic resistance, and recurrence of infections. In this review, we highlighted the clinical problem associated with biofilm infections and focused on current and emerging antibiofilm strategies. These strategies are often directed at disrupting quorum sensing, which is crucial for biofilm formation, preventing bacterial adhesion to surfaces, impeding bacterial aggregation in viscous mucus layers, degrading the extracellular polymeric matrix, and developing nanoparticle-based antimicrobial drug complexes which target persistent cells within the biofilm core. It is important to acknowledge, however, that the use of antibiofilm agents faces obstacles, such as limited effectiveness in vivo, potential cytotoxicity to host cells, and propensity to elicit resistance in targeted biofilm-forming microbes. Emerging next generation antibiofilm strategies, which rely on multipronged approaches, were highlighted, and these benefit from current advances in nanotechnology, synthetic biology, and antimicrobial drug discovery. The assessment of current antibiofilm mitigation approaches, as presented here, could guide future initiatives toward innovative antibiofilm therapeutic strategies. Enhancing the efficacy and specificity of some emerging antibiofilm strategies via careful investigations, under conditions that closely mimic biofilm characteristics within the human body, could bridge the gap between laboratory research and practical application.
Collapse
Affiliation(s)
- Ahmed G Abdelhamid
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Ahmed E Yousef
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA
- Department of Microbiology, The Ohio State University, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Plasma-induced nanostructured metallic silver surfaces: study of bacteriophobic effect to avoid bacterial adhesion on medical devices. Heliyon 2022; 8:e10842. [PMID: 36217459 PMCID: PMC9547212 DOI: 10.1016/j.heliyon.2022.e10842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/20/2022] [Accepted: 09/26/2022] [Indexed: 12/17/2022] Open
Abstract
Biofilm formation in medical devices represents one of the major problems for the healthcare system, especially those that occur on implantable silicone-based devices. To provide a general solution to avoid biofilm formation in the first stages of development, this work studied how nanostructured metallic silver coatings hinder bacteria-surface interaction by preventing bacteria adhesion. The three studied silver nanostructures (“Sharp blades”, “Thick blades” and “Leaves”) combined superhydrophobic behavior with a physical impediment of the coating nanostructure that produced a bacteriophobic effect avoiding the adhesion mechanism of different bacterial strains. These silver nanostructures are immobilized on stretchable substrates through a polymeric thin film of plasma–polymerized penta-fluorophenyl methacrylate. The control over the nanostructures and therefore its bacteriophobic—bactericidal effect depends on the plasma polymerization conditions of the polymer. The characterization of this bacteriophobic effect through FE-SEM microscopy, live/dead cell staining, and direct bacterial adhesion counts, provided a complete mapping of how bacteria interact with the surface in each scenario. Results revealed that the bacterial adhesion was reduced by up to six orders of magnitude in comparison with uncoated surfaces thereby constituting an effective strategy to avoid the formation of biofilm on medical materials.
Collapse
|
5
|
Lu L, Zhang J, Guan K, Zhou J, Yuan F, Guan Y. Artificial neural network for cytocompatibility and antibacterial enhancement induced by femtosecond laser micro/nano structures. J Nanobiotechnology 2022; 20:365. [PMID: 35933376 PMCID: PMC9357338 DOI: 10.1186/s12951-022-01578-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/25/2022] [Indexed: 01/04/2023] Open
Abstract
The failure of orthopedic and dental implants is mainly caused by biomaterial-associated infections and poor osseointegration. Surface modification of biomedical materials plays a significant role in enhancing osseointegration and anti-bacterial infection. In this work, a non-linear relationship between the micro/nano surface structures and the femtosecond laser processing parameters was successfully established based on an artificial neural network. Then a controllable functional surface with silver nanoparticles (AgNPs) to was produced to improve the cytocompatibility and antibacterial properties of biomedical titanium alloy. The surface topography, wettability, and Ag+ release were carefully investigated. The effects of these characteristics on antibacterial activity and cytocompatibilty were also evaluated. Results show that the prepared surface is hydrophobic, which can prevent the burst release of Ag+ in the initial stage. The prepared surface also shows both good cytocompatibility toward the murine calvarial preosteoblasts MC3T3-E1 cells (derived from Mus musculus (mouse) calvaria) and good antibacterial effects against Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria, which is caused by the combined effect of appropriate micro/nano-structured feature and reasonable Ag+ release rate. We do not only clarify the antibacterial mechanism but also demonstrate the possibility of balancing the antibacterial and osteointegration-promoting properties by micro/nano-structures. The reported method offers an effective strategy for the patterned surface modification of implants.
Collapse
Affiliation(s)
- Libin Lu
- Advanced Manufacturing Center, Ningbo Institute of Technology, Beihang University, Ningbo, 315100, China
| | - Jiaru Zhang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100083, China
| | - Kai Guan
- Department of Radiotherapy, The Third Hospital of Zhangzhou City, Zhangzhou, 363005, Fujian, China
| | - Jin Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Fusong Yuan
- National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, 100081, China
| | - Yingchun Guan
- Advanced Manufacturing Center, Ningbo Institute of Technology, Beihang University, Ningbo, 315100, China. .,School of Mechanical Engineering & Automation, Beihang University, Beijing, 100083, China. .,National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, Beihang University, 37 Xueyuan Road, Beijing, 100083, China.
| |
Collapse
|
6
|
Bäumler W, Eckl D, Holzmann T, Schneider-Brachert W. Antimicrobial coatings for environmental surfaces in hospitals: a potential new pillar for prevention strategies in hygiene. Crit Rev Microbiol 2021; 48:531-564. [PMID: 34699296 DOI: 10.1080/1040841x.2021.1991271] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent reports provide evidence that contaminated healthcare environments represent major sources for the acquisition and transmission of pathogens. Antimicrobial coatings (AMC) may permanently and autonomously reduce the contamination of such environmental surfaces complementing standard hygiene procedures. This review provides an overview of the current status of AMC and the demands to enable a rational application of AMC in health care settings. Firstly, a suitable laboratory test norm is required that adequately quantifies the efficacy of AMC. In particular, the frequently used wet testing (e.g. ISO 22196) must be replaced by testing under realistic, dry surface conditions. Secondly, field studies should be mandatory to provide evidence for antimicrobial efficacy under real-life conditions. The antimicrobial efficacy should be correlated to the rate of nosocomial transmission at least. Thirdly, the respective AMC technology should not add additional bacterial resistance development induced by the biocidal agents and co- or cross-resistance with antibiotic substances. Lastly, the biocidal substances used in AMC should be safe for humans and the environment. These measures should help to achieve a broader acceptance for AMC in healthcare settings and beyond. Technologies like the photodynamic approach already fulfil most of these AMC requirements.
Collapse
Affiliation(s)
- Wolfgang Bäumler
- Department of Dermatology, University Hospital, Regensburg, Germany
| | - Daniel Eckl
- Department of Microbiology, University of Regensburg, Regensburg, Germany
| | - Thomas Holzmann
- Department of Infection Control and Infectious Diseases, University Hospital, Regensburg, Germany
| | - Wulf Schneider-Brachert
- Department of Infection Control and Infectious Diseases, University Hospital, Regensburg, Germany
| |
Collapse
|
7
|
Liu J, Yao X, Ye J, Zhang C, Lin H, Fu J. A printing-spray-transfer process for attaching biocompatible and antibacterial coatings to the surfaces of patient-specific silicone stents. ACTA ACUST UNITED AC 2020; 15:055036. [PMID: 32503025 DOI: 10.1088/1748-605x/ab99d6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An antibacterial coating with stable antibacterial properties and favorable biocompatibility is recognized as an effective method to prevent bacterial adhesion and biofilm formation on biomedical implant surfaces. In this study, a convenient and low-cost printing-spray-transfer process was proposed that enables reliably attaching antibacterial and biocompatible coatings to patient-specific silicone implant surfaces. A desktop three-dimensional printer was used to print the mold of silicone implant molds according to the characteristics of the diseased areas. Multiwalled carbon nanotubes (MWCNTs) uniformly decorated with silver nanoparticles (AgNPs/CNTs) were synthesized as the antibacterial materials for the spray process. The well-distributed AgNPs/CNT coating was anchored to the silicone surface through an in-mold transfer printing process. Stable adhesion of the coatings was assessed via tape testing and UV-vis spectra. Hardly any AgNPs/CNTs peeled off the substrate, and the adhesion was rated at 4B. Antibacterial activity, Ag release, cell viability and morphology were further assessed, revealing high antibacterial activity and great biocompatibility. The process proposed herein has potential applications for fabricating stable antibacterial coatings on silicone implant surfaces, especially for patient-specific silicone implants such as silicone tracheal stents.
Collapse
Affiliation(s)
- Jiapeng Liu
- State Key Laboratory of Fluid Power & Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China. Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | | | | | | | | | | |
Collapse
|
8
|
Silicone Stent Versus Fully Covered Metallic Stent in Malignant Central Airway Stenosis. Ann Thorac Surg 2020; 111:283-289. [PMID: 32589886 DOI: 10.1016/j.athoracsur.2020.04.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/21/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Airway stenting to restore airway patency in cases of malignant central airway obstruction is an effective palliation treatment. Our goal was to compare the efficacy after deployment and complications of a fully covered self-expandable metal stent (SEMS) (Aerstent) and a silicone stent (Dumon). METHODS This was a retrospective cohort of 2 similar groups of patients with malignant central airway obstruction treated with stents between August 2012 and July 2017. Complications were assessed bronchoscopically. A competing risk for death analysis was performed to adjust the probability of developing a complication. RESULTS Seventy patients (29 with silicone stents and 41 with SEMS) were included. Stent insertion was successful in all cases. Mucus retention was the most frequent complication (75.9% with silicone stents and 84.8% with SEMS; P = .51), followed by granulation tissue (51.7% with silicone stents and 41.3% with SEMS; P = .52) and migration (6.9% with silicone stents and 13.0% with SEMS; P = .47). In the first month, the cumulative incidence of a complication was 36.7% for silicone stents and 41.3% for SEMS and increased to 90.0% and 97.8% after 6 months, respectively (hazard ratio = 1.66; P = .04). A competing risk for death analysis showed an adjusted hazard ratio of 1.41 (P = .49) indicating no differences in overall complications between stents. CONCLUSIONS Both stents were equally successful and safe. The incidence of complications increased over time to 90% at 6 months for both stents. The risk of overall complications was higher for SEMS; nevertheless, when mortality was measured in a competitive risk analysis, no differences were found between SEMS and silicone stents.
Collapse
|
9
|
García-Bonillo C, Texidó R, Reyes-Carmenaty G, Gilabert-Porres J, Borrós S. Study of the Human Albumin Role in the Formation of a Bacterial Biofilm on Urinary Devices Using QCM-D. ACS APPLIED BIO MATERIALS 2020; 3:3354-3364. [PMID: 35025378 DOI: 10.1021/acsabm.0c00286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catheter-associated urinary tract infections (CAUTIs) are the most common health care-associated infections due to rapid bacterial colonization+ and biofilm formation in urinary catheters. This behavior has been extensively documented in medical devices. However, there is a few literature works on CAUTI providing a model that allows the exhaustive study of biofilm formation in a urinary environment. The development of an effective model would be helpful to identify the factors that promote the biofilm formation and identify strategies to avoid it. In this work, we have developed a model to test biofilm formation on urinary medical device surfaces by simulating environmental and physical conditions using a quartz crystal microbalance with dissipation (QCM-D) module with an uropathogenic strain. Moreover, we used the developed model to study the role of human albumin present in artificial urine at high concentrations because of renal failure or heart-diseases in patients. Despite model limitations using artificial urine, these tests show that human albumin can be considered as a promoter of biofilm formation on hydrophobic surfaces, being a possible risk factor to developing a CAUTI.
Collapse
Affiliation(s)
| | - Robert Texidó
- Tractivus SL, Via Augusta, 394, 08017 Barcelona, Spain
| | | | | | | |
Collapse
|
10
|
Abstract
At the biointerface where materials and microorganisms meet, the organic and synthetic worlds merge into a new science that directs the design and safe use of synthetic materials for biological applications. Vapor deposition techniques provide an effective way to control the material properties of these biointerfaces with molecular-level precision that is important for biomaterials to interface with bacteria. In recent years, biointerface research that focuses on bacteria-surface interactions has been primarily driven by the goals of killing bacteria (antimicrobial) and fouling prevention (antifouling). Nevertheless, vapor deposition techniques have the potential to create biointerfaces with features that can manipulate and dictate the behavior of bacteria rather than killing or deterring them. In this review, we focus on recent advances in antimicrobial and antifouling biointerfaces produced through vapor deposition and provide an outlook on opportunities to capitalize on the features of these techniques to find unexplored connections between surface features and microbial behavior.
Collapse
Affiliation(s)
- Trevor B. Donadt
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Rong Yang
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
11
|
Texidó R, Borrós S. Allylamine PECVD Modification of PDMS as Simple Method to Obtain Conductive Flexible Polypyrrole Thin Films. Polymers (Basel) 2019; 11:E2108. [PMID: 31847507 PMCID: PMC6960888 DOI: 10.3390/polym11122108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/01/2019] [Accepted: 12/09/2019] [Indexed: 01/09/2023] Open
Abstract
In this paper, we report a one-step method to obtain conductive polypyrrole thin films on flexible substrates. To do this, substrates were modified through allylamine plasma grafting to create a high amount of reactive amine groups on PDMS surface. These groups are used during polypyrrole particle synthesis as anchoring points to immobilize the polymeric chains on the substrate during polymerization. Surface morphology of polypyrrole thin films are modified, tailoring the polyelectrolyte used in the polypyrrole synthesis obtaining different shapes of nanoparticles that conform to the film. Depending on the polyelectrolyte molecular weight, the shape of polypyrrole particles go from globular (500 nm diameter) to a more constructed and elongated shape. The films obtained with this methodology reflected great stability under simple bending as well as good conductivity values (between 2.2 ± 0.7 S/m to 5.6 ± 0.2 S/cm).
Collapse
Affiliation(s)
| | - Salvador Borrós
- Grup d’Enginyeria de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain;
| |
Collapse
|
12
|
Sobolev A, Valkov A, Kossenko A, Wolicki I, Zinigrad M, Borodianskiy K. Bioactive Coating on Ti Alloy with High Osseointegration and Antibacterial Ag Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39534-39544. [PMID: 31590486 DOI: 10.1021/acsami.9b13849] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Titanium alloys have advanced mechanical properties jointly with high biocompatibility that make them eminently suitable for biomedical applications such as dental and orthopedic implants. Improvement in their osseointegration with human bone can be achieved by the development of hydroxyapatite (HAp) on a Ti alloy surface using different methods of deposition. However, plasma electrolytic oxidation (PEO) treatment has been found to be one of the most promising techniques, due to the formation of high bonding between the bone and the Ti surface. Along with this high bonding, an antibacterial ability of the surface to prevent bacterial infection is also essential. Silver, which is a widely applicable antibacterial agent, was used in this work. First, a titanium oxide coating containing calcium and phosphorus and Ag nanoparticles was formed by PEO treatment. Then, Ti alloy was subjected to hydrothermal treatment to ensure a crystalline formation of HAp. Morphology and phase composition investigations detected the presence of HAp crystals in the coating along with antibacterial agents of silver nanoparticles. The biocompatibility and bioactivity of the created coating were examined by contact angle (CS) measurement and electrochemical impedance spectroscopy (EIS). It was shown that the coating was extensively grown after exposure of the alloy to simulated body fluid (SBF) solution for 7 days with no effect on the Ag nanoparticles. An antibacterial test using Staphylococcus aureus and Escherichia coli revealed that the coating containing Ag nanoparticles has more significant antibacterial effectiveness compared to a coating that does not contain silver.
Collapse
Affiliation(s)
- Alexander Sobolev
- Department of Chemical Engineering, Biotechnology and Materials , Ariel University , Ariel 40700 , Israel
| | - Anton Valkov
- Department of Chemical Engineering, Biotechnology and Materials , Ariel University , Ariel 40700 , Israel
| | - Alexey Kossenko
- Department of Chemical Engineering, Biotechnology and Materials , Ariel University , Ariel 40700 , Israel
| | - Israel Wolicki
- Department of Chemical Engineering, Biotechnology and Materials , Ariel University , Ariel 40700 , Israel
| | - Michael Zinigrad
- Department of Chemical Engineering, Biotechnology and Materials , Ariel University , Ariel 40700 , Israel
| | - Konstantin Borodianskiy
- Department of Chemical Engineering, Biotechnology and Materials , Ariel University , Ariel 40700 , Israel
| |
Collapse
|
13
|
Mora-Boza A, Aparicio FJ, Alcaire M, López-Santos C, Espinós JP, Torres-Lagares D, Borrás A, Barranco A. Multifunctional antimicrobial chlorhexidine polymers by remote plasma assisted vacuum deposition. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-019-1803-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Mas-Vinyals A, Gilabert-Porres J, Figueras-Esteve L, Borrós S. Improving linking interface between collagen-based hydrogels and bone-like substrates. Colloids Surf B Biointerfaces 2019; 181:864-871. [PMID: 31382334 DOI: 10.1016/j.colsurfb.2019.06.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/19/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022]
Abstract
Regenerative medicine requires the use of heterogeneous scaffolds when the tissue that needs to be repaired presents a gradient in its properties and cannot be replaced by a homogeneous graft. Then, an intimate contact between the different layers is critical to guarantee the optimal performance of the construct. This work presents a procedure that allows the immobilization of collagen-based hydrogels by self-assembly onto any desired substrate, by means of a pentafluorophenyl methacrylate (PFM) coating obtained by plasma enhanced chemical vapor deposition and a collagen monolayer. The latter is attached onto the PFM-coated substrate thanks to its high reactivity towards amines and it will act as anchoring point for the subsequent collagen fibrillation and hydrogel formation. The interaction between collagen and PFM-coated substrates has been evaluated using the quartz crystal microbalance with dissipation (QCM-D) technique. In addition, QCM-D has been used to design and monitor the collagen fibril formation process. A correlation between QCM-D data and optical microscopy has been established, and fibril formation has been confirmed by atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Anna Mas-Vinyals
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017, Barcelona, Spain
| | - Joan Gilabert-Porres
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017, Barcelona, Spain
| | - Laura Figueras-Esteve
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017, Barcelona, Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017, Barcelona, Spain.
| |
Collapse
|
15
|
Enhanced Antibacterial Activity of Poly (dimethylsiloxane) Membranes by Incorporating SiO 2 Microspheres Generated Silver Nanoparticles. NANOMATERIALS 2019; 9:nano9050705. [PMID: 31064123 PMCID: PMC6566769 DOI: 10.3390/nano9050705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 12/21/2022]
Abstract
The nonspecific adsorption of proteins and bacteria on the surface of polydimethylsiloxane (PDMS) had been a serious concern in a wide range of applications, such as medical devices. In order to improve the anti-adhesive and antibacterial capability, bare silver nanoparticles (AgNPs, ~15 nm) were generated in-situ on their surface without extra reducing and stabilizing agents. The main reason for this was that the SiO2 microspheres that are covalent bonded to the bulked PDMS could not only generate AgNPs spontaneously but also insure that no AgNPs were released to the environment. Meanwhile, the thiol-group-functionalized SiO2 microspheres self-assembled on the surface of PDMS by thiol-vinyl click reaction without any impact on their biomedical applications. After the modification of SiO2 microspheres with AgNPs, the surface of PDMS showed a smaller water contact angle than before, and the adhesion and growth of E. coli and Bacillus subtilis were effectively inhibited. When the monolayer of SiO2 microspheres with AgNPs was assembled completely on the surface of PDMS, they present improved bacterial resistance performance (living bacteria, 0%). This approach offers an antibacterial and anti-adhesive surface bearing small and well-defined quantities of in-situ generated AgNPs, and it is a novel, green, simple, and low-cost technique to generate AgNPs on soft biomedical substrates.
Collapse
|
16
|
Artigues M, Oh S, Gilabert-Porres J, Abellà J, Borrós S, Colominas S. Novel grafted electrochemical interface for covalent glucose oxidase immobilization using reactive pentafluorophenyl methacrylate. Colloids Surf B Biointerfaces 2019; 175:1-9. [PMID: 30508760 DOI: 10.1016/j.colsurfb.2018.11.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/24/2018] [Accepted: 11/27/2018] [Indexed: 11/19/2022]
Abstract
One of the most important factors for the proper functioning of enzymatic electrochemical biosensors is the enzyme immobilization strategy. In this work, glucose oxidase was covalently immobilized using pentafluorophenyl methacrylate (PFM) by applying two different surface modification techniques (plasma polymerization and plasma-grafting). The grafted surface was specifically designed to covalently anchor enzyme molecules. It was observed using QCM-D measurements the PFM plasma-grafted surfaces were able to retain a higher number of active enzyme molecules than the PFM polymerized surfaces. An amperometric glucose biosensor using titanium dioxide nanotubes array (TiO2NTAs) modified by PFM plasma-grafted surface was prepared. The resulting biosensor exhibited a fast response and short analysis time (approximately eight minutes per sample). Moreover, this biosensor achieved high sensitivity (9.76 μA mM-1) with a linear range from 0.25 to 1.49 mM and a limit of detection (LOD) equal to 0.10 mM of glucose. In addition, the glucose content of 16 different food samples was successfully measured using the developed biosensor. The obtained results were compared with the respective HPLC value and a deviation smaller than 10% was obtained in all the cases. Therefore, the biosensor was able to overcome all possible interferences in the selected samples/matrices.
Collapse
Affiliation(s)
- Margalida Artigues
- Electrochemical Methods Laboratory - Analytical and Applied Chemistry Department at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017, Barcelona, Spain
| | - Sejin Oh
- Grup d'Enginyeria de Materials (GEMAT) at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017, Barcelona, Spain
| | - Joan Gilabert-Porres
- Grup d'Enginyeria de Materials (GEMAT) at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017, Barcelona, Spain
| | - Jordi Abellà
- Electrochemical Methods Laboratory - Analytical and Applied Chemistry Department at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017, Barcelona, Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (GEMAT) at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017, Barcelona, Spain; CIBER-BBN, Networking Center on Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain
| | - Sergi Colominas
- Electrochemical Methods Laboratory - Analytical and Applied Chemistry Department at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017, Barcelona, Spain.
| |
Collapse
|
17
|
Rosenberg M, Ilić K, Juganson K, Ivask A, Ahonen M, Vinković Vrček I, Kahru A. Potential ecotoxicological effects of antimicrobial surface coatings: a literature survey backed up by analysis of market reports. PeerJ 2019; 7:e6315. [PMID: 30775167 PMCID: PMC6375256 DOI: 10.7717/peerj.6315] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/19/2018] [Indexed: 01/05/2023] Open
Abstract
This review was initiated by the COST action CA15114 AMICI "Anti-Microbial Coating Innovations to prevent infectious diseases," where one important aspect is to analyze ecotoxicological impacts of antimicrobial coatings (AMCs) to ensure their sustainable use. Scopus database was used to collect scientific literature on the types and uses of AMCs, while market reports were used to collect data on production volumes. Special attention was paid on data obtained for the release of the most prevalent ingredients of AMCs into the aqueous phase that was used as the proxy for their possible ecotoxicological effects. Based on the critical analysis of 2,720 papers, it can be concluded that silver-based AMCs are by far the most studied and used coatings followed by those based on titanium, copper, zinc, chitosan and quaternary ammonium compounds. The literature analysis pointed to biomedicine, followed by marine industry, construction industry (paints), food industry and textiles as the main fields of application of AMCs. The published data on ecotoxicological effects of AMCs was scarce, and also only a small number of the papers provided information on release of antimicrobial ingredients from AMCs. The available release data allowed to conclude that silver, copper and zinc are often released in substantial amounts (up to 100%) from the coatings to the aqueous environment. Chitosan and titanium were mostly not used as active released ingredients in AMCs, but rather as carriers for other release-based antimicrobial ingredients (e.g., conventional antibiotics). While minimizing the prevalence of healthcare-associated infections appeared to be the most prosperous field of AMCs application, the release of environmentally hazardous ingredients of AMCs into hospital wastewaters and thus, also the environmental risks associated with AMCs, comprise currently only a fraction of the release and risks of traditional disinfectants. However, being proactive, while the use of antimicrobial/antifouling coatings could currently pose ecotoxicological effects mainly in marine applications, the broad use of AMCs in other applications like medicine, food packaging and textiles should be postponed until reaching evidences on the (i) profound efficiency of these materials in controlling the spread of pathogenic microbes and (ii) safety of AMCs for the human and ecosystems.
Collapse
Affiliation(s)
- Merilin Rosenberg
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Krunoslav Ilić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Katre Juganson
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Angela Ivask
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Merja Ahonen
- Faculty of Technology, Satakunta University of Applied Sciences, Rauma, Finland
| | | | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| |
Collapse
|
18
|
Mutreja I, Warring SL, Lim KS, Swadi T, Clinch K, Mason JM, Sheen CR, Thompson DR, Ducati RG, Chambers ST, Evans GB, Gerth ML, Miller AG, Woodfield TBF. Biofilm Inhibition via Delivery of Novel Methylthioadenosine Nucleosidase Inhibitors from PVA-Tyramine Hydrogels while Supporting Mesenchymal Stromal Cell Viability. ACS Biomater Sci Eng 2019; 5:748-758. [PMID: 33405836 DOI: 10.1021/acsbiomaterials.8b01141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The rise of antibiotic resistance, coupled with increased expectations for mobility in later life, is creating a need for biofilm inhibitors and delivery systems that will reduce surgical implant infection. A limitation of some of these existing delivery approaches is toxicity exhibited toward host cells. Here, we report the application of a novel inhibitor of the enzyme, methylthioadenosine nucleosidase (MTAN), a key enzyme in bacterial metabolic pathways, which include S-adenosylmethionine catabolism and purine nucleotide recycling, in combination with a poly(vinyl alcohol)-tyramine-based (PVA-Tyr) hydrogel delivery system. We demonstrate that a lead MTAN inhibitor, selected from a screened library of 34 candidates, (2S)-2-(4-amino-5H-pyrrolo3,2-dpyrimidin-7-ylmethyl)aminoundecan-1-ol (31), showed a minimum biofilm inhibitory concentration of 2.2 ± 0.4 μM against a clinical staphylococcal species isolated from an infected implant. We observed that extracellular DNA, a key constituent of biofilms, is significantly reduced when treated with 10 μM compound 31, along with a decrease in biofilm thickness. Compound 31 was incorporated into a hydrolytically degradable photo-cross-linked PVA-Tyr hydrogel and the release profile was evaluated by HPLC studies. Compound 31 released from the PVA-hydrogel system significantly reduced biofilm formation (77.2 ± 8.4% biofilm inhibition). Finally, compound 31 released from PVA-Tyr showed no negative impact on human bone marrow stromal cell (MSC) viability, proliferation, or morphology. The results demonstrate the potential utility of MTAN inhibitors in treating infections caused by Gram-positive bacteria, and the development of a nontoxic release system that has potential for tunability for time scale of delivery.
Collapse
Affiliation(s)
- Isha Mutreja
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, Christchurch 8140, New Zealand.,Medical Technologies Centre of Research Excellence, Auckland 1010, New Zealand
| | - Suzanne L Warring
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, Christchurch 8140, New Zealand.,Medical Technologies Centre of Research Excellence, Auckland 1010, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| | - Tara Swadi
- Department of Pathology, University of Otago Christchurch Christchurch 8140, New Zealand
| | - Keith Clinch
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5046, New Zealand
| | - Jennifer M Mason
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5046, New Zealand
| | - Campbell R Sheen
- Protein Science and Engineering, Callaghan Innovation, c/- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Dion R Thompson
- Protein Science and Engineering, Callaghan Innovation, c/- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Rodrigo G Ducati
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Stephen T Chambers
- Department of Pathology, University of Otago Christchurch Christchurch 8140, New Zealand
| | - Gary B Evans
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand.,Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5046, New Zealand
| | - Monica L Gerth
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| | - Antonia G Miller
- Protein Science and Engineering, Callaghan Innovation, c/- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, Christchurch 8140, New Zealand.,Medical Technologies Centre of Research Excellence, Auckland 1010, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| |
Collapse
|
19
|
Koo H, Allan RN, Howlin RP, Hall-Stoodley L, Stoodley P. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 2017; 15:740-755. [PMID: 28944770 PMCID: PMC5685531 DOI: 10.1038/nrmicro.2017.99] [Citation(s) in RCA: 1077] [Impact Index Per Article: 134.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biofilm formation is a key virulence factor for a wide range of microorganisms that cause chronic infections. The multifactorial nature of biofilm development and drug tolerance imposes great challenges for the use of conventional antimicrobials and indicates the need for multi-targeted or combinatorial therapies. In this Review, we focus on current therapeutic strategies and those under development that target vital structural and functional traits of microbial biofilms and drug tolerance mechanisms, including the extracellular matrix and dormant cells. We emphasize strategies that are supported by in vivo or ex vivo studies, highlight emerging biofilm-targeting technologies and provide a rationale for multi-targeted therapies aimed at disrupting the complex biofilm microenvironment.
Collapse
Affiliation(s)
- Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, PA, USA
| | - Raymond N Allan
- Clinical and Experimental Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Robert P Howlin
- Centre for Biological Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Luanne Hall-Stoodley
- Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Department of Microbial Infection and Immunity, Centre for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, Centre for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, USA
- Depts. Orthopaedics and Microbiology, The Ohio State University, Columbus, Ohio, USA
- National Center for Advanced Tribology at Southampton (nCATS), Faculty of Engineering and the Environment, University of Southampton, UK
| |
Collapse
|
20
|
Mendoza G, Regiel-Futyra A, Tamayo A, Monzon M, Irusta S, de Gregorio MA, Kyzioł A, Arruebo M. Chitosan-based coatings in the prevention of intravascular catheter-associated infections. J Biomater Appl 2017; 32:725-737. [PMID: 29111850 DOI: 10.1177/0885328217739199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Central venous access devices play an important role in patients with prolonged intravenous administration requirements. In the last years, the coating of these devices with bactericidal compounds has emerged as a potential tool to prevent bacterial colonization. Our study describes the modification of 3D-printed reservoirs and silicone-based catheters, mimicking central venous access devices, through different approaches including their coating with the well known biocompatible and bactericidal polymer chitosan, with the anionic polysaccharide alginate; also, plasma treated surfaces were included in the study to promote polymer adhesion. The evaluation of the antimicrobial action of those surface modifications compared to that exerted by a model antibiotic (ciprofloxacin) adsorbed on the surface of the devices was carried out. Surface characterization was developed by different methodologies and the bactericidal effects of the different coatings were assayed in an in vitro model of Staphylococcus aureus infection. Our results showed a significant reduction in the reservoir roughness (≤73%) after coating though no changes were observed for coated catheters which was also confirmed by scanning electron microscopy, pointing to the importance of the surface device topography for the successful attachment of the coating and for the subsequent development of bactericidal effects. Furthermore, the single presence of chitosan on the reservoirs was enough to fully inhibit bacterial growth exerting the same efficiency as that showed by the model antibiotic. Importantly, chitosan coating showed low cytotoxicity against human keratinocytes, human lung adenocarcinoma epithelial cells, and murine colon carcinoma cells displaying viability percentages in the range of the control samples (>95%). Chitosan-based coatings are proposed as an effective and promising solution in the prevention of microbial infections associated to medical devices.
Collapse
Affiliation(s)
- Gracia Mendoza
- 1 Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), 88201 University of Zaragoza , Campus Río Ebro-Edificio I+D, C/ Mariano Esquillor S/N, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain; Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Anna Regiel-Futyra
- 2 Faculty of Chemistry, Jagiellonian University, Ingardena 3, Kraków, Poland
| | - Alejandra Tamayo
- 1 Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), 88201 University of Zaragoza , Campus Río Ebro-Edificio I+D, C/ Mariano Esquillor S/N, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain; Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Marta Monzon
- 3 Research Centre for Encephalopathies and Transmissible Emerging Diseases, 88201 Universidad de Zaragoza , Zaragoza, Spain
| | - Silvia Irusta
- 1 Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), 88201 University of Zaragoza , Campus Río Ebro-Edificio I+D, C/ Mariano Esquillor S/N, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain; Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Miguel Angel de Gregorio
- 4 Grupo de Investigación en Técnicas de Mínima Invasión (GITMI) del Gobierno de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Agnieszka Kyzioł
- 2 Faculty of Chemistry, Jagiellonian University, Ingardena 3, Kraków, Poland
| | - Manuel Arruebo
- 1 Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), 88201 University of Zaragoza , Campus Río Ebro-Edificio I+D, C/ Mariano Esquillor S/N, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain; Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
| |
Collapse
|
21
|
Bračič M, Fras-Zemljič L, Pérez L, Kogej K, Stana-Kleinschek K, Kargl R, Mohan T. Protein-repellent and antimicrobial nanoparticle coatings from hyaluronic acid and a lysine-derived biocompatible surfactant. J Mater Chem B 2017; 5:3888-3897. [PMID: 32264250 DOI: 10.1039/c7tb00311k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biofilm formation triggered by uncontrolled protein adsorption, on medical devices is the leading cause of catheter-associated urinary tract infections (CAUTI) during implantation. Herein, we report a water-based, green and one-step strategy to functionalize surfaces of silicone catheters, poly(dimethylsiloxane) (PDMS), with antifouling and antimicrobial substances to avoid uncontrolled protein adsorption and microbial attachment. A novel synergetic formulation consisting of an anionic glycosaminoglycan (hyaluronic acid, HA) and a lysine-derived biocompatible cationic surfactant (Nε-myristoyl-lysine methyl ester, MKM) was prepared, resulting in the formation of nanoparticles (NPs, ca. 100-250 nm). Besides their high stability and long-lasting hydrophilicity in ambient and aqueous environments for 60 days, the nanometric layers (48 ± 3 nm) of HA-MKM NPs on PDMS showed no adsorption of BSA and lysozyme and substantially lower adsorption of fibrinogen as revealed by a quartz crystal microbalance with dissipation (QCM-D). In vitro antimicrobial test with S. aureus, E. coli, P. aeruginosa, P. mirabilis, C. albicans microbes under dynamic conditions revealed that the microbial growth was hampered by 85% compared with unmodified PDMS. Given the multiple functionalities, charges and diverse physiochemical properties of polysaccharide-lysine-based surfactant mixtures, this approach can be easily extended to the development of novel coatings on other silicone-based materials, thereby broadening potential applicability of PDMS-based biomaterials/devices in microfluidics, diagnostic biosensors and others.
Collapse
Affiliation(s)
- M Bračič
- Laboratory for Characterization and Processing of Polymers, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Recent advances in nanotechnology provide unparalleled flexibility to control the composition, size, shape, surface chemistry, and functionality of materials. Currently available engineering approaches allow precise synthesis of nanocompounds (e.g., nanoparticles, nanostructures, nanocrystals) with both top-down and bottom-up design principles at the submicron level. In this context, these "nanoelements" (NEs) or "nanosized building blocks" can 1) generate new nanocomposites with antibiofilm properties or 2) be used to coat existing surfaces (e.g., teeth) and exogenously introduced surfaces (e.g., restorative or implant materials) for prevention of bacterial adhesion and biofilm formation. Furthermore, functionalized NEs 3) can be conceived as nanoparticles to carry and selectively release antimicrobial agents after attachment or within oral biofilms, resulting in their disruption. The latter mechanism includes "smart release" of agents when triggered by pathogenic microenvironments (e.g., acidic pH or low oxygen levels) for localized and controlled drug delivery to simultaneously kill bacteria and dismantle the biofilm matrix. Here we discuss inorganic, metallic, polymeric, and carbon-based NEs for their outstanding chemical flexibility, stability, and antibiofilm properties manifested when converted into bioactive materials, assembled on-site or delivered at biofilm-surface interfaces. Details are provided on the emerging concept of the rational design of NEs and recent technological breakthroughs for the development of a new generation of nanocoatings or functional nanoparticles for biofilm control in the oral cavity.
Collapse
Affiliation(s)
- A.J. Paula
- Solid-Biological Interface Group (SolBIN), Departamento de Física, Universidade Federal do Ceará, Fortaleza, Brazil
| | - H. Koo
- Divisions of Pediatric Dentistry and Community Oral Health, Department of Orthodontics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|