1
|
Zhao H, Chen W, Zhu Y, Chao Z, Sun J, Zhang Q, Guo H, Ju H, Liu Y. Programming a multiplex lanthanide nanoparticle for customized cancer treatment with real-time efficiency feedback. NANOSCALE 2025; 17:9184-9196. [PMID: 40125577 DOI: 10.1039/d5nr00390c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Customized cancer therapy relies on timely therapeutic effect evaluation to provide prescription adjustment for individual cases. However, currently reported therapeutic reagents are rarely integrated with imaging probes for self-evaluation of effects. Contrast imaging agents to measure tumor size changes must be administrated separately after therapy, complicating the therapeutic process and delaying reporting time. Herein, we design a customized therapy platform (LNPs-RB/Pep/cRGD) by conjugating lanthanide nanoparticles (LNPs) with the photosensitizer rose bengal, a caspase-3 substrate peptide (with Cy7.5 labelled at the terminal), and the tumor-targeting molecule cRGD. LNPs exhibit NIR-IIb downconversion luminescence under 980 nm/808 nm excitations for in vivo imaging, and visible upconversion luminescence under high-power 980 nm excitation for photodynamic therapy (PDT). By sequentially programming NIR excitation wavelength and power, NIR-IIb-imaging guided PDT and real-time cancer cell apoptosis imaging are achieved as therapeutic efficiency feedback. PDT induces cell apoptosis, generating caspase-3, which cleaves Cy7.5-containing peptide fragments from LNPs. This process corresponds to a recovery in vivo of NIR-IIb ratiometric imaging at 808 nm versus 980 nm excitation. The cleaved Cy7.5-containing peptide fragment is cleared into urine for NIR imaging. Both cell apoptosis imaging processes are completed 12 h after PDT, which is 7 days earlier than tumor size measurement. Therefore, customized therapy is achieved by timely adjusting PDT dosage, enhancing therapeutic efficacy.
Collapse
Affiliation(s)
- Hongxia Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Jiangsu, Taizhou 225300, China
| | - Wei Chen
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nan-jing University, Nanjing 210023, China
| | - Yu Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhicong Chao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jiahui Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Qing Zhang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nan-jing University, Nanjing 210023, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nan-jing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Yang L, Gan S, Zhang J, Jiang Y, Chen Q, Sun H. A dual-functional photosensitizer for mitochondria-targeting photodynamic therapy and synchronous polarity monitoring. J Mater Chem B 2024; 12:11259-11264. [PMID: 39377126 DOI: 10.1039/d4tb01872a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Mitochondria-targeting photodynamic therapy (PDT) has been validated as an effective strategy for inducing cell death through the disruption of mitochondrial function. The mitochondrial microenvironment, such as viscosity, polarity, pH and proteins, undergoes dynamic changes during PDT treatment, and investigating these parameters is crucial for comprehending the intrinsic mechanisms at the cellular level. In this context, disclosure of mitochondrial microenvironment alterations holds significant importance. Nevertheless, a probe capable of visualizing mitochondrial polarity fluctuations during PDT treatment has not been reported. Importantly, a dual-functional photosensitizer (PS) with polarity detection capability is highly advantageous as it can mitigate potential metabolic and localization disparities between the PS and the polarity probe, thus improving the accuracy of detection. In this contribution, a series of potential PSs were prepared by integrating the 2,1,3-benzoxadiazole (BD) scaffold with various heteroatom-incorporated electron-withdrawing groups. Among them, BDI exhibited potent phototoxicity against cancer cells and remarkable sensitivity to polarity changes, establishing it as a dual-functional PS for both photodynamic therapy and polarity detection. Leveraging its polarity detection capability, BDI successfully discriminated mitochondrial polarity discrepancy between cancer cells and normal cells, and indicated mitochondrial polarity fluctuations during drug-induced mitophagy. Crucially, BDI was employed to unveil mitochondrial polarity variations during PDT treatment, underscoring its dual function. Altogether, the meticulous design of the dual-functional PS BDI offers valuable insights into intracellular microenvironment variations during the PDT process, thereby enhancing our understanding and guiding the optimization of PDT treatment.
Collapse
Affiliation(s)
- Liu Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Shenglong Gan
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China.
| | - Jie Zhang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China.
| | - Yin Jiang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Qingxin Chen
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China.
| |
Collapse
|
3
|
Hua Y, Qin Z, Gao L, Zhou M, Xue Y, Li Y, Xie J. Protein nanoparticles as drug delivery systems for cancer theranostics. J Control Release 2024; 371:429-444. [PMID: 38849096 DOI: 10.1016/j.jconrel.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/18/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Protein-based nanoparticles have garnered significant attention in theranostic applications due to their superior biocompatibility, exceptional biodegradability and ease of functionality. Compared to other nanocarriers, protein-based nanoparticles offer additional advantages, including biofunctionality and precise molecular recognition abilities, which make them highly effective in navigating complex biological environments. Moreover, proteins can serve as powerful tools with self-assembling structures and reagents that enhance cell penetration. And their derivation from abundant renewable sources and ability to degrade into harmless amino acids further enhance their suitability for biomedical applications. However, protein-based nanoparticles have so far not realized their full potential. In this review, we summarize recent advances in the use of protein nanoparticles in tumor diagnosis and treatment and outline typical methods for preparing protein nanoparticles. The review of protein nanoparticles may provide useful new insights into the development of biomaterial fabrication.
Collapse
Affiliation(s)
- Yue Hua
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Zibo Qin
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education; Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Lin Gao
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education; Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Mei Zhou
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education; Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yonger Xue
- Center for BioDelivery Sciences, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, PR China.
| | - Yue Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau SAR, China.
| | - Jinbing Xie
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education; Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China.
| |
Collapse
|
4
|
Ma X, Mao M, He J, Liang C, Xie HY. Nanoprobe-based molecular imaging for tumor stratification. Chem Soc Rev 2023; 52:6447-6496. [PMID: 37615588 DOI: 10.1039/d3cs00063j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The responses of patients to tumor therapies vary due to tumor heterogeneity. Tumor stratification has been attracting increasing attention for accurately distinguishing between responders to treatment and non-responders. Nanoprobes with unique physical and chemical properties have great potential for patient stratification. This review begins by describing the features and design principles of nanoprobes that can visualize specific cell types and biomarkers and release inflammatory factors during or before tumor treatment. Then, we focus on the recent advancements in using nanoprobes to stratify various therapeutic modalities, including chemotherapy, radiotherapy (RT), photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), ferroptosis, and immunotherapy. The main challenges and perspectives of nanoprobes in cancer stratification are also discussed to facilitate probe development and clinical applications.
Collapse
Affiliation(s)
- Xianbin Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Mingchuan Mao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jiaqi He
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, P. R. China.
| |
Collapse
|
5
|
Wang J, Sun L, Liu J, Sun B, Li L, Xu ZP. Biomimetic 2D layered double hydroxide nanocomposites for hyperthermia-facilitated homologous targeting cancer photo-chemotherapy. J Nanobiotechnology 2021; 19:351. [PMID: 34717639 PMCID: PMC8557519 DOI: 10.1186/s12951-021-01096-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Multi-modal therapy has attracted increasing attention as it provides enhanced effectiveness and potential stimulation of the immune community. However, low accumulation at the tumor sites and quick immune clearance of the anti-tumor agents are still insurmountable challenges. Hypothetically, cancer cell membrane (CCM) can homologously target the tumor whereas multi-modal therapy can complement the disadvantages of singular therapies. Meanwhile, moderate hyperthermia induced by photothermal therapy can boost the cellular uptake of therapeutic agents by cancer cells. RESULTS CCM-cloaked indocyanine green (ICG)-incorporated and abraxane (PTX-BSA)-loaded layered double hydroxide (LDH) nanosheets (LIPC NSs) were fabricated for target efficient photo-chemotherapy of colorectal carcinoma (CRC). The CCM-cloaked LDH delivery system showed efficient homologous targeting and cytotoxicity, which was further enhanced under laser irradiation to synergize CRC apoptosis. On the other hand, CCM-cloaking remarkably reduced the uptake of LDH NSs by HEK 293T cells and macrophages, implying mitigation of the side effects and the immune clearance, respectively. In vivo data further exhibited that LIPC NSs enhanced the drug accumulation in tumor tissues and significantly retarded tumor progression under laser irradiation at very low therapeutic doses (1.2 and 0.6 mg/kg of ICG and PTX-BSA), without observed side effects on other organs. CONCLUSIONS This research has demonstrated that targeting delivery efficiency and immune-escaping ability of LIPC NSs are tremendously enhanced by CCM cloaking for efficient tumor accumulation and in situ generated hyperthermia boosts the uptake of LIPC NSs by cancer cells, a potential effective way to improve the multi-modal cancer therapy.
Collapse
Affiliation(s)
- Jingjing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Luyao Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jie Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
6
|
Sozmen F, Kucukoflaz M, Ergul M, Sahin Inan ZD. Nanoparticles with PDT and PTT synergistic properties working with dual NIR-light source simultaneously. RSC Adv 2021. [DOI: 10.1039/d0ra09954f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A non-toxic nano system using a cleverly designed dual light can be an important treatment strategy in cancer therapy.
Collapse
Affiliation(s)
- Fazli Sozmen
- Nanotechnology Engineering Department
- Faculty of Engineering
- Sivas Cumhuriyet University
- Sivas
- Turkey
| | - Merve Kucukoflaz
- Nanotechnology Engineering Department
- Faculty of Engineering
- Sivas Cumhuriyet University
- Sivas
- Turkey
| | - Mustafa Ergul
- Biochemistry Department
- Faculty of Pharmacy
- Sivas Cumhuriyet University
- Sivas
- Turkey
| | - Zeynep Deniz Sahin Inan
- Histology and Embryology Department
- Faculty of Medicine
- Sivas Cumhuriyet University
- Sivas
- Turkey
| |
Collapse
|
7
|
Mozhi A, Sunil V, Zhan W, Ghode PB, Thakor NV, Wang CH. Enhanced penetration of pro-apoptotic and anti-angiogenic micellar nanoprobe in 3D multicellular spheroids for chemophototherapy. J Control Release 2020; 323:502-518. [DOI: 10.1016/j.jconrel.2020.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
|
8
|
Lee S, Pham TC, Bae C, Choi Y, Kim YK, Yoon J. Nano theranostics platforms that utilize proteins. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213258] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Gulzar A, Wang Z, He F, Yang D, Zhang F, Gai S, Yang P. An 808 nm Light-Sensitized Upconversion Nanoplatform for Multimodal Imaging and Efficient Cancer Therapy. Inorg Chem 2020; 59:4909-4923. [DOI: 10.1021/acs.inorgchem.0c00170] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arif Gulzar
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Zhao Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Fangmei Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
- College of Sciences, Heihe University, Heihe, Heilongjiang 164300, PR China
| |
Collapse
|
10
|
Zheng Y, Li Z, Chen H, Gao Y. Nanoparticle-based drug delivery systems for controllable photodynamic cancer therapy. Eur J Pharm Sci 2020; 144:105213. [PMID: 31926941 DOI: 10.1016/j.ejps.2020.105213] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 01/10/2023]
Abstract
Compared with the traditional treatment, photodynamic therapy (PDT) in the treatment of malignant tumors has the advantages of less damage to normal tissues, quick therapeutic effect, and ability to repeat treatments to the same site. However, most of the traditional photosensitizers (PSs) have severe skin photosensitization, poor tumor targeting, and low therapeutic effect in hypoxic tumor environment, which limit the application of PDT. Nanoparticle-based drug delivery systems can improve the targeting of PSs and release drugs with controllable photoactivity at predetermined locations, so as to achieve desired therapeutic effects with minimal side-effects. The present review summarizes the current nanoparticle platforms for PDT, and offers the description of different strategies including tumor-targeted delivery, controlled-release of PSs and the triggered photoactivity to achieve controllable PDT by nanoparticle-based drug delivery systems. The challenges and prospects for further development of intelligent PSs for PDT are also discussed.
Collapse
Affiliation(s)
- Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China
| | - Haijun Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, 2 Xueyuan Road, Yangguang Building, 6FL., Fuzhou, Fujian 350108, China.
| |
Collapse
|
11
|
Chen H, Qin Z, Zhao J, He Y, Ren E, Zhu Y, Liu G, Mao C, Zheng L. Cartilage-targeting and dual MMP-13/pH responsive theranostic nanoprobes for osteoarthritis imaging and precision therapy. Biomaterials 2019; 225:119520. [PMID: 31586865 DOI: 10.1016/j.biomaterials.2019.119520] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/23/2019] [Indexed: 01/08/2023]
Abstract
Osteoarthritis (OA) microenvironment is marked by matrix metalloproteinases-13 (MMP-13) overexpression and weak acidity, making it possible to develop dual-stimuli responsive theranostic nanoprobes for OA diagnosis and therapy. However, current MMP/pH-responsive systems are not suitable for OA because of their poor biocompatibility, poor degradation and non-cartilage-targeting of the responsive probes. Here we designed a novel biocompatible cartilage-targeting and MMP-13/pH-responsive ferritin nanocages (CMFn) loaded with an anti-inflammatory drug (Hydroxychloroquine, HCQ), termed CMFn@HCQ, for OA imaging and therapy. We found that CMFn could be smartly "turned on" to emit light for OA imaging in response to the level of overexpressed MMP-13 in OA microenvironment, corresponding to the degree of OA severity. Thus the light intensity detected reflected the degree of OA severity, enabling the precise disease classification by our CMFn. CMFn could be "turned off" to stop emitting light in the normal joint. CMFn@HCQ nanocages could target the cartilage and release HCQ in the OA joint specifically under acidic pH conditions in a sustained manner, prolonging the drug retention time to 14 days to remarkably reduce synovial inflammation in the OA joints. The CMFn@HCQ nanocages represent a smart dual-stimuli responsive and cartilage-targeting nanoprobes, and hold promise for imaging-guided precision therapy for OA.
Collapse
Affiliation(s)
- Haimin Chen
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, 530021, China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Yi He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, 530021, China
| | - En Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ye Zhu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5300, USA
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5300, USA.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, 530021, China; Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
12
|
Jiang D, Chen C, Xue Y, Cao H, Wang C, Yang G, Gao Y, Wang P, Zhang W. NIR-Triggered "OFF/ON" Photodynamic Therapy through a Upper Critical Solution Temperature Block Copolymer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37121-37129. [PMID: 31525015 DOI: 10.1021/acsami.9b12889] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Activatable photodynamic therapy (A-PDT) has attracted great attention in precision medicine, which can be activated by endogenous or exogenous stimuli to selectively produce reactive oxygen species (ROS) at the disease site. Thermal responsive polymers with a lower critical solution temperature (LCST) have normally been utilized for constructing A-PDT system. Herein, we fabricated a photothermal activatable photosensitizer (A-PS) by the combination of thermal responsive porphyrin-containing P(AAm-co-AN-co-TPP)-b-POEGMA amphiphilic block copolymer with an upper critical solution temperature (UCST) of 42 °C and a cyanine dye of IR780. The photoactivity of porphyrin units could be severely inhibited by IR780 due to the fluorescence resonance energy transfer (FRET) from TPP to IR780 during blood circulation process ("OFF" state). After an uptake by A549 cells and then irradiated with 808 nm laser, A-PS nanoparticles were subsequently dissociated owing to the increased local temperature above the UCST of the polymer chains by excellent photothermal conversion of IR780, resulting in the enhanced photoactivity of TPP ("ON" state) and the remarkable antitumor effect. Therefore, the UCST-based A-PS extended the biological application of thermal responsive polymers, which may provide a new insight into the design of smart cancer therapeutic systems.
Collapse
Affiliation(s)
- Dawei Jiang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, Biomedical Nanotechnology Center, School of Biotechnology , East China University of Science and Technology , No. 130 Meilong Road , Xuhui District, Shanghai 200237 China
| | - Yudong Xue
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 China
| | - Hongliang Cao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 China
| | - Chaochao Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 China
| | - Guoliang Yang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 China
| | - Yun Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 China
| | - Ping Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, Biomedical Nanotechnology Center, School of Biotechnology , East China University of Science and Technology , No. 130 Meilong Road , Xuhui District, Shanghai 200237 China
- Bioproducts and Biosystems Engineering , University of Minnesota , 2004 Folwell Avenue , St. Paul , Minnesota 55108 United States
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 China
| |
Collapse
|
13
|
Sun Z, Ma N, Fan W, Guo L, Chen J, Zhu L, Tong G. Noninvasive monitoring of the development and treatment response of ischemic hindlimb by targeting matrix metalloproteinase-2 (MMP-2). Biomater Sci 2019; 7:4036-4045. [PMID: 31482934 DOI: 10.1039/c9bm00915a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An ultrafast MMP activatable probe monitoring the development of angiogenesis in ischemic hindlimb through fluorescence imaging in real-time.
Collapse
Affiliation(s)
- Zhongchan Sun
- Department of Cardiology
- Guangdong Cardiovascular Institute
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease
- Guangdong Provincial People's Hospital
- Guangdong Academy of Medical Sciences
| | - Nan Ma
- Department of Ophthalmology
- Tangdu Hospital
- Fourth Military Medical University
- Xi'an
- China
| | - Wensi Fan
- Department of Cardiology
- Xijing Hospital
- Fourth Military Medical University
- Xi'an
- China
| | - Lanyan Guo
- Department of Cardiology
- Xijing Hospital
- Fourth Military Medical University
- Xi'an
- China
| | - Jiangwei Chen
- Department of Cardiology
- Xijing Hospital
- Fourth Military Medical University
- Xi'an
- China
| | - Lei Zhu
- Winship Cancer Institute
- Department of Surgery
- Emory University
- Atlanta
- USA
| | - Guang Tong
- Department of Cardiac Surgery
- Guangdong Cardiovascular Institute
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease
- Guangdong Provincial People's Hospital
- Guangdong Academy of Medical Sciences
| |
Collapse
|
14
|
A potential carrier for anti-tumor targeted delivery-hyaluronic acid nanoparticles. Carbohydr Polym 2018; 208:356-364. [PMID: 30658811 DOI: 10.1016/j.carbpol.2018.12.074] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/03/2018] [Accepted: 12/21/2018] [Indexed: 11/22/2022]
Abstract
In recent years, biomacromolecules have been widely used in anti-tumor delivery systems due to the biocompatibility and biodegradability. However, their applications are limited due to the lack of specific targeting. Hyaluronic acid (HA) is a natural polysaccharide and presents in extracellular matrix and synovial fluid which can specifically recognize receptors over-expressed by tumor cells. In addition, they can self-assemble into nanoparticles. HA nanoparticles provide new hierarchical targeting strategies: passively targeting tumor tissue by enhanced permeability and retention effect, actively targeting tumor cells by cluster determinant 44 (CD44) receptor, and then entering cells through receptor-mediated endocytosis. In this review, the synthesis of HA nanoparticles is described in detail from several aspects and applications are also discussed for improving the delivery of hydrophobic drugs, nucleic acids and photosensitizers into the tumor cells. In addition, the modification of HA for improving the targeting and drug releasing characteristics are also discussed.
Collapse
|
15
|
Li M, Wu D, Chen Y, Shan G, Liu Y. Apoferritin nanocages with Au nanoshell coating as drug carrier for multistimuli-responsive drug release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 95:11-18. [PMID: 30573231 DOI: 10.1016/j.msec.2018.10.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 09/10/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022]
Abstract
Cancer is one of the major causes of mortality worldwide. Therefore, it is necessary to provide an effective method of tumor therapy. Herein, we designed a new type of composite particle, apoferritin (APO) encapsulated doxorubicin (DOX), and the surface of APO was modified with Au nanoshell. As a nanocarrier, APO can carry chemotherapy drug DOX (APODOX) and release drug under acidic and high temperature conditions to reduce side effects of anticancer drugs. After covering Au nanoshell (APODOX-Au), the photothermal effect can be produced because of the unique surface plasmon resonance properties of gold nanoshell. This nanoplatform also provides the multi-stimuli responsive drug release system, which can achieve drug release in different conditions and have great potential in biomedical applications. Our investigation has demonstrated that APODOX-Au has good stability, high dispersibility and biocompatibility in vitro. The strong near-infrared absorption and good photothermal effect make sure the quick response to environmental changes (pH, temperature) to achieve drug release. These findings indicate that these nanoparticles have a potential application value in cancer treatment.
Collapse
Affiliation(s)
- Man Li
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Dan Wu
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yanwei Chen
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Guiye Shan
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yichun Liu
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
16
|
Wang D, Lee MMS, Shan G, Kwok RTK, Lam JWY, Su H, Cai Y, Tang BZ. Highly Efficient Photosensitizers with Far-Red/Near-Infrared Aggregation-Induced Emission for In Vitro and In Vivo Cancer Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802105. [PMID: 30133835 DOI: 10.1002/adma.201802105] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/10/2018] [Indexed: 05/14/2023]
Abstract
Fluorescence-imaging-guided photodynamic therapy has emerged as a promising protocol for cancer theranostics. However, facile preparation of such a theranostic material for simultaneously achieving bright emission with long wavelength, high-performance reactive oxygen species (ROS) generation, and good targeting-specificity of cancer cells, is highly desirable but remains challenging. In this study, a novel type of far-red/near-infrared-emissive fluorescent molecules with aggregation-induced emission (AIE) characteristics is synthesized through a few steps reaction. These AIE luminogens (AIEgens) possess simple structures, excellent photostabilities, large Stokes shifts, bright emission, and good biocompatibilities. Meanwhile, their ROS generation is extremely efficient with up to 90.7% of ROS quantum yield, which is far superior to that of some popularly used photosensitizers. Importantly, these AIEgens are able to selectively target and ablate cancer cells over normal cells without the aid of any extra targeting ligands. Rather than using laser light, one of the presented AIEgens (MeTTPy) shows a remarkable tumor-targeting photodynamic therapeutic effect by using an ultralow-power lamp light (18 mW cm-2 ). This study thus not only extends the applications scope of AIEgens, but also offers useful insights into designing a new generation of cancer theranostics.
Collapse
Affiliation(s)
- Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Michelle M S Lee
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Guogang Shan
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ryan T K Kwok
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jacky W Y Lam
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Huifang Su
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yuchen Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ben Zhong Tang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
17
|
Nag OK, Naciri J, Erickson JS, Oh E, Delehanty JB. Hybrid Liquid Crystal Nanocarriers for Enhanced Zinc Phthalocyanine-Mediated Photodynamic Therapy. Bioconjug Chem 2018; 29:2701-2714. [DOI: 10.1021/acs.bioconjchem.8b00374] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Okhil K. Nag
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Avenue SW, Washington, D.C. 20375, United States
| | - Jawad Naciri
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Avenue SW, Washington, D.C. 20375, United States
| | - Jeffrey S. Erickson
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Avenue SW, Washington, D.C. 20375, United States
| | - Eunkeu Oh
- Optical Sciences Division, Naval Research Laboratory, Code 5600, 4555 Overlook Avenue SW, Washington, D.C. 20375, United States
- KeyW Corporation, Hanover, Maryland 21076, United States
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Avenue SW, Washington, D.C. 20375, United States
| |
Collapse
|
18
|
Li X, Lee S, Yoon J. Supramolecular photosensitizers rejuvenate photodynamic therapy. Chem Soc Rev 2018; 47:1174-1188. [DOI: 10.1039/c7cs00594f] [Citation(s) in RCA: 600] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this review, we will cover the recent progress made in the development of supramolecular photosensitizers (PSs) for rejuvenating photodynamic therapy.
Collapse
Affiliation(s)
- Xingshu Li
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Songyi Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| |
Collapse
|
19
|
Wang Y, Zhang B, Liu W, Dai Y, Shi Y, Zeng Q, Wang F. Noninvasive bioluminescence imaging of the dynamics of sanguinarine induced apoptosis via activation of reactive oxygen species. Oncotarget 2017; 7:22355-67. [PMID: 26968950 PMCID: PMC5008365 DOI: 10.18632/oncotarget.7971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/25/2016] [Indexed: 12/22/2022] Open
Abstract
Most chemotherapeutic drugs exert their anti-tumor effects primarily by triggering a final pathway leading to apoptosis. Noninvasive imaging of apoptotic events in preclinical models would greatly facilitate the development of apoptosis-inducing compounds and evaluation of their therapeutic efficacy. Here we employed a cyclic firefly luciferase (cFluc) reporter to screen potential pro-apoptotic compounds from a number of natural agents. We demonstrated that sanguinarine (SANG) could induce apoptosis in a dose- and time-dependent manner in UM-SCC-22B head and neck cancer cells. Moreover, SANG-induced apoptosis was associated with the generation of reactive oxygen species (ROS) and activation of c-Jun-N-terminal kinase (JNK) and nuclear factor-kappaB (NF-κB) signal pathways. After intravenous administration with SANG in 22B-cFluc xenograft models, a dramatic increase of luminescence signal can be detected as early as 48 h post-treatment, as revealed by longitudinal bioluminescence imaging in vivo. Remarkable apoptotic cells reflected from ex vivo TUNEL staining confirmed the imaging results. Importantly, SANG treatment caused distinct tumor growth retardation in mice compared with the vehicle-treated group. Taken together, our results showed that SANG is a candidate anti-tumor drug and noninvasive imaging of apoptosis using cFluc reporter could provide a valuable tool for drug development and therapeutic efficacy evaluation.
Collapse
Affiliation(s)
- Yan Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Beilei Zhang
- Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Wei Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yunpeng Dai
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yaru Shi
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Qi Zeng
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| |
Collapse
|
20
|
Gao S, Wang J, Tian R, Wang G, Zhang L, Li Y, Li L, Ma Q, Zhu L. Construction and Evaluation of a Targeted Hyaluronic Acid Nanoparticle/Photosensitizer Complex for Cancer Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32509-32519. [PMID: 28875691 DOI: 10.1021/acsami.7b09331] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Photodynamic therapy (PDT) is a novel treatment modality that is under intensive preclinical investigations for a variety of diseases, including cancer. Despite extensive studies in this area, selective and effective photodynamic agents that can specifically accumulate in tumors to reach a therapeutic concentration are limited. Although recent attempts have produced photosensitizers (PSs) complexed with various nanomaterials, the tedious preparation steps and poor tumor efficiency of therapy hamper their utilization. Here, we developed a CD44-targeted nanophotodynamic agent by physically encapsulating a photosensitizer, Ce6, into a hyaluronic acid nanoparticle (HANP), which was hereby denoted HANP/Ce6. Its physical features and capability for photodynamic therapy were characterized in vitro and in vivo. Systemic delivery of HANP/Ce6 resulted in its accumulation in a human colon cancer xenograft model. The tumor/muscle ratio reached 3.47 ± 0.46 at 4 h post injection, as confirmed by fluorescence imaging. Tumor growth after HANP/Ce6 treatment with laser irradiation (0.15 W/cm2, 630 nm) was significantly inhibited by 9.61 ± 1.09-fold compared to that in tumor control groups, which showed no change in tumor growth. No apparent systemic and local toxic effects on the mice were observed. HANP/Ce6-mediated tumor growth inhibition was accessed and observed for the first time by 18F-fluoro-2-deoxy-d-glucose positron emission tomography as early as 1 day after treatment and persisted for 14 days within our treatment time window. In sum, our results highlight the imaging properties and therapeutic effects of the novel HANP/Ce6 theranostic nanoparticle for CD44-targeted PDT cancer therapy that may be potentially utilized in the clinic. This HANP system may also be applied for the delivery of other hydrophobic PSs, particularly those that could not be chemically modified.
Collapse
Affiliation(s)
- Shi Gao
- China-Japan Union Hospital, Jilin University , Changchun 130033, China
| | - Jingjing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen 361005, China
| | - Rui Tian
- Department of Ophthalmology Second Hospital, Jilin University , Changchun, Jilin 130033, China
| | - Guohao Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen 361005, China
| | - Liwen Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen 361005, China
| | - Yesen Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen 361005, China
| | - Lu Li
- China-Japan Union Hospital, Jilin University , Changchun 130033, China
| | - Qingjie Ma
- China-Japan Union Hospital, Jilin University , Changchun 130033, China
| | - Lei Zhu
- Department of Surgery, Emory University School of Medicine , Atlanta, Georgia 30322, United States
| |
Collapse
|
21
|
Qu X, Li M, Zhang H, Lin C, Wang F, Xiao M, Zhou Y, Shi J, Aldalbahi A, Pei H, Chen H, Li L. Real-Time Continuous Identification of Greenhouse Plant Pathogens Based on Recyclable Microfluidic Bioassay System. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31568-31575. [PMID: 28858468 DOI: 10.1021/acsami.7b10116] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development of a real-time continuous analytical platform for the pathogen detection is of great scientific importance for achieving better disease control and prevention. In this work, we report a rapid and recyclable microfluidic bioassay system constructed from oligonucleotide arrays for selective and sensitive continuous identification of DNA targets of fungal pathogens. We employ the thermal denaturation method to effectively regenerate the oligonucleotide arrays for multiple sample detection, which could considerably reduce the screening effort and costs. The combination of thermal denaturation and laser-induced fluorescence detection technique enables real-time continuous identification of multiple samples (<10 min per sample). As a proof of concept, we have demonstrated that two DNA targets of fungal pathogens (Botrytis cinerea and Didymella bryoniae) can be sequentially analyzed using our rapid microfluidic bioassay system, which provides a new paradigm in the design of microfluidic bioassay system and will be valuable for chemical and biomedical analysis.
Collapse
Affiliation(s)
- Xiangmeng Qu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology of Xiamen University, Xiamen University , Xiamen 361005, P. R. China
- School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200241, P. R. China
| | - Min Li
- School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200241, P. R. China
| | - Hongbo Zhang
- Department of Pharmaceutical Sciences Laboratory, Åbo Akademi University , Turku 20520, Finland
| | - Chenglie Lin
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine , Chengdu 611137, P. R. China
| | - Fei Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, P. R. China
| | - Mingshu Xiao
- School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200241, P. R. China
| | - Yi Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine , Chengdu 611137, P. R. China
| | - Jiye Shi
- UCB Pharma, 208 Bath Road, Slough SL1 3WE, U.K
| | - Ali Aldalbahi
- Chemistry Department, King Saud University , Riyadh 11451, Saudi Arabia
| | - Hao Pei
- School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200241, P. R. China
| | - Hong Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology of Xiamen University, Xiamen University , Xiamen 361005, P. R. China
| | - Li Li
- School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200241, P. R. China
| |
Collapse
|
22
|
|
23
|
Li X, Kim CY, Lee S, Lee D, Chung HM, Kim G, Heo SH, Kim C, Hong KS, Yoon J. Nanostructured Phthalocyanine Assemblies with Protein-Driven Switchable Photoactivities for Biophotonic Imaging and Therapy. J Am Chem Soc 2017; 139:10880-10886. [DOI: 10.1021/jacs.7b05916] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xingshu Li
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - C-yoon Kim
- Department
of Medicine, School of Medicine, Konkuk University, Seoul 143-701, Korea
| | - Seunghyun Lee
- Department
of Electrical Engineering and Creative IT Engineering, POSTECH, Pohang 37673, Korea
| | - Dayoung Lee
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Hyung-Min Chung
- Department
of Medicine, School of Medicine, Konkuk University, Seoul 143-701, Korea
| | - Gyoungmi Kim
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Si-Hyun Heo
- Department
of Medicine, School of Medicine, Konkuk University, Seoul 143-701, Korea
| | - Chulhong Kim
- Department
of Electrical Engineering and Creative IT Engineering, POSTECH, Pohang 37673, Korea
| | - Ki-Sung Hong
- Department
of Medicine, School of Medicine, Konkuk University, Seoul 143-701, Korea
| | - Juyoung Yoon
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
24
|
Li X, Kim J, Yoon J, Chen X. Cancer-Associated, Stimuli-Driven, Turn on Theranostics for Multimodality Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201606857. [PMID: 28370546 PMCID: PMC5544499 DOI: 10.1002/adma.201606857] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/11/2017] [Indexed: 04/14/2023]
Abstract
Advances in bioinformatics, genomics, proteomics, and metabolomics have facilitated the development of novel anticancer agents that have decreased side effects and increased safety. Theranostics, systems that have combined therapeutic effects and diagnostic capabilities, have garnered increasing attention recently because of their potential use in personalized medicine, including cancer-targeting treatments for patients. One interesting approach to achieving this potential involves the development of cancer-associated, stimuli-driven, turn on theranostics. Multicomponent constructs of this type would have the capability of selectively delivering therapeutic reagents into cancer cells or tumor tissues while simultaneously generating unique signals that can be readily monitored under both in vitro and in vivo conditions. Specifically, their combined anticancer activities and selective visual signal respond to cancer-associated stimuli, would make these theranostic agents more highly efficient and specific for cancer treatment and diagnosis. This article focuses on the progress of stimuli-responsive turn on theranostics that activate diagnostic signals and release therapeutic reagents in response to the cancer-associated stimuli. The present article not only provides the fundamental backgrounds of diagnostic and therapeutic tools that have been widely utilized for developing theranostic agents, but also discusses the current approaches for developing stimuli-responsive turn on theranostics.
Collapse
Affiliation(s)
- Xingshu Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | - Jihoon Kim
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| |
Collapse
|
25
|
Han K, Zhang WY, Ma ZY, Wang SB, Xu LM, Liu J, Zhang XZ, Han HY. Acidity-Triggered Tumor Retention/Internalization of Chimeric Peptide for Enhanced Photodynamic Therapy and Real-Time Monitoring of Therapeutic Effects. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16043-16053. [PMID: 28443327 DOI: 10.1021/acsami.7b04447] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Photodynamic therapy (PDT) holds great promise in tumor treatment. Nevertheless, it remains highly desirable to develop easy-to-fabricated PDT systems with improved tumor accumulation/internalization and timely therapeutic feedback. Here, we report a tumor-acidity-responsive chimeric peptide for enhanced PDT and noninvasive real-time apoptosis imaging. Both in vitro and in vivo studies revealed that a tumor mildly acidic microenvironment could trigger rapid protonation of carboxylate anions in chimeric peptide, which led to increased ζ potential, improved hydrophobicity, controlled size enlargement, and precise morphology switching from sphere to spherocylinder shape of the chimeric peptide. All of these factors realized superfast accumulation and prolonged retention in the tumor region, selective cellular internalization, and enhanced PDT against the tumor. Meanwhile, this chimeric peptide could further generate reactive oxygen species and initiate cell apoptosis during PDT. The subsequent formation of caspase-3 enzyme hydrolyzed the chimeric peptide, achieving a high signal/noise ratio and timely fluorescence feedback. Importantly, direct utilization of the acidity responsiveness of a biofunctional Asp-Glu-Val-Asp-Gly (DEVDG, caspase-3 enzyme substrate) peptide sequence dramatically simplified the preparation and increased the performance of the chimeric peptide furthest.
Collapse
Affiliation(s)
- Kai Han
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University , Wuhan 430070, China
| | - Wei-Yun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University , Wuhan 430070, China
| | - Zhao-Yu Ma
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University , Wuhan 430070, China
| | - Shi-Bo Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University , Wuhan 430072, China
| | - Lu-Ming Xu
- China Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Jia Liu
- China Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University , Wuhan 430072, China
| | - He-You Han
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University , Wuhan 430070, China
| |
Collapse
|
26
|
Manoto SL, Houreld N, Hodgkinson N, Abrahamse H. Modes of Cell Death Induced by Photodynamic Therapy Using Zinc Phthalocyanine in Lung Cancer Cells Grown as a Monolayer and Three-Dimensional Multicellular Spheroids. Molecules 2017; 22:E791. [PMID: 28509858 PMCID: PMC6154333 DOI: 10.3390/molecules22050791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/17/2022] Open
Abstract
Photodynamic therapy (PDT) involves interaction of a photosensitizer, light, and molecular oxygen which produces singlet oxygen and subsequent tumour eradication. The development of second generation photosensitizers, such as phthalocyanines, has improved this technology. Customary monolayer cell culture techniques are, unfortunately, too simple to replicate treatment effects in vivo. Multicellular tumour spheroids may provide a better alternative since they mimic aspects of the human tumour environment. This study aimed to profile 84 genes involved in apoptosis following treatment with PDT on lung cancer cells (A549) grown in a monolayer versus three-dimensional multicellular tumour spheroids (250 and 500 μm). Gene expression profiling was performed 24 h post irradiation (680 nm; 5 J/cm²) with zinc sulfophthalocyanine (ZnPcSmix) to determine the genes involved in apoptotic cell death. In the monolayer cells, eight pro-apoptotic genes were upregulated, and two were downregulated. In the multicellular tumour spheroids (250 µm) there was upregulation of only 1 gene while there was downregulation of 56 genes. Apoptosis in the monolayer cultured cells was induced via both the intrinsic and extrinsic apoptotic pathways. However, in the multicellular tumour spheroids (250 and 500 µm) the apoptotic pathway that was followed was not conclusive.
Collapse
Affiliation(s)
- Sello L Manoto
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| | - Nicolette Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| | - Natasha Hodgkinson
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
27
|
Miller MA, Weissleder R. Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior. Adv Drug Deliv Rev 2017; 113:61-86. [PMID: 27266447 PMCID: PMC5136524 DOI: 10.1016/j.addr.2016.05.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022]
Abstract
Therapeutic nanoparticles (NPs) can deliver cytotoxic chemotherapeutics and other drugs more safely and efficiently to patients; furthermore, selective delivery to target tissues can theoretically be accomplished actively through coating NPs with molecular ligands, and passively through exploiting physiological "enhanced permeability and retention" features. However, clinical trial results have been mixed in showing improved efficacy with drug nanoencapsulation, largely due to heterogeneous NP accumulation at target sites across patients. Thus, a clear need exists to better understand why many NP strategies fail in vivo and not result in significantly improved tumor uptake or therapeutic response. Multicolor in vivo confocal fluorescence imaging (intravital microscopy; IVM) enables integrated pharmacokinetic and pharmacodynamic (PK/PD) measurement at the single-cell level, and has helped answer key questions regarding the biological mechanisms of in vivo NP behavior. This review summarizes progress to date and also describes useful technical strategies for successful IVM experimentation.
Collapse
Affiliation(s)
- Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Zhu L, Staley C, Kooby D, El-Rays B, Mao H, Yang L. Current status of biomarker and targeted nanoparticle development: The precision oncology approach for pancreatic cancer therapy. Cancer Lett 2017; 388:139-148. [PMID: 27916607 PMCID: PMC5318282 DOI: 10.1016/j.canlet.2016.11.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/15/2016] [Accepted: 11/24/2016] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer remains one of the major causes of cancer-related mortality. The majority of pancreatic cancer patients are diagnosed at the advanced stage with unresectable and drug resistant tumors. The new treatments with the combination of chemotherapy, molecular targeted therapy, and immunotherapy have shown modest effects on therapeutic efficacy and survival of the patients. Therefore, there is an urgent need to develop effective therapeutic approaches targeting highly heterogeneous pancreatic cancer cells and tumor microenvironments. Recent advances in biomarker targeted cancer therapy and image-guided drug delivery and monitoring treatment response using multifunctional nanoparticles, also referred to as theranostic nanoparticles, offer a new opportunity of effective detection and treatment of pancreatic cancer. Increasing evidence from preclinical studies has shown the potential of applications of theranostic nanoparticles for designing precision oncology approaches for pancreatic cancer therapy. In this review, we provide an update on the current understanding and strategies for the development of targeted therapy for pancreatic cancer using nanoparticle drug carriers. We address issues concerning drug delivery barriers in stroma rich pancreatic cancer and the potential approaches to improve drug delivery efficiency, therapeutic responses and tumor imaging. Research results presented in this review suggest the development of an integrated therapy protocol through image-guided and targeted drug delivery and therapeutic effect monitoring as a promising precision oncology strategy for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Charles Staley
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - David Kooby
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Bassel El-Rays
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
29
|
Wang Z, Gao H, Zhang Y, Liu G, Niu G, Chen X. Functional ferritin nanoparticles for biomedical applications. Front Chem Sci Eng 2017; 11:633-646. [PMID: 29503759 DOI: 10.1007/s11705-017-1620-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ferritin, a major iron storage protein with a hollow interior cavity, has been reported recently to play many important roles in biomedical and bioengineering applications. Owing to the unique architecture and surface properties, ferritin nanoparticles offer favorable characteristics and can be either genetically or chemically modified to impart functionalities to their surfaces, and therapeutics or probes can be encapsulated in their interiors by controlled and reversible assembly/disassembly. There has been an outburst of interest regarding the employment of functional ferritin nanoparticles in nanomedicine. This review will highlight the recent advances in ferritin nanoparticles for drug delivery, bioassay, and molecular imaging with a particular focus on their biomedical applications.
Collapse
Affiliation(s)
- Zhantong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.,Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
| | - Haiyan Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Kautzka Z, Clement S, Goldys EM, Deng W. Light-triggered liposomal cargo delivery platform incorporating photosensitizers and gold nanoparticles for enhanced singlet oxygen generation and increased cytotoxicity. Int J Nanomedicine 2017; 12:969-977. [PMID: 28203076 PMCID: PMC5298299 DOI: 10.2147/ijn.s126553] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We developed light-triggered liposomes incorporating 3-5 nm hydrophobic gold nanoparticles and Rose Bengal (RB), a well-known photosensitizer used for photodynamic therapy. Singlet oxygen generated by these liposomes with 532 nm light illumination was characterized for varying the molar ratio of lipids and gold nanoparticles while keeping the amount of RB constant. Gold nanoparticles were found to enhance the singlet oxygen generation rate, with a maximum enhancement factor of 1.75 obtained for the molar ratio of hydrogenated soy l-α-phosphatidylcholine:1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(hexanoylamine):gold of 57:5:17 compared with liposomes loaded with RB alone. The experimental results could be explained by the local electric field enhancement caused by gold nanoparticles. We further assessed cellular cytotoxicity of gold-loaded liposomes by encapsulating an antitumor drug, doxorubicin (Dox); such Dox-loaded liposomes were applied to human colorectal cancer cells (HCT116) and exposed to light. Gold-loaded liposomes containing RB and Dox where Dox release was triggered by light were found to exhibit higher cytotoxicity compared with the liposomes loaded with RB and Dox alone. Our results indicate that gold-loaded liposomes incorporating photosensitizers may serve as improved agents in photodynamic therapy and chemotherapy.
Collapse
Affiliation(s)
- Zofia Kautzka
- Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Sandhya Clement
- Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Ewa M Goldys
- Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Wei Deng
- Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, Sydney, NSW, Australia
| |
Collapse
|
31
|
Liu J, Zhang L, Lei J, Shen H, Ju H. Multifunctional Metal-Organic Framework Nanoprobe for Cathepsin B-Activated Cancer Cell Imaging and Chemo-Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2150-2158. [PMID: 28033467 DOI: 10.1021/acsami.6b14446] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Integration of a photodynamic therapy platform with a drug-delivery system in a porous structure is an urgent challenge for enhanced anticancer therapy. Here, an amino-functionalized metal-organic framework (MOF), which is useful as efficient delivery vehicle for drugs and provides the -NH2 group for postsynthetic modification, is chosen and well-designed for cell imaging and chemo-photodynamic therapy. The multifunctional MOF nanoprobe was first assembled with camptothecine drug via noncovalent encapsulation and then bound with folic acid as the targeted element and chlorine e6 (Ce6)-labeled CaB substrate peptide as the recognition moiety and signal switch. The designed MOF probe can realize cathepsin B-activated cancer cell imaging and chemo-photodynamic dual-therapy combining Ce6 as the photosensitizer and the camptothecine drug. Compared with the individual treatment, the dual-functional nanoprobe presents an enhanced treatment efficiency in terms of the time of chemotherapy, laser power, and irradiation time of the photodynamic therapy, which has been confirmed in cancer cells and in vivo assays. This work presents a significant example of the MOF nanoprobe as an intracellular switch and shows great potential in cancer cell targeted imaging and multiple therapies.
Collapse
Affiliation(s)
- Jintong Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Lei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Hong Shen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| |
Collapse
|
32
|
Oxygen-generating hybrid nanoparticles to enhance fluorescent/photoacoustic/ultrasound imaging guided tumor photodynamic therapy. Biomaterials 2017; 112:324-335. [DOI: 10.1016/j.biomaterials.2016.10.030] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 12/12/2022]
|
33
|
Qin Z, Wang J, Wang Y, Wang G, Wang X, Zhou Z, Liu G, Gao S, Zhu L. Identification of a Glypican-3-Binding Peptide for In Vivo Non-Invasive Human Hepatocellular Carcinoma Detection. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600335] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/06/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Zainen Qin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and; Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361005 China
- Collaborative Innovation Center of Guangxi Biological Medicine and the; Medical and Scientific Research Center; Guangxi Medical University; Nanning 530000 China
| | - Jingjing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and; Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361005 China
| | - Ye Wang
- School of Life Science; Jilin University; Changchun 130000 China
| | - Guohao Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and; Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361005 China
| | - Xiangyu Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and; Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361005 China
| | - Zhiyang Zhou
- Department of Surgery and Department of Radiology and Imaging Sciences; Emory University School of Medicine; Atlanta GA 30322 USA
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and; Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361005 China
| | - Shi Gao
- Department of Nuclear Medicine; China-Japan Union Hospital; Jilin University; Changchun Jilin 130033 China
| | - Lei Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and; Center for Molecular Imaging and Translational Medicine; School of Public Health; Xiamen University; Xiamen 361005 China
- Department of Surgery and Department of Radiology and Imaging Sciences; Emory University School of Medicine; Atlanta GA 30322 USA
| |
Collapse
|
34
|
Xie L, Wang G, Zhou H, Zhang F, Guo Z, Liu C, Zhang X, Zhu L. Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy. Biomaterials 2016; 103:219-228. [DOI: 10.1016/j.biomaterials.2016.06.058] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/10/2016] [Accepted: 06/23/2016] [Indexed: 12/29/2022]
|
35
|
Wang G, Zhang F, Tian R, Zhang L, Fu G, Yang L, Zhu L. Nanotubes-Embedded Indocyanine Green-Hyaluronic Acid Nanoparticles for Photoacoustic-Imaging-Guided Phototherapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5608-17. [PMID: 26860184 PMCID: PMC4930365 DOI: 10.1021/acsami.5b12400] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phototherapy is a light-triggered treatment for tumor ablation and growth inhibition via photodynamic therapy (PDT) and photothermal therapy (PTT). Despite extensive studies in this area, a major challenge is the lack of selective and effective phototherapy agents that can specifically accumulate in tumors to reach a therapeutic concentration. Although recent attempts have produced photosensitizers complexed with photothermal nanomaterials, the tedious preparation steps and poor tumor efficiency of therapy still hampers the broad utilization of these nanocarriers. Herein, we developed a CD44 targeted photoacoustic (PA) nanophototherapy agent by conjugating Indocyanine Green (ICG) to hyaluronic acid nanoparticles (HANPs) encapsulated with single-walled carbon nanotubes (SWCNTs), resulting in a theranostic nanocomplex of ICG-HANP/SWCNTs (IHANPT). We fully characterized its physical features as well as PA imaging and photothermal and photodynamic therapy properties in vitro and in vivo. Systemic delivery of IHANPT theranostic nanoparticles led to the accumulation of the targeted nanoparticles in tumors in a human cancer xenograft model in nude mice. PA imaging confirmed targeted delivery of the IHANPT nanoparticles into tumors (T/M ratio = 5.19 ± 0.3). The effect of phototherapy was demonstrated by low-power laser irradiation (808 nm, 0.8 W/cm(2)) to induce efficient photodynamic effect from ICG dye. The photothermal effect from the ICG and SWCNTs rapidly raised the tumor temperature to 55.4 ± 1.8 °C. As the result, significant tumor growth inhibition and marked induction of tumor cell death and necrosis were observed in the tumors in the tumors. There were no apparent systemic and local toxic effects found in the mice. The dynamic thermal stability of IHANPT was studied to ensure that PTT does not affect ICG-dependent PDT in phototherapy. Therefore, our results highlight imaging property and therapeutic effect of the novel IHANPT theranostic nanoparticle for CD44 targeted and PA image-guided dual PTT and PDT cancer therapy.
Collapse
Affiliation(s)
- Guohao Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Fan Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Rui Tian
- Department of Ophthalmology Second Hospital, Jilin University, Changchun, Jilin 130033, China
- Corresponding Authors: (R. Tian). Tel.: (+)86-592-2880642. Fax: (+)86-592-2880642. (L. Zhu)
| | - Liwen Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Guifeng Fu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Lily Yang
- Departments of Surgery and Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Lei Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
- Departments of Surgery and Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Corresponding Authors: (R. Tian). Tel.: (+)86-592-2880642. Fax: (+)86-592-2880642. (L. Zhu)
| |
Collapse
|